JPS61129365A - Power steering device - Google Patents

Power steering device

Info

Publication number
JPS61129365A
JPS61129365A JP24818384A JP24818384A JPS61129365A JP S61129365 A JPS61129365 A JP S61129365A JP 24818384 A JP24818384 A JP 24818384A JP 24818384 A JP24818384 A JP 24818384A JP S61129365 A JPS61129365 A JP S61129365A
Authority
JP
Japan
Prior art keywords
oil passage
oil
pressure
valve
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24818384A
Other languages
Japanese (ja)
Other versions
JPH0645344B2 (en
Inventor
Hajime Kozuka
元 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP59248183A priority Critical patent/JPH0645344B2/en
Publication of JPS61129365A publication Critical patent/JPS61129365A/en
Publication of JPH0645344B2 publication Critical patent/JPH0645344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To enhance the feeling of reaction over the whole range of running speed, by providing a vehicle speed responsive type flow control valve, and a bypass means for deenergizing an unloader valve upon high speed running of a vehicle. CONSTITUTION:When a vehicle comes to be in its high speed condition, a control device 15 receives a pulse signal from a vehicle speed sensor 14, and shifts a flow control valve 13 into the position H. Then the hydraulic pressure of an oil passage 7f comes to be lowest, which is transmitted to a pressure control valve 12. Therefore, the hydraulic pressure of the oil passage 7d comes to be highest, which is transmitted to a change-over valve 11 that therefore selects the position H. Thus, bypass passages 7b1, 7b2 are closed while passages 7c2, 7c3 are communicated to the passage 7b2 so that the hydraulic pressure from an oil pump 1 is fed into a passage selector valve 2 to increase the output hydraulic pressure by a set value. With this arrangement even if an loader valve 19 is closed, the hydraulic pressure of an oil passage 7d is held at a predetermined high level in the closing operation of the change-over valve 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車に使用されるノ(ワーステアリング装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in power steering devices used in automobiles.

(従来の技術) 本件出願人は、ステアリングハンドルの動キヲトーショ
ンバーを介し油路切換弁に伝えてオイルポンプから同油
路切換弁へ延びた高圧油路と同油路切換弁からオイルタ
ンクへ延びた低圧油路とを切換えてパワーシリンダを所
定の操舵方向に作動させるとともに同高圧油路を流れる
作動油の一部を反力ピストンへ導いてトーションバーの
捩れを規制するパワーステアリング装置において、前記
高圧油路のオリフィスを迂回するバイパス油路K。
(Prior Art) The present applicant proposed a high-pressure oil line that was transmitted from the oil pump to the oil passage switching valve by transmitting the information to the oil passage switching valve via the dynamic torque torsion bar of the steering handle, and from the oil passage switching valve to the oil tank. In a power steering device that operates a power cylinder in a predetermined steering direction by switching between an extended low-pressure oil passage and a part of the hydraulic oil flowing in the same high-pressure oil passage to a reaction piston to restrict twisting of a torsion bar, a bypass oil passage K that bypasses the orifice of the high-pressure oil passage;

高速時の操舵しない中立位置近傍のときだけに同バイパ
ス油路を閉じて前記反力ピストンへの油路の油圧を所定
値上昇させるチェンジ・オーバ・バルブを設は九ことを
特徴とするノ(ワーステアリング装置をすでに提案した
(必要ならば特願昭58−86599号明細書を参照さ
れたい)。
The invention is characterized in that a change-over valve is provided that closes the bypass oil passage and increases the oil pressure in the oil passage to the reaction piston by a predetermined value only when the vehicle is near a neutral position where no steering is performed at high speed. A power steering device has already been proposed (if necessary, please refer to Japanese Patent Application No. 58-86599).

(発明が解決しようとする問題点) 前記パワーステアリング装置では、高速時の操舵しない
中立位置近傍のときだけに、バイパス油路を閉じて、反
力ピストンへの油路の油圧を所定値(+tsky/−程
度)上昇させ、上記中立位置近傍でのハンドルトルクを
増大させて、高速時の微小操舵時の反力感(手応え)t
−向上させるようにしているが、ステアリングハンドル
をさらに右(または左)に切シ続けると、油路切換弁の
出力面油圧(オイルポンプの吐出圧)が第16図のよう
に2次曲線を描いて上昇し、この吐出圧の影響が本制御
系の油路、即ち、反力ピストンへの油路及び同油路から
チェンジ・オーバ・バルブに向5パイロット油路にもそ
のまま表われて、同各油路の油圧が上昇し、チェンジ・
オーバ・バルブを開位置(L位置)に移動させ、バイパ
ス油路を開き、反力ピストンへの油路の油圧を上記所定
値だけ低下させ、高速操舵時の反力感(手応え)を減殺
して、・操舵を不安定にするという問題がめった。
(Problems to be Solved by the Invention) In the power steering device, the bypass oil passage is closed only when the steering is not performed at high speed and near the neutral position, and the oil pressure in the oil passage to the reaction piston is adjusted to a predetermined value (+tsky). /- degree) and increase the steering wheel torque near the above neutral position to reduce the reaction force feeling (response) during minute steering at high speeds.
- However, if you continue to turn the steering wheel further to the right (or left), the output surface oil pressure of the oil passage switching valve (oil pump discharge pressure) will change to a quadratic curve as shown in Figure 16. The influence of this discharge pressure is directly reflected in the oil path of this control system, that is, the oil path to the reaction piston, and the 5 pilot oil path from the same oil path to the change over valve. The oil pressure in each oil passage increases, causing the change
Move the over valve to the open position (L position), open the bypass oil passage, and reduce the oil pressure in the oil passage to the reaction piston by the predetermined value above, reducing the reaction force feeling (response) during high-speed steering.・There was a frequent problem of unstable steering.

(問題点を解決するための手段) 本発明は前記の問題点に対処するもので、ステアリング
・・ンドルの動きをトーションバーを芥し油路切換弁に
伝えてオイルポンプから同油路切換弁へ延びた高圧油路
と同油路切換弁からオイルタンクへ延びた低圧油路とを
切換えてパワーシリンダを所定の操舵方向に作動させる
とともに同高圧油路を流れる作動油の一部を反力ピスト
ンへ導いてトーションバーの捩れを規制するパワーステ
アリング装置において、前記高圧油路の主オリフィス(
α)t−迂回するバイパス油路を閉じて前記反力ピスト
ンへの油路の油圧を所定値上昇させるチェンジ・オーバ
・バルブと、所定速度以上の高速時に前記反力ピストン
への油路の途中から低圧油路に向う油路を全閉にし間尺
カピストンへの油路及び同油路から上記チェンジ・オー
/ζ・バルブに向うパイロット油路の油圧を高めて同チ
ェンジ・オーバ・バルブ金閉位置く保持する車速応動型
の流量制御ノζルプと、操舵に伴なうポンプ吐出圧の増
大時に前記反力ピストンへの油路を閉じるアンロートノ
くルプと、所定速度以上の高速時に上記アンロード9バ
ルブを実質的に非作動にするアンロードバルブバイパス
手段とを具えていることを特徴としたノセワーステアリ
ング装置に係シ、その目的とする処は、高速走行時の全
範囲で反力感(手応え=操舵感覚)を向上できる改良さ
れたパワーステアリング装置を供する点にある。
(Means for Solving the Problems) The present invention addresses the above-mentioned problems by transmitting the movement of the steering wheel through the torsion bar to the oil passage switching valve so that the movement is transmitted from the oil pump to the oil passage switching valve. The high-pressure oil passage extending from the oil passage to the oil tank and the low-pressure oil passage extending from the oil passage switching valve to the oil tank are operated to operate the power cylinder in a predetermined steering direction, and a portion of the hydraulic oil flowing through the high-pressure oil passage is used as a reaction force. In a power steering device that guides the piston to the torsion bar and regulates the torsion of the torsion bar, the main orifice (
α) A change-over valve that closes the t-detour bypass oil passage and increases the oil pressure in the oil passage to the reaction piston by a predetermined value, and a change-over valve that closes the bypass oil passage to the reaction piston and increases the oil pressure in the oil passage to the reaction piston at a high speed of a predetermined speed or higher. Completely close the oil passage leading from the low-pressure oil passage, increase the oil pressure in the oil passage to the scale capiston, and the pilot oil passage from the same oil passage to the change-over valve, and close the change-over valve. an unloading knob that closes the oil passage to the reaction piston when the pump discharge pressure increases due to steering, and an unloading knob that closes the oil passage to the reaction piston when the pump discharge pressure increases due to steering; The nosewheel steering device is characterized by having an unload valve bypass means that substantially deactivates the 9 valves, and its purpose is to reduce the feeling of reaction force throughout the entire range when driving at high speeds. The object of the present invention is to provide an improved power steering device that can improve steering response (response = steering sensation).

