JPS61129217A - Method for controlling sheet thickness of tandem rolling mill - Google Patents

Method for controlling sheet thickness of tandem rolling mill

Info

Publication number
JPS61129217A
JPS61129217A JP59250312A JP25031284A JPS61129217A JP S61129217 A JPS61129217 A JP S61129217A JP 59250312 A JP59250312 A JP 59250312A JP 25031284 A JP25031284 A JP 25031284A JP S61129217 A JPS61129217 A JP S61129217A
Authority
JP
Japan
Prior art keywords
stand
plate thickness
roll
rolling
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59250312A
Other languages
Japanese (ja)
Other versions
JPH0586295B2 (en
Inventor
Koji Ueyama
植山 高次
Tadao Terasaki
寺崎 忠男
Katsuhiko Oguro
勝彦 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59250312A priority Critical patent/JPS61129217A/en
Publication of JPS61129217A publication Critical patent/JPS61129217A/en
Publication of JPH0586295B2 publication Critical patent/JPH0586295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve sheet thickness accuracy by detecting the sheet thickness on the outlet side or inlet side of a stand, inputting the sheet thickness signal to rolling down control devices and speed control devices and operating the rolling down devices of the respective stands in accordance with the devaition from the target sheet thickness value. CONSTITUTION:Roll speed control devices 13-16 are provided to the respective stands of a tandem rolling mill and low-pass filters 20-22 for low-frequency AGC of Nos. 2-4 stands and high-pass filters 32-34 for high-frequency AGC are respectively provided. The high-frequency component and low-frequency component of the sheet thickness fluctuation of the previous stand are separated. Only the high-frequency component is removed by the high-frequency AGC device of that stand and the low-frequency component is removed by the low-frequency AGC of the respective other stands. The sheet thickness fluctuation over the entire frequency region of the material 31 to be rolled is removed by the above-mentioned method. The sheet thickness accuracy is thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、タンデム冷間圧延機などの様にスタンド間
に機械的にスタンド間ストリップ張力を操作する装置を
備えていない金属のタンデム圧延機における高精度板厚
制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a metal tandem rolling mill that is not equipped with a device for mechanically controlling the strip tension between the stands, such as a tandem cold rolling mill. The present invention relates to a highly accurate plate thickness control method.

〔従来の技術〕[Conventional technology]

従来冷間タンデム圧延機において1号スタンドを除くス
タンド(以後中間スタンドと呼ぶ)の圧下装置を操作し
て圧延用ロールの空隙を開閉しても当該スタンド出側板
厚はほとんど変化しないというのが常識であった。その
理由を第5図に従って定性的に説明する。同図1が1号
スタンド圧延ロールで、2.3が2.3号スタンド圧延
ロールである。2.3号スタンドはいわゆる中間スタン
ドに相当する。9〜11は1〜3号スタンドの圧下装置
である。今2号スタンード圧下装置5によって当該スタ
ンドのロール空隙を狭めたと仮定する。
It is common knowledge that in conventional cold tandem rolling mills, even if the rolling device of the stands other than the No. 1 stand (hereinafter referred to as intermediate stand) is operated to open or close the gap in the rolling rolls, the plate thickness at the exit side of the stand will hardly change. Met. The reason for this will be explained qualitatively with reference to FIG. 1 is a No. 1 stand roll, and 2.3 is a No. 2.3 stand roll. Stand No. 2.3 corresponds to what is called an intermediate stand. 9 to 11 are the rolling down devices of stands No. 1 to 3. It is now assumed that the roll gap of the stand is narrowed by the No. 2 stand lowering device 5.

狭める前の2号スタンド入側板厚をHI′、出側板厚を
H2、入側速度をv1′、出側速度を■2.1号スタン
ド出側速度をvlとする。その時これらの諸量間にはマ
スフロー一定則により次式が成立する。
Let the inlet side plate thickness of No. 2 stand before narrowing be HI', the outlet side plate thickness as H2, the inlet side speed as v1', and the exit side speed as ■2.1 stand exit speed as vl. At that time, the following equation holds between these quantities due to the constant mass flow law.

H+’  v I’ =H2V 2     −(1)
2号スタンドのロールギャップを狭めた時H2が小さく
なると仮定し、その変化分をΔH2と置くと、2号スタ
ンド出側板厚はH2−ΔH2となる。
H+' v I' = H2V 2 - (1)
Assuming that H2 becomes smaller when the roll gap of the No. 2 stand is narrowed, and setting the change as ΔH2, the thickness of the exit side of the No. 2 stand becomes H2 - ΔH2.

第5図における各スタンドロール周速Vl、V2゜V3
は変化しない。例えば2号ロール周速v2と2号出側板
厚v2との間には(2)式の関係がある(但しλ2は2
号スタンド先進率、通常数%)。
Each stand roll circumferential speed Vl, V2°V3 in Fig. 5
does not change. For example, there is a relationship expressed by equation (2) between the No. 2 roll peripheral speed v2 and the No. 2 outlet plate thickness v2 (however, λ2 is 2
No. stand advanced rate, usually a few percent).

V2=(1+λ2 ) V 2     −−(21λ
2は2号圧下装置5の操作によってほとんど変化しない
のでv2は変化しない。H+’ も変化しないので+1
1式では 、/が変化をすることになり、その変化分を
Δv1とおくと(1)式は(1′)となる。
V2=(1+λ2) V2−−(21λ
2 hardly changes due to the operation of the No. 2 reduction device 5, so v2 does not change. H+' also does not change, so +1
In Equation 1, / will change, and if the amount of change is set as Δv1, Equation (1) becomes (1').

H1′(v I′−ΔV ご)=(H2−ΔH2)V2
・・・・・・(1′) ここで1号スタンド、2号スタンド間張力T12は次式
で表わされる。
H1'(v I'-ΔV)=(H2-ΔH2)V2
(1') Here, the tension T12 between the No. 1 stand and the No. 2 stand is expressed by the following equation.

(1′)式より圧下締込後の2号スタンド入側速度Vl
−Δv1′は次式になる。
From formula (1'), No. 2 stand entrance speed Vl after tightening is
-Δv1' is expressed as follows.

