JPS6112871A - Method for continuously regenerating electroless copper plating solution - Google Patents

Method for continuously regenerating electroless copper plating solution

Info

Publication number
JPS6112871A
JPS6112871A JP13111584A JP13111584A JPS6112871A JP S6112871 A JPS6112871 A JP S6112871A JP 13111584 A JP13111584 A JP 13111584A JP 13111584 A JP13111584 A JP 13111584A JP S6112871 A JPS6112871 A JP S6112871A
Authority
JP
Japan
Prior art keywords
electroless copper
plating solution
copper plating
plating
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13111584A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takeda
武田 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13111584A priority Critical patent/JPS6112871A/en
Publication of JPS6112871A publication Critical patent/JPS6112871A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To regenerate continuously an electroless copper plating soln. and to keep the plating soln. in a favorable plating state at all times by cooling the plating soln. to a specified temp. or below to crystallize and remove harmful ions from the plating soln. CONSTITUTION:Part or the whole of an electroless copper plating soln. in a plating tank 1 is introduced continuously or intermittently into a concentrating tank 4, where it is concentrated. The concd. plating soln. is introduced into a cooling tank 6 and cooled to <=10 deg.C, preferably <=5 deg.C to crystallize harmful ions. The plating soln. regenerated by removing the harmful ions in the cooling tank 6 is recycled to the plating tank 1. By this method, the plating soln. can be regenerated continuously in a perfectly closed system from which the principal component and additives in the plating soln. are not discharged.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は無電解銅めっき液中に蓄積する有害イオンを除
去して、無電解銅めっき処理を安定して行なう方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for stably performing electroless copper plating processing by removing harmful ions accumulated in an electroless copper plating solution.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

無電解銅めっき液は、銅塩とその錯化剤、水酸化アルカ
リおよびホルムアルデヒドを主成分とした水溶液よルな
シ、銅イオンをアルカーリ活性化されたホルムアルデヒ
ドによって、触媒化された表面上に金属銅を還元析出さ
せる方法である。銅塩には硫酸銅、塩化銅、酢酸鋼など
が使用され、銅の錯化剤にはエチレンジアミンテトラ酢
酸(EDTA)若しくはその塩、あるいは酒石酸若しく
はそめ塩などが使用される。水酸化アルカリには水酸化
ナトリウム、水酸化カリウムなどが使用される。還元剤
には、ホルマリン(37’%)、パラホルムアルデヒド
などが使用される。さらKめっき液の安定性をはかるた
めや、無電解銅めっき皮膜の展延性を改善するために、
各種の添加剤、例えば2゜2′−ジピリジル、シアン化
ナトリウム2−メルカブトベンゾチアゾール、エチレン
チオ尿素、ロダニン、金属イオウ化合物さらにノニオン
系の界面活性剤などを添加することが行なわれる。
Electroless copper plating solution is an aqueous solution containing copper salt, its complexing agent, alkali hydroxide, and formaldehyde as main components. This is a method of reducing and precipitating copper. As the copper salt, copper sulfate, copper chloride, steel acetate, etc. are used, and as the copper complexing agent, ethylenediaminetetraacetic acid (EDTA) or its salt, tartaric acid, some salt, etc. are used. Sodium hydroxide, potassium hydroxide, etc. are used as the alkali hydroxide. Formalin (37'%), paraformaldehyde, etc. are used as the reducing agent. In order to measure the stability of Sara K plating solution and improve the spreadability of electroless copper plating film,
Various additives such as 2°2'-dipyridyl, sodium cyanide 2-mercabutobenzothiazole, ethylenethiourea, rhodanine, metal sulfur compounds, and nonionic surfactants may be added.

無電解銅めっき液は、めっき反応によって主成分の銅イ
オン、還元剤および水酸イオンが消費するため、これら
の成分を分析して、消費分を補充して、液中の成分濃度
を一定に保つ必要がある。
The main components of electroless copper plating solution, copper ions, reducing agents, and hydroxide ions, are consumed during the plating reaction, so these components are analyzed and the consumed amount is replenished to maintain a constant component concentration in the solution. need to be kept.