(実施例) 次に本発明のパワーステアリンメ装置t−第1図乃至第
15図に示す一実施例によシ説明する。まず第1図によ
りその概略を説明すると、(1)がエンジン(図示せず
)によシ駆動されるオイルポンプで、同オイルポンプ(
1)は、流量が一定(7l/ min程度)の、吐出圧
が可変(5kglad 〜70k19./y )のオイ
ルポンプである。また(2)が四方向油路切換弁(ロー
タリバルブ) 、(3)が操舵用・ぞワーシリンダ、(
4)がオイルタンク、(5)が複数個の反力ピストン、
(6)が同各反力ピストン(5)の背後に形成したチャ
/ノ:+、(7α□)(7α2)が上記オイルポンプ(
1)から上記油路切換弁(2)へ延び九高圧油路、(8
α)が同油路切換弁(2)から上記オイルタンク(4)
へ延びた低圧油路、(9α)(10α)が上記油路切換
弁(2)から上記パワーシリンダ(3)へ延びた油路、
(α)が上記高圧油路(7α□)(7g2) の間に設
けた主オリフィス、C7h□)(7b2)が同主オリフ
ィス(α)の上流側及び下流側の高圧油路(7α1)(
7α2)K接続したバイパス油路、αυが同バイパス油
路(7b1)(7b2)の間に介装した油圧増大手段を
構成するチェンジ・オーバ・バルブ(COV)、α凌が
同チェンジ・オーバ命バルブ住υの上流側の油路(7b
1)に油路(7C1)(7C2)を介して接続した圧力
制御ノ2ルプ、(13)が流量制御バルブ、(7d)が
上記圧力制御バルブ(lzから延びた油路で、同油路(
7d)から岐れた一対の並列油路(7e)(7g’)が
上記流量制御バルブαjへ延びている。また(7cm3
)が上記チェンジ・オーバ・バルブαυのH@ポートか
ら上記波路(702”)へ延びた油路、(C)が同油路
(7C3)K設けた第3オリフイス、C9が上記油路(
7C1)(7C2)の間に介装したアンローPバルブ、
(7d1)が上記油路(7d)の途中から上記圧力制御
バルブC13へ延びた副、4イロツト油路、Cod2)
が上記油路(7d)の途中から前記反力ピストン(5)
の背後のチャンバー(6)へ延びた油路、(b)が上記
油路(7りの途中に設は念第2オリフィス、(7#、)
が同第2オリフイス(A)下流側の油路(7e)から前
記チェンジ・オーバ・バルブ(11)へ延びたCOW/
(イロット油路、(7f)が上記流量制御バルブ(13
から上記低圧油路(8h)へ延びた油路、(→が同油路
(7f)の途中に設は次第1オリフィス、(7f1)が
同第1オリスイス(d′Iの上流側の油路(7f)から
前記圧力制御バルブα2へ延びた主パイロット油路、α
着が車速センサー、C9が制御装置、αeがイダニショ
ンスイッチ、住ηがイ゛グニションコイル、(18α)
 (18b)から上記流量制御バルブr13の電磁コイ
ルへ延びた配線で、上記車速センサーa4は、車速を検
出し、その結果得られた・ξルス信号(車速く応じたパ
ルス信号)t−制御装置α9へ送出するようになってい
る。ま次回制御装置a9は、同パルス信号に対応した電
流(所定速度の高速時の電流零(i−O)から停車時の
電流最大C1−1>までの車速に対応した電流)を流量
制御バルブ0の電磁コイルも?)へ送出して、流量制御
バルブa3のプランジャf53及びスプール6υを上記
電流値に応じた所定位置く保持するようKなっている。
(Embodiment) Next, an embodiment of the power steering system according to the present invention shown in FIGS. 1 to 15 will be explained. First, to explain the outline with reference to Fig. 1, (1) is an oil pump driven by an engine (not shown);
1) is an oil pump with a constant flow rate (about 7 l/min) and a variable discharge pressure (5 kg rad to 70 k19./y). In addition, (2) is a four-way oil passage switching valve (rotary valve), (3) is a steering/thrower cylinder, (
4) is an oil tank, (5) is a plurality of reaction pistons,
(6) is formed behind each reaction force piston (5): +, (7α□) (7α2) is the oil pump (
1) to the oil passage switching valve (2), nine high pressure oil passages, (8
α) is from the same oil passage switching valve (2) to the above oil tank (4)
(9α) and (10α) are oil passages extending from the oil passage switching valve (2) to the power cylinder (3);
(α) is the main orifice provided between the high pressure oil passages (7α□) (7g2), and C7h□) (7b2) are the high pressure oil passages (7α1) (7a1) (on the upstream and downstream sides of the main orifice (α)).
7α2) K-connected bypass oil passage, αυ is a change over valve (COV) that constitutes a hydraulic pressure increasing means inserted between the bypass oil passages (7b1) (7b2), and αυ is the change over valve Oil passage (7b) on the upstream side of the valve housing
1) is connected to the pressure control nozzle 2 via oil passages (7C1) and (7C2), (13) is the flow rate control valve, and (7d) is the oil passage extending from the pressure control valve (lz). (
A pair of parallel oil passages (7e) (7g') branched from 7d) extend to the flow rate control valve αj. Also (7cm3
) is the oil passage extending from the H@ port of the change over valve αυ to the wave passage (702”), (C) is the third orifice provided in the same oil passage (7C3)K, and C9 is the oil passage (
Unlow P valve interposed between 7C1) (7C2),
(7d1) is a sub-4 pilot oil passage extending from the middle of the oil passage (7d) to the pressure control valve C13, Cod2)
is from the middle of the oil passage (7d) to the reaction piston (5).
(b) is the oil passage extending to the chamber (6) behind the oil passage (7#,).
is the COW/COW/
(Ilot oil passage, (7f) is the flow control valve (13)
The oil passage extends from the above-mentioned low pressure oil passage (8h), (→ is the first orifice installed in the middle of the same oil passage (7f), and (7f1) is the oil passage on the upstream side of the first orifice (d'I). A main pilot oil passage extending from (7f) to the pressure control valve α2, α
The mount is the vehicle speed sensor, C9 is the control device, αe is the ignition switch, and η is the ignition coil (18α)
(18b) to the electromagnetic coil of the flow rate control valve r13, the vehicle speed sensor a4 detects the vehicle speed, and the resulting .xi. pulse signal (pulse signal corresponding to the vehicle speed) is sent to the t-control device. It is designed to be sent to α9. Next, the next control device a9 controls a flow control valve to apply a current corresponding to the same pulse signal (a current corresponding to the vehicle speed from zero current (i-O) at a high speed of a predetermined speed to a current maximum current C1-1> when stopped). 0's electromagnetic coil too? ), and the plunger f53 of the flow control valve a3 and the spool 6υ are held at predetermined positions according to the above-mentioned current value.

次に前記の油路切換弁(2)チェンジ・オーバ・バルブ
住υ圧力制御バルブα2流量制御バルブ(13アンロー
ドバルブ住9t−第2図乃至第15図によシ具体的に説
明する。第2図乃至第6図の橢がバルブハウジングで、
上記各バルブ(2)aυa2(13は同バルブハウジン
グ(社)内に組込まれている。
Next, the oil passage switching valve (2) change over valve, pressure control valve α2, flow rate control valve (13 unload valve, housing 9t) will be explained in detail with reference to FIGS. 2 to 15. The box in Figures 2 to 6 is the valve housing.
Each of the above-mentioned valves (2) aυa2 (13) is built into the same valve housing (manufactured by Co., Ltd.).

まず油路切換弁(21t−g2図によシ具体的に説明す
ると、Ql)がステアリングハンドル(図示せず)によ
シ操作される入力軸、第2.3図の(2)が上下の軸受
によジノζルプハウジング翰内に回転可能に支持された
出力軸を構成するシリンダブロック、Caが上記入力軸
cdυ内に挿入したトーションバーで、同トーションバ
ー器は、その上部が入力軸Qυの上部に、その下部がシ
リンダブロック@に、それぞ゛れ固定され、同トーショ
ンバー(イ)の捩れによる入力軸I2υとシリンダブロ
ック(至)との相対的な回転角度差を許容するように構
成されている。また(21α)が上記入力軸Qυの下部
外周面に設けた複数個の縦溝で、上記シリンダブロック
g3には、同各縦溝(21α)K対向してシリンダが設
けられ、同各シリンダに前記反力ピストン(5)が嵌挿
されて同各反力ピストン(5)の先端に設は念突起が同
各縦溝(21cL) K係合している。また同各反力ピ
ストン(5)の背後のチャンバー(6)は、シリンダブ
ロック(至)とバルブハウジング■との間に形成されて
おシ、環状溝(h勺に連通している。
First, the oil passage switching valve (see Figure 21t-g2, specifically, Ql) is an input shaft operated by a steering wheel (not shown), and (2) in Figure 2.3 is an upper and lower input shaft. The cylinder block, Ca, which constitutes the output shaft that is rotatably supported in the Ginolup housing by a bearing, is a torsion bar inserted into the input shaft cdυ, and the upper part of the torsion bar device is connected to the input shaft Qυ. The upper part of the torsion bar (A) and the lower part thereof are fixed to the cylinder block @, respectively, so as to allow the relative rotation angle difference between the input shaft I2υ and the cylinder block (to) due to the torsion of the torsion bar (A). It is configured. Further, (21α) is a plurality of vertical grooves provided on the lower outer circumferential surface of the input shaft Qυ, and the cylinder block g3 is provided with cylinders facing each of the vertical grooves (21α)K, and each cylinder The reaction pistons (5) are fitted into the reaction pistons (5), and the projections are engaged with the vertical grooves (21cL) at the tips of the reaction pistons (5). The chamber (6) behind each reaction piston (5) is formed between the cylinder block (1) and the valve housing (2) and communicates with the annular groove (1).