即ち(3)式の1.2スタンド間張力T12はから に低下する。張力T I 2が低下すると主に2号スタ
ンド出側板厚は厚くなる。その結果2号スタンドの圧下
装置を締め込んだにも殉ず2号スタンド出側板厚はほと
んど変6らない。別の表現をすると1号スタンド出側板
厚をHlとすると、1号スタンド入側板厚が一定とする
とH+ v + = H2V 2の関係が成り立つ。
That is, the tension T12 between the 1.2 stands and the equation (3) decreases dramatically. When the tension T I 2 decreases, the plate thickness on the exit side of the No. 2 stand mainly increases. As a result, the thickness of the plate on the exit side of the No. 2 stand did not change even when the pulling down device of the No. 2 stand was tightened. Expressed in another way, if the plate thickness on the exit side of the No. 1 stand is Hl, and the plate thickness on the inlet side of the No. 1 stand is constant, the relationship H+ v + = H2V 2 holds true.

v + =V +  (1+λ+ ) 、V 2 =V
 2  (1+λ2)・・・・・・(3)′ (但し λ1.λ2は1号、2号スタンドの先進率) であるから Vl(1+λ+)HI=V2  (1+λ
2)H2となる。即ち H2=V t  (1+λ1)H1/V2(1+λ2)
・・・・・・(4) で表わされる。2号スタンドの圧下を操作してもVl、
V2.Hl、  λ訃、λ2はほとんど変化しないから
2号出側板厚は結果としてほとんど変化をしない。厳密
に言うとHl、  λ2はやや大きくなり、λ1はやや
小さくなって結果としてほとんどH2は変化しない。こ
れを第2図に従ってミル弾性カーブとストリップ塑性カ
ーブで説明すると、2号スタンド圧下締込み前のミル弾
性カーブをCI、ストリップ塑性カーブを03とすると
、その時の2号スタンド出側板厚はミルの伸びに要する
圧延力とストリ・ノブの圧縮に要する圧延力の一致する
C1と03の交点できまり、H2となる。ここで2号ス
タンドの圧下を締めこみ、ミル弾性カーブがCIから0
2に移動したとすると2号スタンド出側板厚はC2とC
3の交点で決まるH2−ΔH2になるが、前述のように
そのために1,2号スタンド間張力が小さくなる。その
結果ストリップ塑性カーブはC3からC4に移動し、結
局2号スタンド出側板厚はほぼH2に戻ってしまう。
v + =V + (1+λ+), V 2 =V
2 (1+λ2)...(3)' (However, λ1.λ2 is the advance rate of No. 1 and No. 2 stands), so Vl (1+λ+)HI=V2 (1+λ
2) It becomes H2. That is, H2=V t (1+λ1)H1/V2(1+λ2)
......(4) It is expressed as follows. Even if you operate the lowering of the No. 2 stand, Vl,
V2. Since Hl, λ2, and λ2 hardly change, the No. 2 outlet side plate thickness hardly changes as a result. Strictly speaking, Hl and λ2 become slightly larger, λ1 becomes slightly smaller, and as a result, H2 hardly changes. To explain this using the mill elasticity curve and strip plasticity curve according to Figure 2, if the mill elasticity curve before No. 2 stand is tightened is CI and the strip plasticity curve is 03, then the plate thickness at the exit side of No. 2 stand is the mill It is determined at the intersection of C1 and 03, where the rolling force required for elongation and the rolling force required for compression of the strip knob match, and becomes H2. At this point, tighten the reduction of the No. 2 stand and change the mill elastic curve from CI to 0.
If you move to 2, the thickness of the exit side of the 2nd stand is C2 and C.
H2 - ΔH2 determined by the intersection of 3, but as mentioned above, the tension between the No. 1 and No. 2 stands becomes small because of this. As a result, the strip plasticity curve moves from C3 to C4, and eventually the thickness of the exit side of the No. 2 stand returns to approximately H2.

厳密には1.2号スタンド間張力がゆるんでもC3から
C4には完全に移動せず、C5に移動する程度であるが
、1.2スタンド間張力がゆるんだためにHlが厚くな
り、その結果H+′が大き(なり、H+’  +ΔH+
′となり、結局2号スタンド出側板厚はH2に戻ってし
まう。
Strictly speaking, even if the tension between No. 1 and No. 2 stands is loosened, it does not completely move from C3 to C4, but only moves to C5, but because the tension between No. 1 and No. 2 stands is loosened, Hl becomes thicker, and its As a result, H+' is large (H+' +ΔH+
', and in the end, the thickness of the exit side of the No. 2 stand returns to H2.

以上述べた如〈従来は中間スタンドの圧下を操作しても
当該スタンド出側板厚は変化しないと言われていたので
、これを前提に自動板厚制御(AGC)装置が構成され
ていた。
As mentioned above, it has been said that even if the intermediate stand is lowered, the plate thickness at the exit side of the stand does not change, and automatic plate thickness control (AGC) devices have been constructed on this premise.

第3図に従い4スタンドタンデム冷間圧延機における例
えば特開昭52−123360号、同52−41676
号などで示される従来の代表的なAGCの構成について
説明する。1号スタンド入側板厚偏差検出装置35より
検出された板厚信号(ΔH[l’)(板厚基準は前もっ
て35に与えられる)を1号スタンド圧下フィードフォ
ワードACC装置27に入力し、同時に板速計39によ
り1号スタンド入側板速を検出しこれを該装置27に入
力する。AGC装置27では板速により検出装置35で
得られた板厚を持ったストリップがどの位置に移動して
いるかを計算し、その位置が1号スタンドロールバイト
に到達した時に圧下位置変更指令値ΔSR+を圧下制御
装置23に与える。
For example, in a four-stand tandem cold rolling mill according to FIG.
The configuration of a typical conventional AGC shown in No. 1 will be explained. The plate thickness signal (ΔH[l') (plate thickness reference is given to 35 in advance) detected by the plate thickness deviation detection device 35 on the entrance side of the No. 1 stand is input to the No. 1 stand reduction feedforward ACC device 27, and at the same time The speed meter 39 detects the plate speed on the entrance side of the No. 1 stand and inputs it to the device 27. The AGC device 27 calculates to which position the strip having the plate thickness obtained by the detection device 35 is moving based on the plate speed, and when the position reaches the No. 1 stand roll bite, the reduction position change command value ΔSR+ is calculated. is given to the reduction control device 23.

23〜26は圧下位置制御装置でも圧延力制御装置でも
良いが(圧延力制御装置の場合はΔSR+は圧延力変更
指令値ΔPR+になる)、本例では圧下位置制御装置の
場合について説明する。ΔSR1の計算法を述べる。一
般にミル出側の板厚変動ΔH1を、ミル入側板厚変動Δ
Ha′と圧下位置変動ΔSで表現すると次式で表わされ
る。
23 to 26 may be a rolling position control device or a rolling force control device (in the case of a rolling force control device, ΔSR+ becomes a rolling force change command value ΔPR+), but in this example, the case of a rolling force control device will be described. The method for calculating ΔSR1 will be described. In general, plate thickness variation ΔH1 on the exit side of the mill is expressed as plate thickness variation ΔH1 on the mill entry side.
When expressed in terms of Ha' and the rolling position variation ΔS, it is expressed by the following equation.