主として、経済的理由から銅イオン源として硫酸銅、還
元剤としてホルムアルデヒド、水酸イオン源として水酸
化ナトリウムが使用される。これらの補充によってめっ
き液中には、次第に硫酸銅の対陰イオンである硫酸イオ
ン、ホルマリンの酸化反応の結果生成するぎ酸イオン、
水酸化ナトリウムの対陽イオンのナトリウムイオン等の
有害イオンが蓄積し、析出速度の低下や液の分解の原因
となっていた。
Mainly for economic reasons, copper sulfate is used as a source of copper ions, formaldehyde is used as a reducing agent, and sodium hydroxide is used as a source of hydroxide ions. By replenishing these, the plating solution gradually contains sulfate ions, which are the counteranions of copper sulfate, formate ions, which are generated as a result of the oxidation reaction of formalin,
Harmful ions such as sodium ions, which are the counter cations of sodium hydroxide, accumulate, causing a decrease in the precipitation rate and decomposition of the liquid.

従来は、無電解銅めっき液を工業的に利用する場合には
、めっき液の一部もしくは全部を廃棄する方法とイオン
交換膜を使用する方法とがある。
Conventionally, when using an electroless copper plating solution industrially, there are two methods: discarding part or all of the plating solution, and using an ion exchange membrane.

前者には経験的にある浴寿命まで使゛用し、めっき液を
廃棄するか、もしくはめっき液の比重を測定することで
所定の比重よシ大となったときは、イオン蓄積が進行し
たと判断して、めっき液の一部を廃棄し新液と交換する
ことによ多蓄積イオン濃度を低下させる方法であシ後者
には、蓄積イオンを陽隘イオン交換膜を利用した電気透
析を行い選択的に排除する方法もしくは、無電解銅めっ
き液から取り出した液を銅イオンと錯化剤九分離した後
、錯化剤だけを銅を陽極とする陽極室に導入し銅を溶解
させ、無電解銅めっき液にリサイクルし銅の対陰イオン
蓄積を防止するアノード溶解法等がある。
For the former, use the bath until it reaches a certain lifespan, and either discard the plating solution or measure the specific gravity of the plating solution. If the specific gravity of the plating solution becomes higher than the predetermined value, ion accumulation has progressed. The method is to reduce the concentration of accumulated ions by discarding a portion of the plating solution and replacing it with a new solution.The latter method involves electrodialysis using a positive ion exchange membrane to remove accumulated ions. Alternatively, after separating the copper ions and the complexing agent from the electroless copper plating solution, only the complexing agent is introduced into an anode chamber with copper as an anode to dissolve the copper and eliminate the copper. There is an anodic dissolution method that recycles copper into an electrolytic copper plating solution and prevents the accumulation of copper anions.

しかし、無電解銅めっき液の廃棄する方法においては、
′銅イオンがキレート化されているため廃液処理が容易
でなく、廃液処理の費用が大であるとともに高価な錯化
剤や添加剤を回収して再利用できないため、めっきコス
トが非常に高くなる。
However, regarding the method of disposing of electroless copper plating solution,
'Since the copper ions are chelated, it is not easy to treat the waste liquid, and the cost of waste liquid treatment is high, and the expensive complexing agents and additives cannot be recovered and reused, making the plating cost extremely high. .

またイオン交換膜を使用する方法においては、イオン交
換槽、電気透析槽、濃縮液槽等の大がかシ々装置が必要
であるとともにイオン交換膜に銅が析出をおこし電流効
率が低下したシさらにアノード溶解法では除銅工程で多
量のホルマリン、水酸化アルカVt必要とし昇温、冷却
のためにがなシのエネルギーを必要とするなどの欠点が
ある。
In addition, the method using an ion exchange membrane requires large and bulky equipment such as an ion exchange tank, an electrodialysis tank, and a concentrated liquid tank. Furthermore, the anodic melting method requires a large amount of formalin and alkali hydroxide (Vt) in the copper removal process, and has drawbacks such as requiring a large amount of energy for heating and cooling.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点を改善するためになされた
ものであり簡便な方法で連続的に有害イオンを除去でき
るようにするものである。
The present invention has been made in order to improve the above-mentioned conventional problems, and it is intended to enable continuous removal of harmful ions using a simple method.