ま7’C(23α)が上記シリンダブロック(2)に一
体のピニオン、(24α)が同ピニオン(23α)に噛
合したラック、C24)がラックサポート、缶がキャッ
プ、(ハ)が同キャップ弼と上記ラツクサ、if −ト
(2)との間に介装したバネ、(至)が上記シリンダブ
ロック(2)の直上のバルブハウジング■内に固定した
油路切換弁(2)のスリーブ、(28g) (28b)
 (28’)が同スリーブ(至)の外周面に設けた油路
、(財)が同スリーブ□□□と上記入力軸Qυとの間忙
嵌挿されたバルブボディ、<234)が同バルブボディ
罰の下端部と上記シリンダブロック(至)の上端部とを
連結するピン、(27α) (27h)(27C)が上
記ノζルプボディ罰の外周面に設けた油路である。  
□ 前記構成において、ステアリングハント0ルが中立位置
にあるときには、高圧油路(7α)がバルブボディ(財
)の油路(27α)とスリーブ■の油路(28α)とを
介して入力軸Qυとトーションバー器との間のチャンノ
ζ−翰に連通して、オイルポンプ(1)からの作動油が
高圧油路(7α)→油路(28α)→油路(27α)→
チャンバー@(なお油路(27cL)とチャンバー(イ
)との間、の油路は図示せず)→低圧油路(8α)→オ
イルタンク(4)→オイルポンプ(1)に循環するよう
になっている。またステアリングハンドルを右に切って
、入力軸+211をバルブボディ@に対して相対的に右
に回転すると、高圧油路(7α)がバルブボデーf@の
油路(27α)(27h)及びスリーブ(2)の油路(
28A)を介してパワーシリンダ(3)の油路(9α)
に、低圧油路(8α)がチャンバー(至)とバルブボデ
ィ(5)の油路(27C)とスリーブ(至)の油路(2
8C)とを介して/ぞワーシリンダ(3)の油路(10
α)に、それぞれ連通して、オイルポンプ(1)からの
作動油が高圧“油路(7α)→油路(27α)→油路(
28,6)→油路(9α)→パワーシリンダ(3)の左
室へ送られる一方、パワーシリンダ(3)の右室の油が
油路(10a)→油路(28C)→油路(27C)→チ
ャンバー凶→低圧油路(8α)→タンク(4)へ戻され
、パワーシリンダ(3)のピストンロッドが右へ移動し
て、右方向への操舵が行なわれる。またステアリングハ
ンドルを左に切って、入力軸antバルブボディ鰭に対
して相対的に左に回転すると、高圧油路(7α)がバル
ブボディ罰の油路(27α)とスリーブ(至)の油路(
28C)とを介してパワーシリンダ(3)の油路(10
α)に、低圧油路(8cL)がチャンバー翰とバルブボ
ディーの油路(27A)とスリーブ(至)の油路(28
A)とを介してパワーシリンダ(3)の油路(9α)K
、それぞれ連通して、オイルボンプロ)からの作動油が
高圧油路(7α)→油路(27a)→油路(28C)→
油路(10α)→パワーシリンダ(3)の右室へ送られ
る一方、パワーシリンダ(3)の左室の油が油路(9α
)→油路(28b)→油路(27A)→チャンバー翰→
低圧油路(8α)→タンク(4)へ戻され、パワーシリ
ンダ(3)のピストンロッドが左へ移動して、左方向へ
の操舵が行なわれるように々っている。
7'C (23α) is a pinion integrated with the cylinder block (2), (24α) is a rack meshed with the same pinion (23α), C24) is a rack support, the can is a cap, and (C) is the same cap and the sleeve of the oil passage switching valve (2) fixed in the valve housing (2) directly above the cylinder block (2); 28g) (28b)
(28') is the oil passage provided on the outer peripheral surface of the sleeve (to), the valve body is inserted between the sleeve □□□ and the input shaft Qυ, <234) is the valve The pins (27α), (27h), and (27C) connecting the lower end of the body and the upper end of the cylinder block are oil passages provided on the outer peripheral surface of the nozzle body.
□ In the above configuration, when the steering handle is in the neutral position, the high pressure oil passage (7α) is connected to the input shaft Qυ via the oil passage (27α) of the valve body and the oil passage (28α) of the sleeve ■. The hydraulic oil from the oil pump (1) flows through the high pressure oil path (7α) → oil path (28α) → oil path (27α) →
The oil circulates from the chamber @ (the oil path between the oil path (27 cL) and the chamber (A) is not shown) → low pressure oil path (8α) → oil tank (4) → oil pump (1). It has become. Also, when the steering wheel is turned to the right and the input shaft +211 is rotated to the right relative to the valve body @, the high pressure oil passage (7α) is connected to the oil passage (27α) (27h) of the valve body f@ and the sleeve ( 2) Oil passage (
28A) to the oil passage (9α) of the power cylinder (3)
, the low pressure oil passage (8α) connects the chamber (to), the oil passage (27C) of the valve body (5), and the oil passage (2) of the sleeve (to).
8C) and the oil passage (10
α), and the hydraulic oil from the oil pump (1) is connected to the high-pressure oil passage (7α) → oil passage (27α) → oil passage (
28, 6) → Oil passage (9α) → The oil in the right chamber of the power cylinder (3) is sent to the left chamber of the power cylinder (3), while the oil in the right chamber of the power cylinder (3) is sent to the oil passage (10a) → Oil passage (28C) → Oil passage ( 27C)→Chamber exhaust→Low pressure oil passage (8α)→Return to tank (4), the piston rod of the power cylinder (3) moves to the right, and steering to the right is performed. Also, if you turn the steering wheel to the left and rotate it to the left relative to the input shaft ant valve body fin, the high pressure oil passage (7α) will move between the valve body oil passage (27α) and the sleeve (toward) oil passage. (
28C) of the power cylinder (3).
α), the low pressure oil passage (8cL) is connected to the oil passage (27A) between the chamber wall and the valve body, and the oil passage (28A) between the sleeve (toward).
A) and the oil passage (9α) K of the power cylinder (3).
, are in communication with each other, and the hydraulic oil from Oil Bon Pro) is passed through the high pressure oil path (7α) → oil path (27a) → oil path (28C) →
Oil passage (10α) → is sent to the right chamber of the power cylinder (3), while oil in the left chamber of the power cylinder (3) is sent to the oil passage (9α).
) → Oil passage (28b) → Oil passage (27A) → Chamber wire →
The low pressure oil passage (8α) is returned to the tank (4), and the piston rod of the power cylinder (3) moves to the left, so that leftward steering is performed.

次に油圧増大手段を構成する前記チェンジ・オ+−+、
S・バルブ(11)及びアンローrパル7’(19t−
具体的に説明すると、同チェンジ・オーバ・バルブαυ
は、第3図乃至第7図から明らかなように、主オリスイ
ス(α)のバイパス油路(7h1)(7b2)の間に介
装されている。同チェンジ・オーバ・バルブaυは、環
状m1(30α)(30A)(30C) (なお環状溝
(30α)は油路C7h1)の一部に、環状溝(30b
)は油路(7C,)の一部に、環状溝(30C)は油路
(7g1)の一部に、それぞれ相当している)t−設け
たスプールc!13を有している。また同チェンジ・オ
ーツ5・バルブボディに組込まれたアンロード9バルブ
a9は、上記スプール(至)の内周面に密嵌、固定した
スリーブ(至)と同スリープ(至)内に軸方向への移動
を可能に嵌挿され九スプール(至)とを有し、同スゾー
ル(至)には、油路C7h、)(7C1)と油路(74
? 2 )との間を連通、遮断する環状油路(36a)
 (第7図参照)を有している。また611がノ2ルプ
ハウジング(イ)に固定した固定キャップ、(至)が同
固定キャップ01)の下方に軸方向への移動を可能に嵌
挿した可動キャップ、(至)が同各キャップ0υ(至)
の間に介装したバネ、(財)が上記可動キャップ(至)
と上記アンロード9バルブ(19のスプール(至)との
間に介装したノくネで、ノイロット油路(7g1) (
第1図参照)の油圧が高まると、スプール(至)が第4
図の位置からバネ(至)に抗し第56図の位置まで上昇
して、バイパス油路(7b1)(7h2)の間を遮断す
るように、またパイロット油路(711)の油圧が低下
すると、スプール(至)がバネ(至)によシ下降して、
バイパス油路(7h1)(7h2)の間を連通するよう
になっている。また油路C741) (第1図参照)の
油圧が高まると、スプール(至)が第4.5図の位置か
らバネ(2)に抗し第6図の位置まで上昇して、油路C
7b1)(7C,)の間を遮断するように、ま念油路C
7h1)の油圧が低下すると、スプール(至)がバネ(
ロ)Kよ〕下降して、油路(7A、)(71?1)の間
を連通するよう罠なっている。なおチェンジ・オーツよ
・バルブαυのスプール(至)の外周面は、ミクロン単
位で仕上げられるが、内周面にもこの程度の仕上げを行
なうと、加工が容易でなくなるので、アンロードバルブ
α9のスリーブ(至)が摺動する内周面側には、真鍮、
アルミニウム等の軟金属展スリーブ(至)を密嵌、固定
して、スプール(至)の内周面の仕上げを容易にしてい
る。
Next, the change O+-+ constituting the oil pressure increasing means;
S valve (11) and unroll r pal 7' (19t-
To explain specifically, the same change over valve αυ
As is clear from FIGS. 3 to 7, is interposed between the bypass oil passages (7h1) (7b2) of the main orifice (α). The change over valve aυ has an annular groove (30b
) corresponds to a part of the oil passage (7C, ), and the annular groove (30C) corresponds to a part of the oil passage (7g1), respectively) t-The provided spool c! It has 13. In addition, the unload 9 valve a9 incorporated in the change oats 5 valve body is tightly fitted to the inner circumferential surface of the spool (to), and is axially inserted into the fixed sleeve (to) and the same sleeve (to). It has 9 spools (to) that are fitted to allow movement of the spools, and the spools (to) have oil passages C7h, ) (7C1) and oil passages (74
? 2) An annular oil passage (36a) that communicates with and shuts off the
(See Figure 7). In addition, 611 is a fixed cap fixed to the nozzle housing (A), (to) is a movable cap fitted under the fixed cap 01) so as to be movable in the axial direction, and (to) is each of the same caps 0υ (To)
The spring inserted between the above movable cap (to)
and the above-mentioned unloading 9 valve (19 spool (to)) with a hole inserted between Nolot oil passage (7g1) (
(see Figure 1) increases, the spool (to) moves to the 4th position.
It rises from the position shown in the figure to the position shown in Fig. 56 against the spring (to) to cut off the bypass oil passages (7b1) (7h2), and when the oil pressure of the pilot oil passage (711) decreases. , the spool (end) descends due to the spring (end),
The bypass oil passages (7h1) and (7h2) are communicated with each other. Also, when the oil pressure in oil passage C741) (see Figure 1) increases, the spool (to) rises from the position shown in Figure 4.5 to the position shown in Figure 6 against the spring (2), and
7b1) (7C,)
When the oil pressure of 7h1) decreases, the spool (to) will release the spring (
B) K] It is a trap that descends and connects the oil passages (7A,) (71?1). The outer circumferential surface of the spool (end) of the change oats valve αυ is finished to the micron level, but if the inner circumferential surface is also finished to this degree, it will not be easy to process, so the unload valve α9's The inner circumferential surface on which the sleeve (to) slides is made of brass,
A soft metal sleeve made of aluminum or the like is tightly fitted and fixed to facilitate finishing of the inner circumferential surface of the spool.