但しMはミル弾性変形係数、Qはストリップ塑性変形係
数。
However, M is the mill elastic deformation coefficient and Q is the strip plastic deformation coefficient.

(5)式で八HQ’が変化しても八H+をゼロにするた
めには、ΔH+をゼロと置いてΔSを次式に従って動作
させればよい。
In order to make 8H+ zero even if 8HQ' changes in equation (5), ΔH+ should be set to zero and ΔS should be operated according to the following equation.

故にΔSR+はΔHo’に従い次式に示される。Therefore, ΔSR+ is expressed by the following equation according to ΔHo'.

第3図の圧下制御装置23はΔSR+に従って圧下装置
9を動かし、ロールギャップを開整することにより、1
号スタンド入側板厚変動に基く1号スタンド出側板厚偏
差をゼロにする。2号スタンド入側板厚偏差ΔI(+’
 は検出装置36で検出されAC,C装置17に入力さ
れる。AGC装置17では2号入側板速を板速計40よ
り得て、検出装置36により検出された板厚偏差を持つ
ストリップの部分が2号ロールバイトに到着するタイミ
ングをはかってΔH+′に従い1号スタンドロール速度
制御装置13ヘロール速度変更指令ΔVIRを与える。
The rolling down control device 23 in FIG. 3 moves the rolling down device 9 according to ΔSR+ to open and adjust the roll gap.
The thickness deviation on the outlet side of the No. 1 stand based on the variation in the plate thickness on the entrance side of the No. 1 stand is made zero. No. 2 stand entry side plate thickness deviation ΔI (+'
is detected by the detection device 36 and input to the AC, C device 17. In the AGC device 17, the No. 2 inlet side plate speed is obtained from the sheet speed meter 40, and the timing is determined when the part of the strip having the thickness deviation detected by the detection device 36 arrives at the No. 2 roll bite, and the No. 1 inlet side plate speed is determined according to ΔH+'. A roll speed change command ΔVIR is given to the stand roll speed control device 13.

ΔVORは次の様に計算される。第5図においてH1′
がΔH+′だけ弯化したとした一時H2が変化しないた
めには板速Vが変わらないとするとロール周速Vが変化
し■−Δ■になる必要がある。故に(1)式は(1)式
となる。
ΔVOR is calculated as follows. In Figure 5, H1'
In order for H2 to remain unchanged when the curve is curved by ΔH+', the roll circumferential speed V must change to -Δ■, assuming that the plate speed V does not change. Therefore, equation (1) becomes equation (1).

(H1′+ΔH+’)(v+−ΔVl)=H2V2・・
・・・・(1) (1)に(1)を代入し2次の微小項ΔH・Δ■を省略
すると(8)式になる。
(H1'+ΔH+') (v+-ΔVl)=H2V2...
(1) Substituting (1) into (1) and omitting the second-order minute terms ΔH and Δ■ gives equation (8).

ところが(3)式によりv 1 =V +  (1+λ
1)の関係があるからΔv1=Δ■1・ (1+λ1)
(但しΔV+は■1の変動分)が成り立つ。vlはほぼ
Vl′ と等しいからv +’  =V +  (1+
λ1)及びΔl/l′=:Δv1 (1+λ口となり、
これを(8)式に代入すると次式になる。
However, according to equation (3), v 1 =V + (1+λ
Because of the relationship 1), Δv1=Δ■1・(1+λ1)
(However, ΔV+ is the variation of ■1). Since vl is almost equal to Vl', v +' = V + (1+
λ1) and Δl/l'=:Δv1 (1+λ mouth,
Substituting this into equation (8) yields the following equation.

(9)式に基き第3図のロール速度制御装置13への速
度変更指令ΔVIRは次式になる。
Based on equation (9), the speed change command ΔVIR to the roll speed control device 13 in FIG. 3 is expressed as follows.

このΔvlRに従って第3図のロール速度制御装置13
はロール駆動用電動機5の回転速度を変更させ、2号ス
タンド人側板厚変動に基く2号スタンド出側板厚変動を
ゼロにする。同様に第3図において3号スタンド入側板
厚偏差を検出装置37で検出しAGC装置18に入力す
る。AGC装置18では3号スタンド入側板速によって
タイミングを合わせ、ロール速度制御装置14に2号ス
タンドロール速度変更指令ΔV2Rを与え、ロール速度
制御装置14はΔV2Rに従ってロール駆動用電動機6
の回転速度を変更し、圧延用ロール2の回転速度を変え
ることにより3号スタンド入側板厚変動に基く3号スタ
ンド出側板厚変動をゼロにする。又AGC装置18はロ
ール速度制御装置13にも速度変更指令を与え圧延用ロ
ール2の速度を変えた為に1.2号スタンド間張力が変
動しない様に圧延用ロール1,2の速度比が一定に保た
れる様に圧延用ロール1のロール速度を変更する。4号
スタンドも同様にAGC装置19に入側板厚偏差検出装
置38、板速計42の信号を入力し、AGC装置19は
4号スタンド入側板厚変動に基く4号スタンド出側板厚
変動をゼロにすべき3号ロール速度変更指令ΔV3Rを
与えるとともにロール速度制御装置13.14には1号
、2号。
According to this ΔvlR, the roll speed control device 13 of FIG.
changes the rotational speed of the roll drive electric motor 5, and makes the variation in the plate thickness on the exit side of the No. 2 stand, which is based on the variation in the plate thickness on the person side of the No. 2 stand, to zero. Similarly, in FIG. 3, the plate thickness deviation on the entrance side of the No. 3 stand is detected by the detection device 37 and input to the AGC device 18. The AGC device 18 synchronizes the timing with the No. 3 stand entrance plate speed and gives the No. 2 stand roll speed change command ΔV2R to the roll speed control device 14, and the roll speed control device 14 changes the roll drive electric motor 6 according to ΔV2R.
By changing the rotational speed of the rolling rolls 2 and the rotational speed of the rolling roll 2, the variation in plate thickness on the exit side of the No. 3 stand, which is based on the variation in the plate thickness on the entrance side of the No. 3 stand, is made zero. The AGC device 18 also gave a speed change command to the roll speed control device 13 to change the speed of the rolling roll 2, so the speed ratio of the rolling rolls 1 and 2 was adjusted so that the tension between the No. 1 and No. 2 stands did not fluctuate. The roll speed of the rolling roll 1 is changed so as to be kept constant. In the same way, the No. 4 stand also inputs the signals from the inlet side plate thickness deviation detection device 38 and the plate speed meter 42 to the AGC device 19, and the AGC device 19 eliminates the No. 4 stand exit side plate thickness variation based on the No. 4 stand inlet side plate thickness variation. 1 and 2 to the roll speed control device 13.14.