〔発明の概要〕[Summary of the invention]

本発明は、硫酸銅とその錯化剤、水酸化アルカリおよび
ホルムアルデヒドを主成分とする無電解銅めっき液にお
いて、めっき作業を連続的に行う際蓄積する有害イオン
を含有した無電解銅めっき液の一部もしくは全部を連続
的または間欠的に10℃以下望ましくは5℃以下に冷却
して、無電解銅めっき液中の有害イオンを晶析して除去
することを特徴とする。
The present invention deals with electroless copper plating solutions that contain harmful ions that accumulate during continuous plating operations in electroless copper plating solutions that are mainly composed of copper sulfate, its complexing agent, alkali hydroxide, and formaldehyde. It is characterized in that a part or all of the electroless copper plating solution is cooled continuously or intermittently to 10° C. or lower, preferably 5° C. or lower, to crystallize and remove harmful ions in the electroless copper plating solution.

すなわち、本発明においては、硫酸銅を銅イオン源とし
た無電解銅めっき液に蓄積する硫酸イオン、ぎ酸イオン
、ナトリウムイオンを含有しためっき液を10℃以下に
冷却することによって、10℃以下における硫酸ナトリ
ウム、ギ酸ナトリウムの溶解度まで除去することによっ
て、再生処理を連続的に行うようにして、めっき液の分
解と析出速度低下の原因を解決した亀のである。
That is, in the present invention, a plating solution containing sulfate ions, formate ions, and sodium ions accumulated in an electroless copper plating solution using copper sulfate as a copper ion source is cooled to 10 °C or less. By removing the solubility of sodium sulfate and sodium formate in the plating solution, the regeneration process was performed continuously, and the cause of the decomposition of the plating solution and the decrease in the precipitation rate was solved.

以下に本発明を第1図のフローチャートを参照して、そ
の原理を詳細に説明する。第1図の70−チヤ〜トにお
いて1は無電解銅めっき檜、8゜9.10はそれぞれ硫
酸銅、ホルマリン、水酸化ナトリウムを補充する補充槽
である。これらの補充槽から無電解銅めっき槽IK必要
成分の補充を行いながら連続的にめっきを行うとめりき
槽1にはめつき反応を妨害する硫酸イオン、ぎ酸イオン
The principle of the present invention will be explained in detail below with reference to the flowchart shown in FIG. In chart 70 of FIG. 1, 1 is an electroless copper plated cypress, and 8.9.10 is a replenishment tank for replenishing copper sulfate, formalin, and sodium hydroxide, respectively. If plating is performed continuously while replenishing the necessary components of the electroless copper plating tank IK from these replenishment tanks, sulfate ions and formic acid ions will be present in the plating tank 1, which will interfere with the plating reaction.

ナトリウムイオン等の有害イオンが蓄積する。Harmful ions such as sodium ions accumulate.