次に前記圧力制御バルブα2を具体的に説明すると、同
圧力制御メ〜郁は第4へ6図から明らかなように、スリ
ーブ(41とスプール(41)とキャップG43とスト
ッパ(43とこれらのスプール卿及びキャップ(4りの
間に介装したバネG44)とスプーnthに設けたオリ
フィス(d−)とを有している。またスプール卿には、
第11図に示すように3つの環状溝(41α’) (4
1b) (41C)が設けられ、環状溝(41α)が前
記バイパス油路(7h1)(12)のうち、チェンジ・
オーバ・バルブαυの上流側から岐れた油路(7C1)
(7C2)に対向している。また(414)が上記オリ
フィス<d′Iから同スプール@D内を上方へ延びたチ
ャンバー、(41g)が同チャンバー(41d)と上記
環状溝(41’)とをつなぐ油路(なおこれらの(41
1i) (41g) (41C)は低圧油路(8h)の
一部)で、同環状溝(41c’)は、第2図に示した油
路切換弁(2)のバルブボディ勾の直上に形成した低圧
油路(8h)から斜め下方に延びたバルブハウジング(
イ)側の低圧油路(8A)K対向している。
Next, to specifically explain the pressure control valve α2, the pressure control valve α2 is composed of a sleeve (41, a spool (41), a cap G43, a stopper (43, and these It has a spool head, a cap (spring G44 interposed between the four springs), and an orifice (d-) provided in the spoon.The spool head also includes:
As shown in Figure 11, there are three annular grooves (41α') (4
1b) (41C) is provided, and the annular groove (41α) is connected to the change oil passage (7h1) (12).
Oil path branched from the upstream side of over valve αυ (7C1)
It is facing (7C2). In addition, (414) is a chamber that extends upwardly within the spool @D from the orifice <d'I, and (41g) is an oil passage connecting the chamber (41d) and the annular groove (41'). (41
1i) (41g) (41C) is a part of the low pressure oil passage (8h)), and the annular groove (41c') is located directly above the valve body slope of the oil passage switching valve (2) shown in Figure 2. The valve housing (
A) side low pressure oil passage (8A) is opposite to K.

また上記スリーブQQKは、第12図乃至第15図に示
すように、外周面円周方向く位相を異にして上部から下
部へ貫通孔をもつ切欠部が次のように、即ち貫通孔(4
0α′)t−もつ切欠部(401りと貫通孔C40b’
 )をもつ切欠部(40A)と貫通孔(40’ >(4
0c”)fcもつ切欠部(40C)とオリフィー*(h
)t−4つ切欠部(40d)とが設けられている。
In addition, as shown in FIGS. 12 to 15, the sleeve QQK has cutout portions having through holes from the upper part to the lower part with different phases in the circumferential direction on the outer circumferential surface, that is, through holes (4
0α') T-notch (401 and through hole C40b'
) with a notch (40A) and a through hole (40'> (4
0c'') fc notch (40C) and orifice*(h
)t-4 notches (40d) are provided.

上記各溝等は、貫通孔(40α′)をもつ孔(40α′
)がスプール01)の環状溝(41C)とバルブハウジ
ング(イ)側の低圧油路(8h)とをつなぎ、貫通孔C
40b’)をもつ切欠部(40b)がスプール卿の環状
溝(41α)とバルブハウジングω側の油路(’IC2
)とをつなぎ、貫通孔(40C’ )(40c” )を
もつ切欠部(40C)がスプール(4m)の環状溝(4
1α)(41j)t一つなぎ、オリフィス<h> 1−
もつ切欠部(40ct)がスプール(4m)O環状溝(
41j)とバルブハウジング(至)側の油路(7e)と
をつなぎ、貫通孔(40t’ ) (40c″)t−も
つ切欠部(40C)がスプール卿の環状溝(41j)と
第466図に示したバルブハウジング■側の油路(7d
)とをつないでいる。そしてオリアイス(14からスプ
ールIのチャンバー(41d)へ出た油が油路(41g
)→環状溝(4C)→貫通孔(40α′)→切欠部(4
0α)→バルブハウジング■側の低圧油路(8A) t
−経てオイルタンク(4)K戻るように、またバイパス
油路Cab1)から油路(7C1)(7C,)t−経て
切欠部(40A)K入りた作動油が貫通孔(404’)
→環状溝(41α)→切欠部(40C)−+貫通孔(4
(C’)→環状溝(41b) −+貫通孔(40t’)
→切欠部(40g)→バルブハウジング■の油路(7c
L)を経て流量制御バルブ(13及び反力ピストン(5
)の方向に向うように構成されている。また上記環状溝
(41A)内を流れる作動油の一部がオリフィス<b>
→切欠部(40d)→バルブハウジング■側の油路(7
e)を経て前記チェンジ・オーバ・バルブ住υのスプー
ル(至)の背後にパイロット圧として作用しく第5図の
Cuel)参照)、さらに同スプール(至)の後端部に
設けた油路(30A)(第7図参照)−ノ2ルプハウジ
ング■側の油路(7e)を経て流量制御ノζルプ(13
の方向に向うようになっている。
Each of the above grooves etc. has a hole (40α') having a through hole (40α').
) connects the annular groove (41C) of spool 01) and the low pressure oil passage (8h) on the valve housing (a) side, and connects the through hole C
A notch (40b) with a groove (40b') connects the annular groove (41α) of the spool and the oil passage ('IC2') on the valve housing ω side.
), and the notch (40C) with the through hole (40C') (40c'') connects the annular groove (4m) of the spool (4m).
1α) (41j) t connected, orifice <h> 1-
The notch (40ct) has a spool (4m) O annular groove (
41j) and the oil passage (7e) on the valve housing (end) side, and the notch (40C) with through holes (40t') (40c'') connects with the annular groove (41j) of the spool holder (Fig. 466). Oil passage (7d) on the valve housing ■ side shown in
) are connected. Then, the oil that came out from Oriais (14) to the chamber (41d) of spool I is in the oil path (41g
) → Annular groove (4C) → Through hole (40α') → Notch (4
0α)→Low pressure oil passage on the valve housing ■ side (8A) t
Hydraulic oil enters the through hole (404') through the oil tank (4)K through the oil tank (4)K, and from the bypass oilway Cab1) through the oilway (7C1) (7C,)t-through the notch (40A)K.
→ Annular groove (41α) → Notch (40C) - + Through hole (4
(C') → Annular groove (41b) -+ Through hole (40t')
→ Notch (40g) → Oil passage of valve housing ■ (7c)
L) through the flow control valve (13) and the reaction piston (5
) is configured to face in the direction of Also, a part of the hydraulic oil flowing inside the annular groove (41A) is orifice <b>.
→ Notch (40d) → Oil passage on the valve housing ■ side (7
e), which acts as a pilot pressure behind the spool (to) of the change-over valve housing (see Cuel in Figure 5), and an oil passage (to which is provided at the rear end of the spool). 30A) (see Fig. 7) - The flow rate control knob (13
It is now heading in the direction of.

次に前記流量制御バルブfi3を具体的に説明すると、
同流量制御バルブ0は、第45.6.8図から明らかな
ように、前記圧力制御バルブ([2の直下に互いの軸線
が一致するように配設されている。同流量制御バルブα
jは、スリーブ(至)とスプール6υと非磁性材製のプ
ランジャ51と同プランジャ51に一体の磁性材製部材
(図示せず)と上記スプール6υを上記プランジャ63
に締付は固定するロックナツト54)と前記圧力制御バ
ルブαaのスリーブ(4Gに当接する座板(至)と同座
板(至)及び上記スリーブ(イ)の間に介装したバック
アップスプリング(至)と電磁コイル6ηとを有し、上
記スリーブ■は、第8図に示すように、バルブハウジン
グ(イ)側の油路(7e)に連通すル油路(50α)と
バルブノーウジ/グー側の油路(7t)に連通する油路
(50A)とを有している。また上記スプール61)K
は、斜めの溝(51α′)を有する環状油路(51g)
及び貫通孔(51A)と環状油路(510)及び貫通孔
(51j)とが、上記プランジャ6aには、同貫通孔(
51A) (51d)に連通ずる油路(52α)と貫通
孔(52A)と軸方向の油路(52C)とが、それぞれ
設けられている。すでに述べたように第4a6図に示す
バルブハウジング■側の油路(7cL)→油路(7g’
)から流量制御バルブα国に向う作動油は、第8図の油
路(505)に入シ、第446図に示すバルブハウジン
グ(イ)側の油路(7cL)→油路(7−)から流量制
御バルブC13に向う作動油は、第8図の油路(50’
)に入る。但し同第8図は高速時の状態を示しておシ、
この状態では、上記油路(5′1α)(51αりと上記
油路(51C)とが流量制御バルブ(13)のスプール
51)によシ閉ざされている。ところが自動車の速度が
低下してくると、制御装置α9は車速センサIからのパ
ルス信号を受けて、そのときの車速に対応した電流を流
量制御バルブαりの電磁コイル印へ送シ、プランジャ5
z及びスプール6υが上記上限位置から下降し、油路(
51α)(51α′)が油路(50b)に油路(5C)
が油路(50α)に、それぞれ連通し、油路(7g’)
から油路(50b)に入つ九作動油が油路(51α’)
(51α)→油路(51j)を経て油路(52α)に入
シ、また油路(7e)から油路(50α)に入った゛作
動油が油路(51C)→油路(51d)を経て油路(5
2α)に入シ、さらに同油路(52α)から油路(52
A)→油路(52C)を経てオリアイス(d)に向うこ
とKなる。
Next, the flow rate control valve fi3 will be explained in detail.
As is clear from Fig. 45.6.8, the flow rate control valve 0 is disposed directly under the pressure control valve (2) so that their axes coincide with each other.
j is a sleeve (to), a spool 6υ, a plunger 51 made of a non-magnetic material, a member made of a magnetic material (not shown) integrated with the plunger 51, and the spool 6υ connected to the plunger 63.
The lock nut 54) is tightened to fix the pressure control valve αa, and the seat plate (to) that contacts the sleeve (4G) and the backup spring (to) interposed between the seat plate (to) and the sleeve (a) are tightened. ) and an electromagnetic coil 6η, and as shown in FIG. It has an oil passage (50A) communicating with the oil passage (7t).Also, the spool 61)K
is an annular oil passage (51g) with an oblique groove (51α')
The plunger 6a has a through hole (51A), an annular oil passage (510), and a through hole (51j).
51A) An oil passage (52α) communicating with (51d), a through hole (52A), and an axial oil passage (52C) are provided, respectively. As already mentioned, the oil passage (7 cL) on the valve housing ■ side shown in Figure 4a6 → oil passage (7 g'
) from the flow control valve α enters the oil passage (505 in Figure 8), and then flows from the oil passage (7cL) on the valve housing (A) side to the oil passage (7-) shown in Figure 446. The hydraulic oil flowing from the flow control valve C13 to the flow control valve C13 flows through the oil path (50'
)to go into. However, Figure 8 shows the state at high speed.
In this state, the oil passage (5'1α) (51α and the oil passage (51C) are closed by the spool 51 of the flow rate control valve (13)). However, when the speed of the vehicle decreases, the control device α9 receives a pulse signal from the vehicle speed sensor I, sends a current corresponding to the vehicle speed at that time to the electromagnetic coil mark of the flow control valve α, and the plunger 5
z and spool 6υ descend from the upper limit position, and the oil passage (
51α) (51α') connects the oil passage (50b) to the oil passage (5C)
are connected to the oil passage (50α), respectively, and the oil passage (7g')
Hydraulic oil entering the oil passage (50b) from the oil passage (51α')
Hydraulic oil enters oil passage (52α) via oil passage (51α) → oil passage (51j), and enters oil passage (50α) from oil passage (7e) → oil passage (51C) → oil passage (51d). Via the oil road (5
2α), and then from the same oilway (52α) to the oilway (52
A)→Go to Oriais (d) via oil route (52C).