3号ロール速度比がΔV3Rによって変わらないように
それぞれのロール速度変更指令を与える。
Each roll speed change command is given so that the No. 3 roll speed ratio does not change due to ΔV3R.

以上の様に1号スタンド出側板厚変動は1号圧下装置を
操作し2号出側板厚変動は1号ロール速度を変更し、3
号出側板厚変動は1,2号ロール速度を変更し4号出側
板厚変動は1.2.3号ロール速度を変更してそれぞれ
ゼロにするのが従来のAGCであった。
As mentioned above, changes in the plate thickness on the exit side of the No. 1 stand are controlled by operating the No. 1 rolling down device, changes in plate thickness on the exit side of the No. 2 stand are controlled by changing the speed of the No. 1 roll, and changes in the plate thickness on the exit side of the No.
In conventional AGC, variations in the thickness of the No. 1 and No. 2 rolls are changed for the exit side, and changes in the speed of the No. 1, 2, and 3 rolls are adjusted to zero for the fluctuation of the No. 4 exit side.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のAGCではその制御能力に附界があり、十分な板
厚精度が出ない。その理由は、第3図のロール速度制御
装置13〜15の応答速度が遅いことにある。通常タン
デム冷間圧延機の圧延ロール駆動装置の様な大型圧延ロ
ールの速度制御系では、ロールや電動機の慣性モーメン
トが大きい為その応答速度は2Hz程度がせいぜいであ
り、これ以上の周波数に対しては位相のずれおよびゲイ
ンの低下が大きくなる。一方各スタンド人出側板厚変動
を周波数分析すると、0〜L OHzの周波数成分があ
ることがわかっている。IHz〜10Hzの板厚変動は
、前工程(熱延)での圧延ロールの偏心によってプリン
トされた板厚変動であると考えられている。又タンデム
冷延におけるロール偏心も1〜10Hzの板厚変動の原
因であると考えられておりそれは板厚変動周波数が熱延
及び冷延のロール回転の周波数及びその高調波であるこ
とからも裏付けられる。従来のAGCでは1号出側板厚
の制御を1号圧下で行なう以外は各スタンドロール速度
を操作して2号スタンド以降のスタンド出側板厚を制御
するため、2号入側まで除去されずに残ってしまった板
厚変動及び当該圧延機の各ロールの偏心により発生した
板厚変動の内ロール速度制御装置の応答速度である2H
z以上のものについては除去出来ない。2Hz以上の板
厚変動はストリップ厚みの±1%程度であり従来は許容
誤差の範囲内であったが、金属ストリップを使用する製
造工程の自動化高速化が進むに従いストリップの板厚精
度への要求が厳しくなり従来のAGCではその要求を満
たせなくなった。
Conventional AGC has limited control capability and cannot achieve sufficient plate thickness accuracy. The reason for this is that the response speed of the roll speed control devices 13 to 15 shown in FIG. 3 is slow. Normally, in the speed control system of large rolling rolls such as the rolling roll driving device of a tandem cold rolling mill, the moment of inertia of the rolls and electric motor is large, so the response speed is at most about 2Hz, and it is difficult to respond to frequencies higher than this. In this case, the phase shift and gain decrease will be large. On the other hand, frequency analysis of the plate thickness variations on the exit side of each stand reveals that there are frequency components from 0 to L OHz. It is believed that the plate thickness variation between IHz and 10 Hz is printed plate thickness variation due to the eccentricity of the rolling roll in the previous process (hot rolling). Roll eccentricity in tandem cold rolling is also thought to be a cause of plate thickness variation of 1 to 10 Hz, and this is supported by the fact that the plate thickness variation frequency is the frequency of roll rotation in hot rolling and cold rolling and its harmonics. It will be done. In conventional AGC, except for controlling the thickness of the No. 1 outlet side under the No. 1 pressure, each stand roll speed is controlled to control the thickness of the stand exit side from the No. 2 stand onwards, so the thickness is not removed until the No. 2 inlet side. 2H, which is the response speed of the roll speed control device, is the remaining plate thickness variation and plate thickness variation caused by the eccentricity of each roll of the rolling mill.
Anything above z cannot be removed. Thickness fluctuations of 2Hz or more were about ±1% of the strip thickness, which was within the tolerance range, but as manufacturing processes using metal strips become more automated and faster, there is a growing demand for strip thickness accuracy. As the requirements have become stricter, conventional AGC has become unable to meet these requirements.

本発明は従来の板厚制御装置では除去不可能であったタ
ンデム圧延機の被圧延材に含まれる全周波数領域の板厚
変動を除去することを目的とする金属のタンデム圧延機
における板厚制御装置に関するものである。
The present invention provides plate thickness control in metal tandem rolling mills with the purpose of eliminating plate thickness fluctuations in the entire frequency range included in the rolled material of tandem rolling mills, which could not be removed by conventional plate thickness control devices. It is related to the device.

C問題点を解決するための手段〕 本発明の前提となる金属ストリップ圧延機の備えるべき
条件として、圧下制御装置の応答速度の方がロール速度
制御装置の応答速度より速いことが必要である。例えば
圧下装置は油圧圧下、ロール駆動装置は直流電動機によ
るサイリスクレオナード装置の場合などである。前述の
ようにロール速度制御装置の応答周波数はほぼ2Hzに
対し、油圧圧下制御装置の応答周波数は20Hz程度で
格段に速い。
Means for Solving Problem C] As a condition that a metal strip rolling mill, which is a premise of the present invention, must have, the response speed of the rolling reduction control device must be faster than the response speed of the roll speed control device. For example, the rolling down device may be a hydraulic rolling device, and the roll driving device may be a Siris-Cleonard device using a direct current motor. As mentioned above, the response frequency of the roll speed control device is approximately 2 Hz, whereas the response frequency of the hydraulic pressure reduction control device is about 20 Hz, which is much faster.