有害イオンを含有する無電解銅めっき液の再生には、ま
ず無電解銅めっき槽lのめっき液をポンプ2、配管11
を経由して濃縮槽4に導入し無電解銅めっき液の水分除
去を行う。濃縮槽の構造としては逆浸透法、減圧法など
による方法が、めっき液に悪影響を及ぼさないために好
ましい。濃縮槽4で濃縮されためっき液をポンプ5、配
管12を経由して冷却槽6に導入し冷却し有害イオンを
晶析させる。冷却温としては10℃以下であるが5℃以
下が好ましい。冷却槽6で有害イオンを除去した再生め
っき液をポンプ7、配管13を経由して無電解銅めっき
槽1にリサイクルする。以上のようにして、無電解銅め
っき液は連続的に再生することができるものである。
To regenerate electroless copper plating solution containing harmful ions, first pump the plating solution in electroless copper plating tank 1 to pump 2 and pipe 11.
The electroless copper plating solution is introduced into the concentration tank 4 via the . As for the structure of the concentration tank, methods such as reverse osmosis and depressurization are preferred because they do not adversely affect the plating solution. The plating solution concentrated in the concentration tank 4 is introduced into the cooling tank 6 via the pump 5 and piping 12, and is cooled to crystallize harmful ions. The cooling temperature is 10°C or less, preferably 5°C or less. The regenerated plating solution from which harmful ions have been removed in the cooling tank 6 is recycled to the electroless copper plating tank 1 via a pump 7 and piping 13. As described above, the electroless copper plating solution can be continuously regenerated.

〔発明の実施例〕[Embodiments of the invention]

以下に、本発明を実施例につき、さらに詳細に説明する
The present invention will be explained in more detail below with reference to Examples.

実施例1 上記に説明した第1図に示したフローシートにおいて、
101の液容量を有する無電解銅めつき槽1.2.5t
の液容量を有する濃縮槽4.冷却槽6を用いた。
Example 1 In the flow sheet shown in FIG. 1 explained above,
Electroless copper plating tank 1.2.5t with liquid capacity of 101
Concentrating tank having a liquid capacity of 4. Cooling tank 6 was used.

151の無電解銅めっき液のうち、101はめっき処理
用に使用し、残シの5tは濃縮、冷却の再生処理用に使
用するように操作した。
Of the 151 electroless copper plating solutions, 101 were used for plating, and the remaining 5 tons were used for regeneration processing such as concentration and cooling.

1日当シ、無電解銅めっき処理は約6時間、再生処理は
連続的に行った。
The electroless copper plating treatment was performed for about 6 hours per day, and the regeneration treatment was performed continuously.

無電解銅めっき処理は、浴負荷2=Odnl/l  、
浴温60℃、pHIZ3で行い主成分濃度の減少分は自
動補充することによって液中濃度を一定に保ち。
In the electroless copper plating process, bath load 2=Odnl/l,
The bath temperature is 60°C and pHIZ3 is used to maintain the concentration in the liquid at a constant level by automatically replenishing the decreased concentration of the main component.

同一条件で無電解めっき処理を行い、連続的にめっき液
を取り出し冷却槽で10℃に処理し、再びめっき浴ヘリ
サイクルしめっき処理を繰シ返した。
Electroless plating was performed under the same conditions, and the plating solution was continuously taken out and treated at 10° C. in a cooling tank, and then recycled to the plating bath and the plating process was repeated.

この時のめっき液中の蓄積成分濃度変化と析出速度の変
化は第2図のグラフiC示すごときものであった。
At this time, changes in concentration of accumulated components in the plating solution and changes in precipitation rate were as shown in graph iC of FIG. 2.

冷却処理を用いる効果は、第2図のグラフから明らかな
ように硫酸イオン、ギ酸イオン、ナトリウムイオン濃度
はめっき時間が40時間以上経過すると一定濃度になる
。すなわち、冷却槽内では硫酸ナトリウム、ギ酸ナトリ
ウムが飽和に達し、晶析したためである。析出速度は若
干の低下はみられるが#1は一定に保つことができ、め
っき時間100時間に至ってもめっき液の分解はおこら
なかった。本実施例において、冷却槽内から1.2#の
有害イオンを回収しえ。
As is clear from the graph of FIG. 2, the effect of the cooling treatment is that the concentrations of sulfate ions, formate ions, and sodium ions become constant when the plating time is 40 hours or more. That is, this is because sodium sulfate and sodium formate reached saturation in the cooling tank and crystallized. Although the deposition rate was slightly decreased, #1 was able to be kept constant, and no decomposition of the plating solution occurred even after the plating time reached 100 hours. In this example, 1.2 # of harmful ions were recovered from inside the cooling tank.