なお第″2.3図の(勾は油路切換弁(2)の中心軸線
でおる。
Note that the slope in Figure 2.3 is the central axis of the oil passage switching valve (2).

(作用)。(action).

次に前記パワーステアリング装置の作用を説明する。油
路切換弁(2)の出力油圧(オイルポンプ(1)の吐出
圧)Pl)は、ハンドル金中立位置から右ま九は左に切
って、入力軸QJ)のバルブボディ罰に対する相対角度
が大きくなれば、第16図の(ム)のように2次曲線を
描いて上昇する。このオイルポンプ(1)が第11図の
矢印方向に押される。同時にスプール(41)の環状溝
(41j)t−通る作動油の油圧P0 が受圧面積の差
からスプール01)f:第11図の矢印方向に押す。一
方、バネ(44側は低圧油路(8b)に通じておシ、ス
プール@9がバネ04に抗し次第に上昇し、貫通孔(4
0A’)の開度が次第に小さくなってゆき、上記矢印方
向に押す油圧とバネ力とがつり合うと、スプール@υが
停止する。この状態では、油路(7d)(反力ピストン
側チャンバー(6))の油圧PCが最も低くなる。ハン
ドルをさら(右(1&は左)に切って、油路(7α)(
7b)(7C)の油圧P、かさらに上昇すると、圧力制
御バルブα2は環状溝(41b)に作用する該油圧Pp
の受圧面積の差によってスプールG11)が貫通孔(4
0A’)の開度をさらに閉じる方向に移動せしめ、油路
(7t)の油圧Pcが引続き上記低い一定のレベルに保
持される。従って前記相対角度を大きくして、大きな出
力油圧PF t−得るときく、反力ピストン側チャンバ
ー(6)の油圧PCトドージョンバー器の捩れ角度とで
決まるノ1ント9ルトルクでか大きくならない(第6図
の何参照)、以上の据え切シ時には、すでに述ぺたよう
に油路(7d)の油圧′PCは低く、チェンジ・オーバ
・バルブαυのスプール(至)はバネ(至)の弾力(よ
シ第1図のL位置及び第4図の位置に保持されて、バイ
パス油路C741)<7h、’)を開いている。またこ
のとき、アンロードバルブ器のスプール(至)ハ、:ネ
(至)の弾力によシ第4図の位置に保持され、油路(7
C□)(7C2)t−開いている。なお第1図のチェン
ジ・オーバ・バルブαυはH位置を示している。
Next, the operation of the power steering device will be explained. The output oil pressure of the oil passage switching valve (2) (discharge pressure of the oil pump (1)) Pl) is determined by turning the handlebar from the neutral position to the right or left, and adjusting the relative angle of the input shaft QJ) to the valve body. If it becomes larger, it will rise in a quadratic curve as shown in (m) in Figure 16. This oil pump (1) is pushed in the direction of the arrow in FIG. At the same time, the hydraulic pressure P0 of the hydraulic oil passing through the annular groove (41j) t of the spool (41) pushes the spool 01)f in the direction of the arrow in FIG. 11 due to the difference in pressure receiving area. On the other hand, the spring (44 side is connected to the low pressure oil passage (8b) and the spool @9 gradually rises against the spring 04, and the through hole (44
0A') gradually becomes smaller, and when the hydraulic pressure pushing in the direction of the arrow above and the spring force are balanced, the spool @υ stops. In this state, the oil pressure PC of the oil passage (7d) (reaction piston side chamber (6)) is the lowest. Turn the handle further to the right (1& is left) and turn the oil path (7α) (
7b) When the oil pressure P of (7C) further increases, the pressure control valve α2 increases the oil pressure Pp acting on the annular groove (41b).
Due to the difference in the pressure receiving area of the spool G11), the through hole (4
0A') is further moved in the closing direction, and the oil pressure Pc of the oil passage (7t) is maintained at the constant low level. Therefore, when increasing the relative angle to obtain a large output oil pressure PF, the torque must be increased by the torque determined by the torsion angle of the hydraulic pressure PC and dosion bar device in the reaction piston side chamber (6). (see Fig. 6), during the above stationary cutoff, the oil pressure 'PC of the oil passage (7d) is low, as already mentioned, and the spool (end) of the change-over valve αυ is affected by the elasticity of the spring (end). (Also held at the L position in FIG. 1 and the position in FIG. 4, opening the bypass oil passage C741)<7h,'). At this time, the spool (to) of the unload valve device is held in the position shown in Fig. 4 by the elasticity of the spool (to),
C□) (7C2) t-open. Note that the change over valve αυ in FIG. 1 shows the H position.

ま九自動車が低速走行状態に入れば、制御装置α9は車
速センサーa4からのパルス信号を受けて、そのときの
車速に対応した電流、例えば−一α8の電流を流量制御
バルブa3へ送シ、プランジャ62及びスプール61)
t−下限位置から上記電流値に対応し九距離だけ上昇さ
せ(第1図では右向きに移動させ)、第8図に示すスリ
ーブ開側油路(50α)(50b)の開口量を減少させ
る。そのため、流量制御バルブ(13t−出る流量が前
記停車時ね油路(50α)(50b)からの流量よりも
減少することになり、オリスイス(d)の上流側の油路
(7f)の油圧が停車時よシも低くなる。以上の低速時
にI・ンドルを右(または左に切シ始めると、油路(7
d)の油圧PCが上昇を始める。そうすると、油路(7
f)の油圧も上昇する。この油圧は主パイロット油路(
7f)を介し圧路制御バルブa2のスプール@9(スプ
ール@Dの小径端)Kそのtま伝見られて、同スプール
卿が第11図の矢印方向に押される。同時にスプール卿
の環状溝(4]j)を通る作動油が受圧面積の差からス
プール卿を第■図の矢印方向に押す。
When the automobile enters a low-speed running state, the control device α9 receives a pulse signal from the vehicle speed sensor a4, and sends a current corresponding to the vehicle speed at that time, for example, −1 α8, to the flow rate control valve a3. plunger 62 and spool 61)
It is raised nine distances from the t-lower limit position corresponding to the above current value (moved to the right in FIG. 1), and the opening amount of the sleeve opening side oil passages (50α) (50b) shown in FIG. 8 is reduced. Therefore, the flow rate coming out of the flow control valve (13t) will be lower than the flow rate from the oil passages (50α) (50b) when the vehicle is stopped, and the oil pressure in the oil passage (7f) on the upstream side of the oriswiss (d) will decrease. When stopped, the steering wheel will also become lower.If you start turning the I-wheel to the right (or left) at low speeds, the oil passage (7
d) Hydraulic pressure PC starts to rise. Then, the oil path (7
f) oil pressure also increases. This oil pressure is applied to the main pilot oil path (
7f), the spool @9 (small diameter end of spool @D) of the pressure path control valve a2 is viewed, and the spool is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove (4]j) of the spool presses the spool in the direction of the arrow shown in Fig. 2 due to the difference in pressure receiving area.