本発明の眼目は、従来タンデム冷延においては中間スタ
ンドの圧下装置の操作によって当該スタンド出側板厚の
変化はほとんどないと思われていたが、実際はIHz〜
20Hzの比較的高周波で操作すれば出側板厚の変化を
起こせるという事実である。実際に4タンデム冷間圧延
で第2スタンドの圧下装置を種々の周波数で操作した場
合の出側板厚変動を示したのが、第4の実線で示した曲
線A1である。たて軸はゲイン−該スタンド出側板厚変
動量/圧下位置変更指示量を示し、圧下操作によるスタ
ンド出側板厚変化の程度を示す。横軸は周波数で、対数
目盛で表わしである。圧下操作による板厚変動への影響
度は2〜4HzT:最大でこの領域より高周波では圧下
装置の応答か悪くなり、圧下位置変更指示にも殉ず圧下
装置そのものが動かなくなるのでゲインは落ちてくる。
The focus of the present invention is that in conventional tandem cold rolling, it was thought that there was almost no change in the plate thickness at the exit side of the stand due to the operation of the rolling device of the intermediate stand, but in reality,
It is a fact that the exit plate thickness can be changed by operating at a relatively high frequency of 20 Hz. The curve A1 shown by the fourth solid line shows the variation in the exit side plate thickness when the rolling device of the second stand is operated at various frequencies in actual 4-tandem cold rolling. The vertical axis indicates gain - amount of change in plate thickness on the exit side of the stand/amount of instruction for changing the rolling position, and indicates the degree of change in plate thickness on the exit side of the stand due to the rolling operation. The horizontal axis is frequency, expressed on a logarithmic scale. The degree of influence on plate thickness fluctuation due to rolling operation is 2 to 4 HzT: At the maximum, at frequencies higher than this range, the response of the rolling device becomes poor, and the rolling device itself stops moving even when instructed to change the rolling position, so the gain decreases. .

2〜4Hzよりも低周波領域でゲインが落ちてくる原因
を第2図に基いて説明する。
The reason why the gain decreases in a frequency range lower than 2 to 4 Hz will be explained based on FIG. 2.

すでに述べた様に曲線C1、C3の交点より板厚H2が
決まっている。圧下位置を変えてC1をC2にした時バ
ックテンションの変化によりC3からC5に変化するが
、実験によると圧下移動量ΔS2とバンク張力変動量Δ
T12との間には(Sニラプラスの演算子、t12:時
定数で通常約0.2秒) という関係があり、変化に時間を要する。又ハック張力
変動が起きると1号スタンド出側板厚H1に変化が起り
C5から06に移るが、移るタイミングは板厚変化した
ストリップが2号スタンドに到達した時点である。1号
スタンドロールバイトのストリップが2号入側に到達す
るのは1.2号スタンド間距離(第5図L)を5m、1
号スタンド出側速度(第5図v+)を300mpmとす
ると、約1秒後である。即ち圧下を操作して最終的に2
号スタンド出側板厚がほぼ操作前の値に戻るのは約1.
2秒後でそれまで一時的に薄(なっている訳である。叩
ち換言すれば1.2秒周期より長い周期での圧下操作で
は板厚が変わらないが、それ以下の周期の圧下操作では
板厚が変動するということである。これを定量的に図示
したのが第4図ということになる。この事実は、圧延機
の圧下装置が電動圧下であった時代は圧下をゆっくりと
しか操作出来なかったので板厚制御に役立たなかったが
、応答速度20Hz程度まで得られる油圧圧下装置にな
ると板厚制御装置に有効に利用出来ることになる。
As already stated, the plate thickness H2 is determined from the intersection of the curves C1 and C3. When changing the rolling position and changing C1 to C2, it changes from C3 to C5 due to the change in back tension, but according to experiments, the rolling movement amount ΔS2 and the bank tension fluctuation amount Δ
There is a relationship with T12 (S nira plus operator, t12: time constant, usually about 0.2 seconds), and it takes time for the change to occur. Also, when the hack tension fluctuation occurs, the thickness H1 on the exit side of the No. 1 stand changes and the change occurs from C5 to 06, but the timing of the change is when the strip whose thickness has changed reaches the No. 2 stand. The strip of No. 1 stand roll bite reaches the entrance side of No. 2 is 1. The distance between No. 2 stands (L in Figure 5) is 5 m, 1
Assuming that the speed at the exit side of the No. stand (v+ in Figure 5) is 300 mpm, this is about 1 second later. In other words, by controlling the pressure reduction, finally 2
It takes approximately 1.5 seconds for the thickness of the exit side of the stand to return to its pre-operation value.
After 2 seconds, it becomes temporarily thinner.In other words, if the rolling cycle is longer than 1.2 seconds, the plate thickness will not change, but if the rolling cycle is less than 1.2 seconds, the plate thickness will not change. This means that the plate thickness fluctuates. Figure 4 shows this quantitatively. This fact means that in the days when the rolling mill's rolling device was electric rolling, rolling was done only slowly. Since it could not be operated, it was not useful for sheet thickness control, but if it becomes a hydraulic rolling down device that can achieve a response speed of about 20 Hz, it will be able to be effectively used as a sheet thickness control device.

ただ以上に述べたことかられかる様に周期1.2秒(周
波数1 / 12 Hz )以下で圧下を操作すると当
該スタンド出側板厚はほとんど変化しないにも殉ず張力
変動のみが起って通板性の面で有害となる。そこで板厚
変動の内の高周波成分のみを圧下操作により除去し、低
周波成分はロール速度比を変更することにより、すべて
の周波数成分の板厚変動を除去するのが本発明にかかる
板厚制御装置である。
However, as can be seen from the above, if the rolling operation is performed at a frequency of 1.2 seconds or less (frequency: 1/12 Hz), the plate thickness at the exit side of the stand will hardly change, but only the tension will fluctuate. It is harmful in terms of board properties. Therefore, the plate thickness control according to the present invention removes only the high frequency component of the plate thickness variation by rolling down, and removes the low frequency component by changing the roll speed ratio. It is a device.

次に第1図に基いて本発明の詳細な説明する。Next, the present invention will be explained in detail based on FIG.