なおここで、無電解銅めっき処理に用いためっき液、補
充液の組成は次の如きものである。
The compositions of the plating solution and replenisher used in the electroless copper plating process are as follows.

(1)無電解銅めっき液 Cu 80.−5 H3O0,03mot/lE D 
T A 4 N a       O,06mot/1
NaOHpHを113とする量 −537チホルマリン   0.1mot/lα、α1
シヒリシル10mf/L 2−メルカプトベンゾチアゾール  1.0mW/1(
2)銅イオンの補充液 。
(1) Electroless copper plating solution Cu 80. -5 H3O0,03mot/lE D
T A 4 N a O, 06mot/1
Amount to make NaOH pH 113 - 537 Thiformin 0.1mot/lα, α1
Shihilicil 10mf/L 2-mercaptobenzothiazole 1.0mW/1 (
2) Copper ion replenisher.

Cu 804・5 LO0,8mob/Lα、α1ジビ
リジ#       somr/z(3)  ホルマリ
ンの補充液 37チホルマリン   250 ml/LCu S 0
4 ・5HsO0,4mo 171(4)水酸イオンの
補充液 N a OH10mo L/L 実施例2 本実施例は、実施例1と同じ無電解銅めっき液補充液を
用いて同一条件で無電解めっき処理を行い、連続的にめ
っき液を取り出し、濃縮処理と実施例2における冷却処
理と組合せて処理し、再びめっき浴ヘリサイクルし、め
っき処理を繰シ返した。この時のめつき液中の蓄積成分
濃度変化と析出速度の変化は第3図のグラフに示すごと
きものであった。
Cu 804.5 LO0,8 mob/Lα, α1 divirid # somr/z (3) Formalin replenisher 37 Formalin 250 ml/LCu S 0
4 ・5HsO0,4mo 171 (4) Hydroxyl ion replenisher N a OH10mo L/L Example 2 This example conducts electroless plating under the same conditions using the same electroless copper plating replenisher as in Example 1. The plating solution was continuously taken out, treated in combination with the concentration treatment and the cooling treatment in Example 2, recycled to the plating bath again, and the plating treatment was repeated. At this time, changes in concentration of accumulated components in the plating solution and changes in precipitation rate were as shown in the graph of FIG.

濃縮処理においては、液温50℃、約250−Hfの減
圧下で行い、蒸留液と濃縮液の比が10ニアとなるまで
蒸留管性なった亀のである。
The concentration process was carried out at a liquid temperature of 50 DEG C. and under a reduced pressure of about 250 Hf, and the distillation tube was maintained until the ratio of distillate to concentrate was 10.

濃縮処理と冷却処理とを組合せて用いる効果は、第3図
から明らかなようにほぼ実施例と同様な結果が得られた
As is clear from FIG. 3, the effect of using the concentration treatment and the cooling treatment in combination was almost the same as that of the example.

本実施例において、冷却槽内から1.5却の有害イオン
を回収した。
In this example, 1.5 tons of harmful ions were recovered from the inside of the cooling tank.

比較例1 実施例1と同じ無電解銅めっき液、補充液を用いて、無
電解銅めっき処理を連続的に行いながら操作したときの
めっき液中の蓄積成分濃度変化と析出速度の変化は第4
図のグラフに示すごときものであ−) 7’C。
Comparative Example 1 Using the same electroless copper plating solution and replenisher as in Example 1, the changes in the concentration of accumulated components in the plating solution and the changes in the deposition rate when the electroless copper plating process was performed continuously were as follows. 4
As shown in the graph in the figure) 7'C.