一方、バネ■側は低圧油路(8b) K通じておプ、ス
プール@Dがバネ(財)K抗し次第に上昇し、貫通孔<
40b’ ”)の開度が次第に小さくなってゆき、上記
矢印方向に押す油圧とバネ力とがつり合うと、スプール
(41)が停止するが、前記スプール卿の小径端を押す
油圧は前記停車時よシも低く、スプール(4υの上昇量
がその分だけ少なくて(貫通孔(40b’)の開口量が
その分だけ多くて)油路(7d) (反力ピストン側チ
ャンバー(6))の油圧Pcが前記停車時よりも高くな
る。この状態はそれからも同じで、ハンドルをさらに右
(または左)に切って、油路(°7α1)C7h、)C
TCl)CrO2)の油圧Ppがさらに上昇して、環状
溝(41b)の油圧がさらに増大しようとすると、圧力
制御バルブHはスプールcut−さらに移動して、貫通
孔(4OA’)の開度を制限し、油路(7cL)の油圧
PCが引続き停車時よシも高い一定レベルに保持される
。従って前記相対角度を太きくして大きな出力油圧Pp
t−得るときに、ハンドルトルクTが停車時よ)も大き
くなるが、後記高速時のようには大きくならない。
On the other hand, the spring ■ side passes through the low pressure oil passage (8b) K, and the spool @D gradually rises against the spring K, and the through hole <
40b''') gradually decreases, and when the hydraulic pressure pushing in the direction of the arrow above and the spring force are balanced, the spool (41) stops, but the hydraulic pressure pushing the small diameter end of the spool head is the same as when the spool is stopped. The height of the oil passage (7d) (reaction piston side chamber (6)) is also low, and the amount of rise of the spool (4υ) is correspondingly small (the opening amount of the through hole (40b') is correspondingly large). The oil pressure Pc becomes higher than when the vehicle stopped.This condition remains the same from then on, and the steering wheel is further turned to the right (or left) to open the oil passage (°7α1)C7h,)C
When the oil pressure Pp of TCl)CrO2) further increases and the oil pressure of the annular groove (41b) is about to further increase, the pressure control valve H moves the spool cut- further to control the opening degree of the through hole (4OA'). The oil pressure PC in the oil passage (7 cL) is maintained at a high constant level even when the vehicle is stopped. Therefore, by increasing the relative angle, a large output oil pressure Pp
When obtaining t-, the steering torque T also increases (as when the vehicle is stopped), but it does not become as large as when the vehicle is at high speed as described later.

上述の据え切シ時乃至低速走行状態において、ハンドル
をよシ大きく切ると、ポンプ吐出圧が大となシ、圧力制
御バルブa3を通過し流量制御バルブαjから低圧油路
(8b)へと流れる作動油が増大する。このとき、オリ
フィス(4の影響でその上流側の油圧が増大するが、該
影響によシ、チェンジ・オーバ・バルブ住υのスプール
(至)端部の油路(7g1)に作用する油圧が同様に増
大する傾向を有し、該油圧によってチェンジ・オーツZ
・バルブαυが上昇作動する場合があり、作動が不安定
となるとともに、反力ピストン1Nチヤンバー(6)の
油圧が大となシ、ハンドルトルクが大となってしまう慣
れがある。この為、上記油路(7g□)の上流側に位置
するオリフィス<h>を設け、該油路(7g□)の油圧
が、COV作動油圧よシ低く保持され、作動が安定する
様構成されている。
In the above-mentioned fixed-off state or in the low-speed running state, when the handle is turned significantly, the pump discharge pressure becomes large and flows through the pressure control valve a3 and from the flow rate control valve αj to the low-pressure oil passage (8b). Hydraulic oil increases. At this time, the oil pressure on the upstream side of the orifice (4) increases, but due to this effect, the oil pressure acting on the oil passage (7g1) at the end of the spool (to) of the change-over valve housing increases. Similarly, the change oats Z has a tendency to increase due to the oil pressure.
- The valve αυ may operate upward, making the operation unstable, and the oil pressure of the reaction piston 1N chamber (6) becomes large, which causes the handle torque to become large. For this reason, an orifice <h> located on the upstream side of the oil passage (7g□) is provided so that the oil pressure in the oil passage (7g□) is maintained lower than the COV operating oil pressure and the operation is stabilized. ing.

jた自動車が所定速度の高速状態に入れば、制御装ff
1tQsは車速センサーα壜からのノルス信号を受けて
、imo、5(又はi<0.5)の電流を流量制御バル
ブαjへ送シ、プランジャ63及びスプール6υをノ2
ネーにより、上限位置まで上昇させ(第1図では図示の
H位置まで移動させ)、第8図のスリーブ(至)の油路
(50α)(soh)t−全閉にする。このといき、流
量制御バルブ(13t−出る流量は零になるので、オリ
アイス(d)の上流側の波路伺の油圧が最も低くなる。
When the vehicle enters a high speed state at a predetermined speed, the control system ff
1tQs receives the Norse signal from the vehicle speed sensor α, sends a current of imo, 5 (or i<0.5) to the flow rate control valve αj, and causes the plunger 63 and spool 6υ to
1 to the upper limit position (in FIG. 1, it is moved to the H position shown in the figure), and the oil passage (50α) (soh) of the sleeve (to) in FIG. 8 is fully closed. At this time, the flow rate from the flow rate control valve (13t) becomes zero, so the oil pressure at the wave path on the upstream side of the oriice (d) becomes the lowest.

この油圧は主パイロット油路(7f□)を介し圧力制御
バルブσ2のスプール(4m)(スプール偵0の小径端
)Kそのtま伝えられるので、すなわち、同スプール卿
を押圧する付勢力は零になる。同時にスプール(41)
の環状溝(41A)t−通る作動油が受圧面積の差から
スプール(41)t−第11図の矢印方向く押す。
This oil pressure is transmitted to the spool (4 m) (small diameter end of spool 0) of the pressure control valve σ2 via the main pilot oil passage (7f), so the urging force pressing the spool is zero. become. At the same time spool (41)
The hydraulic oil passing through the annular groove (41A) pushes the spool (41) in the direction of the arrow in FIG. 11 due to the difference in pressure receiving area.

一方、バネ【4g4は低圧油路’(8A)に通じてお〕
、スプールIllがバネ■に抗し次第に上昇し、貫通孔
(40が)の開度が次第に小さくなってゆき、上記−矢
印方向に押す油圧とバネ力とがクシ合うと、スプール0
Dが停止する。が、前記スプール(4aの小径端を押す
油圧は零になっておシ、スプールQl)の上昇量がごく
僅かで(貫通孔(40A’)の開口量が最大で)、油路
(7d) C反力ピストン側チャンバー(6))の油圧
PCが最も高くなる。この油圧はオリフィス(b)及び
パイロット油路(7g1) t−介しチェンジ・オーバ
・バルブ(111のスプール(至)に伝えうレ、同スプ
ール(至)が第4図の位置から第5図の位置へ上昇しく
第1図ではH位et−選択し)、パイ/よス油路C7b
 )(7b’)が閉じられるとともに油路(7C2)(
7Ca )と油路(7h2)とが連通し、オイルポンプ
(1)からの作動油が、主オリアイス(cL)を経て油
路切換弁(2)へ送られて、出力油圧Pp が設定圧だ
け上昇する。このことは高速時に操舵しないとき(ハン
ドル中立位置)でも、油路(7α1)(7b1)(7b
2)(7C1)(7C2)(7C3)  の油圧Pp 
が停車時や低速時よシも上昇することであ)(第n図の
Pp1参照)、この油圧は圧力制御バルブα2及び油路
(7d)(7d1)を介シ反カピストン側のチャンバー
(6)に伝えられて、高速時の微小操舵時の反力感(手
応え)が向上する。ハンドルをさらに右(tたは左)に
切プ続けると、油路(7a1)(7h1)(7b2)(
7e1)(7c、)(7e、) ノ油圧Ppがさらに上
昇して、(例えば15に9/−程度に上昇して)油路(
7d)の油圧P、かさらに上昇することは前述の通シで
、この場合、上述の設定圧だけ上昇し九影響で全体的に
据え切シ運転時よりも高い圧力になる。そしてオリフィ
ス(A)下流側の油路(7e)の油圧が設定値以上(上
昇する。
On the other hand, the spring [4g4 is connected to the low pressure oil path' (8A)]
, the spool Ill gradually rises against the spring ■, the opening degree of the through hole (40) gradually becomes smaller, and when the hydraulic pressure pushing in the direction of the arrow above and the spring force combine, the spool 0
D stops. However, the hydraulic pressure pushing the small diameter end of the spool (4a) becomes zero and the amount of rise of the spool Ql is very small (the opening amount of the through hole (40A') is the maximum), and the oil passage (7d) The oil pressure PC of the C reaction piston side chamber (6) becomes the highest. This oil pressure is transmitted to the spool (to) of the change over valve (111) through the orifice (b) and the pilot oil passage (7g1), and the spool (to) moves from the position shown in Fig. 4 to the position shown in Fig. 5. (In Figure 1, H position et- is selected)
) (7b') is closed and the oil passage (7C2) (
7Ca) and the oil passage (7h2) are connected, and the hydraulic oil from the oil pump (1) is sent to the oil passage switching valve (2) via the main orifice (cL), so that the output oil pressure Pp is equal to the set pressure. Rise. This means that even when not steering at high speed (steering wheel in neutral position), oil passages (7α1) (7b1) (7b
2) Hydraulic pressure Pp of (7C1) (7C2) (7C3)
(see Pp1 in Figure N), this oil pressure is applied to the chamber (6) on the opposite side of the piston via the pressure control valve α2 and the oil passages (7d) (7d1). ), which improves the feeling of reaction force (response) during minute steering at high speeds. If you continue to turn the handle further to the right (t or left), the oil passages (7a1) (7h1) (7b2) (
7e1) (7c,) (7e,) The oil pressure Pp further rises (for example, rises to about 15 to 9/-) and the oil passage (
7d) The oil pressure P further increases during the above-mentioned operation, and in this case, it increases by the above-mentioned set pressure, resulting in an overall higher pressure than during stationary shut-off operation. Then, the oil pressure in the oil passage (7e) on the downstream side of the orifice (A) increases beyond the set value.