第3図などと同様に1〜4は1〜4号スタンドの圧延用
ロール、5〜8は同ロール駆動用電動機、9〜12は同
圧下装置、13〜16は同ロール速度制御装置、17〜
19は2〜4号スタンドの低周波AGC装賀である。2
0〜22は2〜4号スタンド低JIAGC用ローパスフ
ィルタ、23〜26は1〜4号スタンドの圧下制御装置
、27は1号スタンド圧下フィードフォワードAGC装
置、28〜30は2〜4号スタンド高周波AGC装置、
31は金属ストリップ、32〜34は1〜4号スタンド
の高周波AGC用バイパスフィルタ、35〜38は1〜
4号スタンドの入側板厚偏差検出装置、39〜42は同
板速計である。第1図で1点鎖線で囲まれた部分は第3
図の従来のAGCに対し本発明によって付加された部分
である。1号スタンド入側板厚偏差を検出装置35で検
出し、AGC装置27に入力する。AGC装置27では
板速計39よりの板速度に基きタイミングをはかって(
7)式に従った圧下位置変更基準ΔSR1を出力し、圧
下制御装置23に与え、該装置23は圧下装置9を動か
し、ロールギャップをΔSR+たけ動かすことにより1
号スタンド入側板厚変動に基く1号スタンド出側板厚変
動をゼロにしようとする。1号スタンドで残った板厚偏
差及び1号スタンドのロール偏心により発生した板厚偏
差を検出装置36により検出しフィルタ32に入力する
3, 1 to 4 are the rolling rolls of stands 1 to 4, 5 to 8 are the electric motors for driving the rolls, 9 to 12 are the same rolling devices, 13 to 16 are the same roll speed control devices, 17 ~
19 is the low frequency AGC soga of stands 2-4. 2
0 to 22 are low-pass filters for stand No. 2 to 4 low JIAGC, 23 to 26 are down control devices for stand No. 1 to 4, 27 are down feed forward AGC devices for stand No. 1, and 28 to 30 are high frequency for stand No. 2 to 4. AGC device,
31 is a metal strip, 32 to 34 are high frequency AGC bypass filters for stands 1 to 4, and 35 to 38 are 1 to 4.
The board thickness deviation detection device on the entrance side of stand No. 4, 39 to 42, is the same board speed meter. The part surrounded by the dashed line in Figure 1 is the third
This is a part added according to the present invention to the conventional AGC shown in the figure. The board thickness deviation on the entrance side of the No. 1 stand is detected by the detection device 35 and input to the AGC device 27. The AGC device 27 measures the timing based on the plate speed from the plate speed meter 39 (
7) Output the rolling down position change reference ΔSR1 according to the formula and give it to the rolling down control device 23, which moves the rolling down device 9 and moves the roll gap by ΔSR+.
The purpose is to reduce the variation in plate thickness on the exit side of the No. 1 stand to zero, which is based on the variation in the plate thickness on the entrance side of the No. 1 stand. The plate thickness deviation remaining in the No. 1 stand and the plate thickness deviation caused by the roll eccentricity of the No. 1 stand are detected by the detection device 36 and input to the filter 32.

フィルタ32では板厚偏差信号の内はぼIHz以上の高
周波成分のみ(ΔH′1h)を取り出し、AGC装置2
8に与える。AGC装置28では板速計40の信号によ
って検出装置36で測定した板厚偏差を持ったストリッ
プがロール2のロールハイドに到達するタイミングを測
定し、到達した時点に(7)式に従った(但しく7)式
のΔHa′はΔH′lhになる)圧下位置変更基準、Δ
SR2を出力し、圧下制御装置24に与え、該装置24
は圧下装置10を動かし、ロールギャップをΔSR2だ
け動かすことにより、2号スタンド入側板厚変動のIH
z以上の成分に基く2号スタンド出側板厚変動をゼロに
しようとする。同様に2号スタンドで完全には除去し得
なかったIHz以上の板厚変動及び2号スタンドのロー
ル偏心により発生した板厚変動のIHz以上の高周波成
分を3号スタンドの高周波AGCで除去する。その役割
は検出装置37は同36と、板速計41は同40と、フ
ィルタ33は同32と、AGC装置29は同28と、圧
下制御装置25は同24と、圧下装置11は同10と、
ロール3は同2と同じである。同様に4号スタンド入側
のIHz以上の成分は4号スタンドの高周波AGCで除
去する。ここで1号スタンド圧下フィードフォワードA
GC装置27は2〜4号スタンド高周波AGC装置と異
なり、IHz以下の低周波の板厚変動も除去出来る。こ
れは一般に1号圧下の入側のストリ・7プは何らかの手
段で張カ一定に保たれているのが普通で、そのため1号
スタンド圧下装置9を操作して1号スタンド出側板厚が
変化しても1号スタンド入側張力は変化しないため第4
図A1の様な特性にならず同図破線で示した曲線A2の
如き特性を示すからである。
The filter 32 extracts only the high frequency component (∆H'1h) of approximately IHz or higher from the plate thickness deviation signal and sends it to the AGC device 2.
Give to 8. The AGC device 28 measures the timing at which the strip having the thickness deviation measured by the detection device 36 reaches the roll hide of the roll 2 based on the signal from the plate speed meter 40, and at the time of arrival, according to equation (7). However, ΔHa' in equation 7) becomes ΔH'lh) The rolling position change standard, Δ
SR2 is outputted and given to the reduction control device 24, and the device 24
By moving the rolling down device 10 and moving the roll gap by ΔSR2, the IH of plate thickness variation on the entrance side of No. 2 stand is
Attempts to make the variation in the plate thickness on the outlet side of the No. 2 stand, which is based on components greater than or equal to z, to zero. Similarly, the high frequency AGC of the No. 3 stand removes the plate thickness fluctuation of IHz or more that could not be completely removed by the No. 2 stand and the high frequency component of the IHz or more of the plate thickness fluctuation caused by the roll eccentricity of the No. 2 stand. Their roles are: the detection device 37 is the same 36, the plate speed meter 41 is the same 40, the filter 33 is the same 32, the AGC device 29 is the same 28, the reduction control device 25 is the same 24, and the reduction device 11 is the same 10. and,
Roll 3 is the same as roll 2. Similarly, components of IHz or higher on the inlet side of the No. 4 stand are removed by the high frequency AGC of the No. 4 stand. Here, No. 1 stand pressure feed forward A
Unlike the No. 2-4 stand high frequency AGC devices, the GC device 27 can also remove plate thickness fluctuations at low frequencies below IHz. This is because the tension of the strip 7 on the entry side of the No. 1 roll is generally kept constant by some means, so by operating the No. 1 stand roll-down device 9, the thickness of the strip on the exit side of the No. 1 stand is changed. Even if the No. 1 stand entry tension does not change, the No. 4
This is because the characteristics are not as shown in FIG. A1, but as shown by the curve A2 indicated by the broken line in the same figure.