このとき、前記特願昭58−86599号明細書に記載
のパワーステアリング装置では、)(イロット油路Ca
t1)を介してスプール(至)に作用する力がバネC1
3の力よりも大きくなシ、チェンジ・オーバ・バルブへ
υのスプール(至)がL位置を選択し、パイノ署ス油路
(7b1)(7b2)が開かれて、反力ピストン(5)
への油路(7cL)の油圧が所定値分(+151’9/
−程度)だけ低下していた。なおこのようにしたのは、
オリフィス(α)及びチェンジ・オーバ・ノ2ルプαυ
の閉による圧力上昇は、高速時の反力感向上に効果力6
 ル2>E %パワーシリンダ(3)Kとっては圧力損
失になるのく対し、上記のようKすると、ノ署ワーシリ
ンダ(3)で一定値以上の出力を必要とする高速操舵時
に圧力損失を生じさせず、出力油圧が低いハンドル中立
位置付近でのみ反力感を大巾に向上させることができる
ためである。しかしこのようKした場合、ハンドル中立
位置付近以外での操舵を不安定にする憾みが6つ光が、
本発明では、油路(7α1)(74、)(7C工)(7
−2)  の油圧Ppが上記の様に増大したときに、チ
ェンジ・オーバ・バルブIが常時油路(7A1’)とC
ab、) t−閉じているため、反力ビス)y(5)へ
の油圧が常時高く保持され、すなわちハント9ル・トル
クTは高く保持される。
At this time, in the power steering device described in the specification of Japanese Patent Application No. 58-86599,
The force acting on the spool (to) through spring C1
3, the spool (to) of υ to the changeover valve selects the L position, the pino-signature oil passages (7b1) (7b2) are opened, and the reaction piston (5)
The oil pressure in the oil path (7 cL) to the specified value (+151'9/
- degree). In addition, this was done because
Orifice (α) and change over hole αυ
The increase in pressure caused by the closing of the is effective in improving the feeling of reaction force at high speeds.
2>E % Power cylinder (3) K causes pressure loss, but when using K as above, pressure loss occurs during high-speed steering that requires output above a certain value in the power cylinder (3). This is because it is possible to significantly improve the reaction force feeling only near the neutral position of the steering wheel where the output oil pressure is low, without causing this. However, in this case, there are six problems that make the steering unstable except near the neutral position of the steering wheel.
In the present invention, oil passage (7α1) (74,) (7C construction) (7
-2) When the oil pressure Pp increases as described above, the changeover valve I is constantly connected to the oil passage (7A1') and C
ab,) t- is closed, so the oil pressure to the reaction force screw) y (5) is always kept high, that is, the handle torque T is kept high.

さらに、据え切シ、低速運転時には、操舵に伴なってポ
ンプ吐出圧Ppが、流量制御バルブC13による最大制
御圧力例えば12〜131QF/−より高い圧力例えば
15に9/−になるとアンロードバルブ(lIが閉作動
する。この為、同アンロードバルブ員よシ下流の圧力は
全てOとなり、流量制御バルブ(L3に拘らず圧力制御
バルブa5のスプール(41)はスプリング−〇付勢力
によって第4図に示すように下端に下降せしめられる。
Furthermore, during stationary operation and low speed operation, if the pump discharge pressure Pp becomes higher than the maximum control pressure by the flow rate control valve C13, for example 12 to 131QF/-, for example 15 to 9/-, the unload valve ( lI is closed. Therefore, the pressure downstream of the unload valve member becomes all O, and the spool (41) of the pressure control valve a5 (regardless of the flow rate control valve L3) is closed by the spring force. It is lowered to the lower end as shown in the figure.

このとき、反力ピストンに供給される油圧はOとなシ、
ハンドルトルクはトーションバー器のみの捩6トルクと
なって最小の値(最も軽い)となる。一方、高速運転時
には、操′舵に伴なってアンロー−バルブ翰が閉作動し
ても、チェンジ・オーバ・バルブαυの閉作動に伴なっ
て油路(703)は前記のように油路(7C,)(7b
、)を介し油路(7α2)K連通しておシ、同油路(7
g2)の油圧Ppが油路(7C3)に伝えられ、油路(
7d)の油圧PCが引続き最も高い一定しイkに保持さ
れる。
At this time, the oil pressure supplied to the reaction piston is O.
The handle torque is the minimum value (lightest) with 6 torsional torques of the torsion bar device only. On the other hand, during high-speed operation, even if the unlower valve is closed in response to steering, the oil passage (703) is closed as described above due to the closing operation of the changeover valve αυ. 7C, ) (7b
,) through the oil passage (7α2)K, and the same oil passage (7α2)
g2) oil pressure Pp is transmitted to the oil passage (7C3), and the oil pressure Pp of oil passage (7C3) is transmitted to the oil passage (7C3).
7d) oil pressure PC continues to be held at the highest constant level.

従って前記相対角度を大きくして、大きな出力油圧を得
るときに、ハンドルトルクでか大きくなって、高速走行
時の全範囲で反力感(手応え一操舵感覚)が向上する。
Therefore, when the relative angle is increased to obtain a large output oil pressure, the steering torque is increased, and the reaction force feeling (response and steering sensation) is improved over the entire range during high-speed running.

なお、上記アンロードバルブα9の作動油圧は低速走行
時には低く、また高速走行時には高く設定することが好
ましいが、概ね圧力制御バルブa7Jの最高規制圧力例
えば10〜131.9/、:siよシもやや大である1
5klI151程度に設定すれば、据え切シ、低速走行
時には同圧力を越える場合が多く、アンロードバルブ器
は閉作動し易く、また高速走行時には同圧力を越えるこ
とが少なくアンロードバルブ器の開閉作動によるハンド
ルトルクの変動の影響を受けることが少ない。
It should be noted that the working oil pressure of the unload valve α9 is preferably set low when driving at low speeds and high when driving at high speeds; Slightly large1
If set to about 5klI151, the same pressure will often be exceeded when running at low speed and the unload valve will close easily, and the same pressure will rarely be exceeded when driving at high speed and the unload valve will open and close. It is less affected by fluctuations in handle torque due to

(発明の効果) 本発明は前記のようにステアリングハント0ルの動きを
トーションバ2−を介し油路切換弁く伝えてオイルポン
プから同油路切換弁へ延びた高圧油路と同油路切換弁か
らオイルタンクへ延びた低圧油路とを切換えてパワーシ
リンダを所定の操舵方向に作動させるとともに同高圧油
路を流れる作動油の一部ヲ反カピストンへ導いてトーシ
ョンバーの捩れを規制するパワーステアリング装置にお
いて、前記高圧油路の主オリフィス(α)を迂回するバ
イパス油路を閉じて前記反力ピストンへの油路の油圧を
所定値上昇させるチェンジ・オーバ・バルブと、所定速
度以上の高速時に前記反力ピストンへの油路の途中から
低圧油路に向う油路を全閉罠し間尺カピストンへの油路
及び同油路から上記チェンジ・オーバ・バルブに向うノ
イロット油路の油圧を高めて同チェンジ・オーバ・バル
ブを閉位置に保持する車速応動屋の流量制御バルブと操
舵に伴なうポンプ吐出圧の増大時に前記反力ピストンへ
の油路を閉じるアンロードバルブと、所定速度以上の高
速時に上記アンロード9バルブを実質的に非作動(スル
アンロードバルブバイパス手段とを具えていて、前記の
作用が行われるので、高速時はチェンジ・オーバφバル
ブが閉で、常時ハンドルトルク大の方向に制御できて、
操縦安定性を向上できる。また低速時はチェンジ・オー
バ・バルブが開で、常時ハンドルトルクを小の方向に制
御でき、且つ操舵時にはアンロードバルブ閉によシさら
にハンドルトルクが小になって軽快感を向上できる。
(Effects of the Invention) As described above, the present invention provides a high-pressure oil passage and an oil passage extending from the oil pump to the oil passage switching valve by transmitting the movement of the steering handle to the oil passage switching valve via the torsion bar 2-. The low-pressure oil passage extending from the switching valve to the oil tank is switched to operate the power cylinder in a predetermined steering direction, and a portion of the hydraulic oil flowing through the high-pressure oil passage is guided to the reverse piston to restrict twisting of the torsion bar. In the power steering device, the change-over valve closes a bypass oil passage that bypasses the main orifice (α) of the high-pressure oil passage and increases the oil pressure in the oil passage to the reaction piston by a predetermined value; At high speed, the oil passage from the middle of the oil passage to the reaction piston to the low-pressure oil passage is completely closed, and the oil pressure of the oil passage to the intermediate capiston and the Neulot oil passage from the same oil passage to the change-over valve is reduced. a flow rate control valve of the vehicle speed reactor that increases the change-over valve to maintain the change-over valve in a closed position, an unload valve that closes the oil passage to the reaction piston when the pump discharge pressure increases due to steering, and a predetermined At high speeds, the above-mentioned nine unload valves are substantially inactivated (it is equipped with a through unload valve bypass means, and the above action is performed, so at high speeds, the change over φ valve is closed and always You can control the steering wheel in the direction of maximum torque,
Improves steering stability. In addition, at low speeds, the change over valve is open, and the steering torque can be constantly controlled to a small value, and when steering, the unload valve is closed, which further reduces the steering torque and improves the feeling of lightness.

また高速操舵時はアンロードバルブが閉にも拘らず、ア
ンロードバルプノ9イパス手段(油路7b2゜7C3、
7C2)によ)反力ピストンへの油圧供給を確持し、こ
の点でも操縦安定性向上を向上できる効果がある。
In addition, even though the unload valve is closed during high-speed steering, the unload valve 9 pass means (oil passage 7b2°7C3,
7C2)) ensures the oil pressure supply to the reaction piston, which also has the effect of improving steering stability.

以上本発明を実施例について説明し念が、勿論本発明は
このような実施例くだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。例えば第17図のようにアンロードバ
ルブa!1をチェンジ1オーバ・バルブaυ外に設けて
もよい。なお同第17図の(32つはストッパである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to these embodiments, and that various design modifications can be made without departing from the spirit of the present invention. . For example, as shown in Fig. 17, unload valve a! 1 may be provided outside the change 1 over valve aυ. Note that (32 in FIG. 17 is a stopper).

tた第18図のようにアンロードバルブ(19を迂回す
るバイパス油路に、高速操舵時のみに開くバルブ(19
勺を設けて、高速操舵時に油路C7h□)(7C,)と
COVパイロット油路(7e s )とを連通するよう
にしてもよい。ま次第19図に示すように流量制御バル
ブα3のプランジャ52に設はティ九油路(52C) 
((71) ) (第4a6図参照)をなくして、油路
(7e)と油路(7g’ )(52α)とをスプール6
υの先端に設けた油路(細径部)(51’) ((7f
))を介してオリフィス(d)側に連通するようくして
もよい。ま次第m図(低速中立位置を示す図面)と第2
1図(高速中立位置を示す図面)は、前記すでに提案し
たパワーステアリング装置に適用した他の実施例で、こ
の場合にも前記第1図乃至第15図に示すパワーステア
リング装置と同様の作用効果を達成できる。
As shown in Figure 18, a valve (19) that opens only during high-speed steering is installed in the bypass oil passage that bypasses the unload valve (19
A shaft may be provided to communicate the oil passage C7h□) (7C,) and the COV pilot oil passage (7e s ) during high-speed steering. As shown in Figure 19, the plunger 52 of the flow control valve α3 is connected to the 9th oil passage (52C).
((71)) (see Figure 4a6) and connect the oil passage (7e) and oil passage (7g') (52α) to the spool 6.
Oil passage (small diameter part) (51') provided at the tip of υ ((7f
)) may communicate with the orifice (d) side. Madai m diagram (drawing showing the low speed neutral position) and the second
FIG. 1 (drawing showing the high-speed neutral position) is another embodiment applied to the power steering device already proposed, and in this case also, the same effects as the power steering device shown in FIGS. 1 to 15 are obtained. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るパワーステアリング装置の一実施
例を示す油圧回路図、第2図はその油路切換弁部を示す
縦断側面図、第3図は同油路切換弁部の横断平面図、第
456図はチェンジ・オーバ・バルブと圧力制御バルブ
と流量制御バルブとアンロードバルブとの縦断側面図、
第7図はチェノt)・オーツ署・バルブとアンロードバ
ルブとの拡大縦断側面図、第8図は流量制御バルブの一
部を拡大して示す縦断側面図、第9図は圧力制御バルブ
のスリーブの縦断側面図、第10図は同圧力制御バルブ
の平面図、第11図は第10図の矢視XI−XI線に沿
う縦断側面図、第n図は第11図の矢視】−1線に沿う
横断平面図、第13図は第11図の矢視■−雇線に沿う
横断平面図、第14図は第11図の矢視xrv−xtv
線に沿う横断平面図、第15図は第11図の・大矢視X
V−XV線に沿う横断平面図、第16図は本パワーステ
アリング装置の作用説明図、第17図はアンロードバル
ブの他の一施例を示す縦断側面図、第18図はアンドロ
ードバルブのさらに他の実施例を示す油圧回路図、第1
9図は流量制御バルブの他の実施例を示す縦断側面図、
第20 、21図は本件出願人がすでに提案したパワー
ステアリング装置に適用した他の実施例を示す縦断側面
図である。 (1)・・・オイルポンプ、(2)・・・油路切換弁、
(3)・・・・←−シリンダ、(4)・・・オイルタン
ク、(5)・・・反力ピストン、(7α1)(7z2)
−高圧油路、(’11)(7c1)(7c2)(7d)
 (7d2)・・・高圧油路(7α1)から反力ピスト
ン(5)へ延びた油路、(7b2)(7C3)・・・チ
ェンジ・オーバ・バルブαυを閉位置に保持する油路、
(8g) (85)・・・低圧油路、αυ・・・チェン
ジ・オーバ・バルブ、a3・・・流量制御バルブ、(1
1・・・アンロードバルブ、(α)・・・主オリフィス
、(h)・・・オリフィス。
Fig. 1 is a hydraulic circuit diagram showing an embodiment of a power steering device according to the present invention, Fig. 2 is a longitudinal cross-sectional side view showing an oil passage switching valve portion thereof, and Fig. 3 is a transverse plane of the oil passage switching valve portion. Figure 456 is a vertical sectional side view of the change over valve, pressure control valve, flow rate control valve, and unload valve;
Figure 7 is an enlarged longitudinal side view of the Cheno t) Oates valve and unload valve, Figure 8 is an enlarged longitudinal side view of a part of the flow control valve, and Figure 9 is an enlarged longitudinal side view of the pressure control valve. FIG. 10 is a plan view of the pressure control valve; FIG. 11 is a longitudinal side view taken along the line XI-XI in FIG. 10; FIG. 13 is a cross-sectional plan view taken along line 1, Fig. 13 is a cross-sectional plan view taken along arrow ■-hire line in Fig. 11, and Fig. 14 is a cross-sectional plan view taken along arrow xrv-xtv in Fig. 11.
A cross-sectional plan view along the line, Fig. 15 is taken from Fig. 11 in the direction of the arrow X.
FIG. 16 is a cross-sectional plan view taken along the line V-XV, FIG. 16 is an explanatory diagram of the operation of the present power steering device, FIG. 17 is a longitudinal side view showing another example of the unload valve, and FIG. 18 is a diagram of the unload valve. Hydraulic circuit diagram showing still another embodiment, 1st
FIG. 9 is a longitudinal sectional side view showing another embodiment of the flow control valve;
20 and 21 are longitudinal sectional side views showing other embodiments applied to the power steering device already proposed by the applicant. (1)...Oil pump, (2)...Oil passage switching valve,
(3)...←-cylinder, (4)...oil tank, (5)...reaction piston, (7α1) (7z2)
-High pressure oil line, ('11) (7c1) (7c2) (7d)
(7d2)...An oil passage extending from the high pressure oil passage (7α1) to the reaction piston (5), (7b2) (7C3)...An oil passage that holds the change-over valve αυ in the closed position,
(8g) (85)...Low pressure oil path, αυ...Change over valve, a3...Flow rate control valve, (1
1... Unload valve, (α)... Main orifice, (h)... Orifice.

Claims (1)

【特許請求の範囲】[Claims] (1)ステアリングハンドルの動きをトーションバーを
介し油路切換弁に伝えてオイルポンプから同油路切換弁
へ延びた高圧油路と同油路切換弁からオイルタンクへ延
びた低圧油路とを切換えてパワーシリンダを所定の操舵
方向に作動させるとともに同高圧油路を流れる作動油の
一部を反力ピストンへ導いてトーションバーの捩れを規
制するパワーステアリング装置において、前記高圧油路
の主オリフィス(a)を迂回するバイパス油路を閉じて
前記反力ピストンへの油路の油圧を所定値上昇させるチ
ェンジ・オーバ・バルブと、所定速度以上の高速時に前
記反力ピストンへの油路の途中から低圧油路に向う油路
を全閉にし同反力ピストンへの油路及び同油路から上記
チェンジ・オーバ・バルブに向うパイロット油路の油圧
を高めて同チェンジ・オーバ・バルブを閉位置に保持す
る車速応動型の流量制御バルブと、操舵に伴なうポンプ
吐出圧の増大時に前記反力ピストンへの油路を閉じるア
ンロードバルブと、所定速度以上の高速時に上記アンロ
ードバルブを実質的に非作動にするアンロードバルブバ
イパス手段とを具えていることを特徴としたパワーステ
アリング装置。
(1) The movement of the steering wheel is transmitted to the oil passage switching valve via the torsion bar, and a high pressure oil passage extends from the oil pump to the oil passage switching valve, and a low pressure oil passage extends from the oil passage switching valve to the oil tank. In a power steering device that controls torsion of a torsion bar by switching the power cylinder to actuate a power cylinder in a predetermined steering direction and guiding a part of the hydraulic oil flowing through the same high-pressure oil passage to a reaction piston, the main orifice of the high-pressure oil passage (a) a change-over valve that closes a bypass oil passage that bypasses the oil passage to increase the oil pressure in the oil passage to the reaction piston by a predetermined value; Fully close the oil passage leading from the low pressure oil passage to the reaction piston and increase the oil pressure in the pilot oil passage from the same oil passage to the change over valve to close the change over valve. an unload valve that closes the oil passage to the reaction piston when the pump discharge pressure increases due to steering, and an unload valve that closes the oil passage to the reaction piston when the pump discharge pressure increases due to steering; A power steering device characterized by comprising an unload valve bypass means for automatically deactivating the power steering device.
JP59248183A 1984-11-26 1984-11-26 Power steering device Expired - Lifetime JPH0645344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248183A JPH0645344B2 (en) 1984-11-26 1984-11-26 Power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248183A JPH0645344B2 (en) 1984-11-26 1984-11-26 Power steering device

Publications (2)

Publication Number Publication Date
JPS61129365A true JPS61129365A (en) 1986-06-17
JPH0645344B2 JPH0645344B2 (en) 1994-06-15

Family

ID=17174432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248183A Expired - Lifetime JPH0645344B2 (en) 1984-11-26 1984-11-26 Power steering device

Country Status (1)

Country Link
JP (1) JPH0645344B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695976U (en) * 1979-12-22 1981-07-30
JPS59114159A (en) * 1982-12-20 1984-07-02 Mitsubishi Motors Corp Power steering apparatus
JPS59114160A (en) * 1982-12-20 1984-07-02 Mitsubishi Motors Corp Power steering apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695976U (en) * 1979-12-22 1981-07-30
JPS59114159A (en) * 1982-12-20 1984-07-02 Mitsubishi Motors Corp Power steering apparatus
JPS59114160A (en) * 1982-12-20 1984-07-02 Mitsubishi Motors Corp Power steering apparatus

Also Published As

Publication number Publication date
JPH0645344B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US5058626A (en) Hydraulic pressure control valve
US4768605A (en) Apparatus for use in a power steering system
JPH0316305B2 (en)
US3777839A (en) Hydraulic-power control device for power-assisted steering system
EP0186135A2 (en) Hydraulic reaction force apparatus for power steering system
JP2503574B2 (en) Vehicle power steering device
JPS61129365A (en) Power steering device
US4693144A (en) Control valve system for a continuously variable belt drive
JPS63214562A (en) Hydraulic drive circuit
JPH04228371A (en) Hydraulic steering control device for working vehicle
US5158149A (en) Steering force control apparatus for power steering system
JPS5836766A (en) Flow control valve used for power steering
JPS6025856A (en) Power steering device
JPH0214225B2 (en)
JPH0726563Y2 (en) Flow control valve
JPS6145580B2 (en)
JPS61247571A (en) Power steering device
JPH027744Y2 (en)
JP2608423B2 (en) Speed-sensitive power steering device
JPH0152229B2 (en)
JPH0214536Y2 (en)
JPH025623B2 (en)
JP2558093B2 (en) Steering force control device for power steering device
JPH062465B2 (en) Vehicle speed sensitive power steering device
JPS6358139B2 (en)