第1図の検出装置36で検出された板厚変動信号はフィ
ルタ20にも入力される。20はローパスフィルターに
なっていて、検出装置36で得られた信号のIHzより
低周波の成分のみ(ΔH’1z)を通過させ、AGC装
置17に与える。該装置17では板速計40で検出した
板迷信号を使って検出装置36で得た板厚偏差を持った
ストリップがロール2のロールバイトに到達するタイミ
ングを測定し、到達した時点に00)式に従った(但し
α0)式のH1′は2号入側板厚基準を使用しΔHt’
 はΔH’+z)  1号ロール速度変更指令ΔSR+
をロール速度制御装置13に与える。該装置13はロー
ル駆動用電動機5の回転速度を変更させ、2号スタンド
板厚変動のIHz以下の成分に基く2号スタンド出側は
板厚変動をゼロにしようとする。同様に3号スタンド入
側板厚変動のIHz以下の成分は3号スタンド低周波A
GCで除去する。その役割は入側板厚偏差検出装置37
は同36と、板速計41は同40と、フィルタ21は同
20と、AGC装置18は同17と、ロール速度制御装
置14は同13と、ロール駆動用電動機6は同5と、ロ
ール2は同1と対応する。但し18は14と同時に13
にも速度変更指令を与えロール1と2の速度比を一定に
保つ。同様に4号スタンド人側板厚変動のIHz以下の
成分は4号スタンド低周波AGCで除去する。
The plate thickness variation signal detected by the detection device 36 in FIG. 1 is also input to the filter 20. Reference numeral 20 is a low-pass filter, which passes only the frequency component (ΔH'1z) lower than IHz of the signal obtained by the detection device 36, and supplies it to the AGC device 17. The device 17 uses the plate stray signal detected by the plate speed meter 40 to measure the timing at which the strip with the plate thickness deviation obtained by the detection device 36 reaches the roll bite of the roll 2, and at the time it reaches the roll bite, H1' of the formula according to the formula (however α0) is ΔHt' using the No. 2 entry side plate thickness standard.
is ΔH'+z) No. 1 roll speed change command ΔSR+
is given to the roll speed control device 13. The device 13 changes the rotational speed of the roll drive electric motor 5, and attempts to reduce the plate thickness variation to zero on the exit side of the No. 2 stand based on the component of IHz or less of the plate thickness variation of the No. 2 stand. Similarly, the component below IHz of plate thickness variation on the entrance side of No. 3 stand is low frequency A of No. 3 stand.
Remove with GC. Its role is the entry side plate thickness deviation detection device 37
is the same 36, the plate speed meter 41 is the same 40, the filter 21 is the same 20, the AGC device 18 is the same 17, the roll speed control device 14 is the same 13, the roll drive motor 6 is the same 5, the roll 2 corresponds to 1. However, 18 is 13 at the same time as 14.
A speed change command is also given to the rolls 1 and 2 to keep the speed ratio of rolls 1 and 2 constant. Similarly, the component below IHz of the plate thickness variation on the No. 4 stand person side is removed by the No. 4 stand low frequency AGC.

低周波AGCの構成機能の内第1図20.21゜22の
ローパスフィルタは省略可能である。その理由は例えば
1スタンドで言えば第1図1,5゜13で構成するロー
ル速度制御系の応答速度が約2Hz以下であり、フィル
タ20よりAGC装置17を通してロール速度制御装置
13へO〜20Hzの速度変更指令が与えられても実際
の1号ロール速度は2Hz以上では応答しないからであ
る。
Among the constituent functions of the low frequency AGC, the low pass filter shown at 20.21.degree. 22 in FIG. 1 can be omitted. The reason for this is that, for example, in one stand, the response speed of the roll speed control system consisting of 13 in FIG. This is because even if a speed change command is given, the actual No. 1 roll speed does not respond at 2 Hz or higher.

しかしその場合1〜2Hzの領域では高周波AGCと干
渉し十分にゲインが上げられないのでフィルタ20〜2
2はあった方が本発明の効果を十分に発揮できる。又高
周波AGCの構成要素の内第1図32.33.34で示
されるバイパスフィルタも張力変動の大きさや低周波A
GCとの干渉によるゲイン低下が操業上余り問題になら
なければ省略可能であるが、やはりないと十分な効果が
期待出来ない。
However, in that case, in the 1 to 2 Hz region, it interferes with the high frequency AGC and the gain cannot be increased sufficiently, so filters 20 to 2 are used.
2, the effect of the present invention can be fully exhibited. Also, among the components of high-frequency AGC, the bypass filter shown in Figure 1 32, 33, and 34 is also used to
It can be omitted if the decrease in gain due to interference with the GC does not cause too much of a problem in operation, but a sufficient effect cannot be expected without it.

本発明の主たる構成要素は、スタンド間張力操作用機械
装置を備えていない金属のタンデム圧延機において、第
1スタンド以外の少なくとも1スタンドを含む圧下装置
に板厚変動の内のロール速度制御装置の応答速度に比し
高周波成分の除去を受は持たせ、応答速度の遅いロール
速度制御装置に比較的低周波成分の板厚変動の除去を受
は持たせることにある。故に本発明の実施形態は第1図
の方法に限定する必要はなく例えば高周波AGCはゲー
ジメータAGCでもかまわない。
The main component of the present invention is that, in a metal tandem rolling mill that is not equipped with a mechanical device for controlling tension between stands, a rolling device including at least one stand other than the first stand is provided with a roll speed control device that controls plate thickness fluctuations. The purpose of the bridge is to provide the ability to remove high frequency components relative to the response speed, and to provide a roll speed control device with a slow response speed to the ability to remove plate thickness fluctuations of relatively low frequency components. Therefore, the embodiment of the present invention need not be limited to the method shown in FIG. 1; for example, the high frequency AGC may be a gauge meter AGC.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した通りであり、本発明によれば従来
の板厚制御装置では除去が不可能であったタンデム圧延
機の被圧延材に含まれる全周波数領域の板厚変動を取除
くことができ、タンデム圧延機などのようにスタンド間
に機械的にスタンド間ストリップ張力を操作する装置を
備えていない場合において高精度な板厚制御を達成する
ことかできる。
The present invention is as described above, and according to the present invention, it is possible to remove plate thickness fluctuations in all frequency ranges included in a rolled material of a tandem rolling mill, which could not be removed by conventional plate thickness control devices. This makes it possible to achieve highly accurate plate thickness control in cases where the stands are not equipped with a device for mechanically manipulating the strip tension between the stands, such as in a tandem rolling mill.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すプロ・7り図、第2図は
従来法の圧延状況を示す模式図、第3図は従来のタンデ
ム冷間圧延機のAGCを示すブロック図、第4図は本発
明を説明するため第3図の八〇Cにおいて特定スタンド
の圧下装置を種々の周波数で操作したときの板厚変動を
示すグラフ、第5図は従来法の圧延状況を示す説明図で
ある。 図面で、1〜4は第1〜第4スタンドの圧延用ロール、
5〜8はロール駆動用電動機、13〜16はロール速度
制御装置、9〜12は圧下装置、23〜26は圧下制御
装置、36〜38は入側板厚偏差検出装置である。 出 願 人   新日本製鐵株式会社 代理人弁理士  青  柳    稔 第1図
Fig. 1 is a schematic diagram showing the embodiment of the present invention, Fig. 2 is a schematic diagram showing the rolling situation of the conventional method, Fig. 3 is a block diagram showing the AGC of a conventional tandem cold rolling mill, Figure 4 is a graph showing changes in plate thickness when the rolling device of a specific stand is operated at various frequencies in 80C of Figure 3 to explain the present invention, and Figure 5 is an explanation showing the rolling situation of the conventional method. It is a diagram. In the drawings, 1 to 4 are rolling rolls of the first to fourth stands,
5 to 8 are roll drive electric motors, 13 to 16 are roll speed control devices, 9 to 12 are rolling down devices, 23 to 26 are rolling down control devices, and 36 to 38 are entrance side plate thickness deviation detection devices. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Figure 1

Claims (1)

【特許請求の範囲】[Claims] 複数のスタンドを備えスタンドのロール回転速度を制御
するロール速度制御装置と圧下装置を操作することによ
り圧下位置もしくは圧延力を制御する圧下制御装置を備
え、ロール速度制御装置の応答速度より圧下制御装置の
応答速度の方が速い装置で構成され、スタンド間にルー
パー等のスタンド間張力操作用機械装置を備えていない
金属帯鋼のタンデム圧延機において、第1スタンドを除
く少なくとも1スタンドの入側板厚もしくは出側板厚を
直接もしくは演算によって検出し、その板厚信号を圧下
制御装置及び速度制御装置に入力し、板厚信号とその目
標値との偏差の内ロール速度制御装置の応答速度に比べ
相対的に高周波成分の板厚偏差信号に従って当該スタン
ドの圧下装置を操作し、その他の周波数成分の板厚偏差
信号に従って当該スタンドを含む下流もしくは当該スタ
ンドを含まない上流のロール速度を操作することによっ
て当該スタンド出口板厚を一定にならしめることを特徴
とするタンデム圧延機の板厚制御方法。
It is equipped with a roll speed control device that includes a plurality of stands and controls the roll rotation speed of the stand, and a roll-down control device that controls the rolling position or rolling force by operating the roll-down device, and the roll-down control device is controlled by the response speed of the roll speed control device. In a tandem rolling mill for metal strip steel that is constructed with a device with a faster response speed and is not equipped with a mechanical device for controlling inter-stand tension such as a looper between the stands, the entry side plate thickness of at least one stand excluding the first stand Alternatively, the exit side plate thickness is detected directly or by calculation, and the plate thickness signal is input to the reduction control device and the speed control device. The rolling down device of the stand is operated according to the plate thickness deviation signal of the high frequency component, and the roll speed of the downstream including the stand or the upstream not including the stand is operated according to the plate thickness deviation signal of other frequency components. A method for controlling plate thickness of a tandem rolling mill, characterized by making the plate thickness at the exit of a stand constant.
JP59250312A 1984-11-27 1984-11-27 Method for controlling sheet thickness of tandem rolling mill Granted JPS61129217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250312A JPS61129217A (en) 1984-11-27 1984-11-27 Method for controlling sheet thickness of tandem rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250312A JPS61129217A (en) 1984-11-27 1984-11-27 Method for controlling sheet thickness of tandem rolling mill

Publications (2)

Publication Number Publication Date
JPS61129217A true JPS61129217A (en) 1986-06-17
JPH0586295B2 JPH0586295B2 (en) 1993-12-10

Family

ID=17206033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250312A Granted JPS61129217A (en) 1984-11-27 1984-11-27 Method for controlling sheet thickness of tandem rolling mill

Country Status (1)

Country Link
JP (1) JPS61129217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095855A (en) * 2006-10-12 2008-04-24 Pioneer Electronic Corp Fixing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095855A (en) * 2006-10-12 2008-04-24 Pioneer Electronic Corp Fixing structure

Also Published As

Publication number Publication date
JPH0586295B2 (en) 1993-12-10

Similar Documents

Publication Publication Date Title
US6079242A (en) Control process for continuous skin pass operation for metal strip
JPS605373B2 (en) rolling mill
JPS61283406A (en) Method for compensating and controlling crown control of multi-stage rolling mill
JPS61129217A (en) Method for controlling sheet thickness of tandem rolling mill
JP3506119B2 (en) Method of changing rolling load distribution of tandem rolling mill
JP2988758B2 (en) Rough mill side guide opening control method
JPH09295020A (en) Flying thickness changing method of metal plate in continuous type tandem rolling mill
JP2982587B2 (en) Hot running thickness change control method
JPS623818A (en) Rolling control method
KR790001893B1 (en) Shape control method for tandem rolling mill
JPS6146527B2 (en)
JPH03138002A (en) Wet rolling method
JP3348540B2 (en) Control method of tandem mill
JPH0292411A (en) Method for controlling cold tandem rolling mill
JPS60177908A (en) Method for changing sheet thickness during running in rolling process
JPH02117709A (en) Method for controlling sheet thickness in rolling mill
JPH0628764B2 (en) Plate thickness control method using reduction device of tandem rolling mill
JPS6030967Y2 (en) Rolling mill elongation control device
JP3348538B2 (en) Control method of tandem mill
JPH0246284B2 (en)
JPH11123427A (en) Method for controlling shape of rolled stock and device therefor
JPH0775831A (en) Winding guide controller for rolling
SU768511A1 (en) Apparatus for automatic control of strip thickness on the cold rolling mill
JPS60238018A (en) Shape controlling device in continuous rolling mill
JP3157721B2 (en) Manufacturing method of rolled steel sheet by continuous rolling mill equipped with automatic thickness control device