第2図の表に明らかなように本実施例においては硫酸イ
オン、ギ酸イオン、ナトリウムイオンの蓄積増加によっ
て、析出速度が低下しめっき時間80時間に至ってめっ
き液が分解した。また、めっき液コントローラー中の熱
効換中に有害イオンが晶析し、パイプがつtb安定なコ
ントロールが不可能になった。
As is clear from the table in FIG. 2, in this example, the deposition rate decreased due to increased accumulation of sulfate ions, formate ions, and sodium ions, and the plating solution decomposed after a plating time of 80 hours. In addition, harmful ions crystallized during heat exchange in the plating solution controller, making it impossible to stably control tb due to pipe damage.

上記の説明および実施例及び比較例から明らかなように
、本発明によれば極めて簡単な処理装置および操作によ
り連続的に無電解銅めっき液を再生して使用することが
可能となシ、有害イオンの蓄積に伴う析出速度の低下や
浴の分解を解決できるとともに常に良好なめつき状態゛
に維持できる。
As is clear from the above explanation, examples, and comparative examples, according to the present invention, it is possible to continuously regenerate and use electroless copper plating solution using extremely simple processing equipment and operations. It is possible to solve the problem of a decrease in the deposition rate due to the accumulation of ions and the decomposition of the bath, and also to maintain a good plating state at all times.

さらに無電解銅めっき液の主成分および添加剤を系外に
排出しない完全クローズドシステムを構成することがで
きるものである。
Furthermore, it is possible to construct a completely closed system in which the main components and additives of the electroless copper plating solution are not discharged outside the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためのフローチャート
である。 第2図、第3図および第4図は、めっき時間に対する析
出速度めっき液中に蓄積される有害イオン濃度の変化を
示す表である。 1・・・無電解銅めっき槽、2,5.7・・・ポンプ。 3・・・弁、4・・・濃縮槽、6・・・冷却槽、8,9
,10・・・補充槽、11・・・濃縮槽への液導入配管
、12・・・冷却槽への液導入配管、13・・・無電解
銅めっき槽への液導入配管。 代理人 弁理士 則 近 憲 佑(ほか1名)第2図 め、き哨也〔H〕 第8図 私二thTiil存燭CHE
FIG. 1 is a flowchart for explaining the present invention in detail. FIGS. 2, 3, and 4 are tables showing changes in deposition rate and concentration of harmful ions accumulated in the plating solution with respect to plating time. 1... Electroless copper plating tank, 2,5.7... Pump. 3... Valve, 4... Concentrating tank, 6... Cooling tank, 8, 9
, 10... Replenishment tank, 11... Liquid introduction pipe to the concentration tank, 12... Liquid introduction pipe to the cooling tank, 13... Liquid introduction pipe to the electroless copper plating tank. Agent: Patent Attorney Noriyuki Chika (and 1 other person) 2nd figure, Kisouya [H] 8th figure: CHE

Claims (2)

【特許請求の範囲】[Claims] (1)硫酸銅とその錯化剤、水酸化アルカリおよびホル
ムアルデヒドを主成分とする無電解銅めっき液において
、無電解銅めっきを連続使用する際発生する有害イオン
を、 (イ)前記のめっき液を一部もしくは全部を連続的また
は間欠的に取り出して、10℃以下に冷却し、無電解銅
めっき液中の有害イオンを晶析して無電解銅めっき液よ
り除去する工程(ロ)前記の工程(イ)を経た液を無電
解銅めっき浴にリサイクルする工程 により除去しながら無電解銅めっき処理することを特徴
とする無電解銅めっき液の連続的再生方法。
(1) In an electroless copper plating solution whose main components are copper sulfate, its complexing agent, alkali hydroxide, and formaldehyde, harmful ions generated during continuous use of electroless copper plating are A step of continuously or intermittently taking out part or all of the copper plating solution, cooling it to 10°C or less, and crystallizing harmful ions in the electroless copper plating solution to remove them from the electroless copper plating solution (b). A method for continuously regenerating an electroless copper plating solution, characterized in that electroless copper plating is performed while removing the solution that has passed through step (a) through a step of recycling it into an electroless copper plating bath.
(2)前記(1)、(イ)項で無電解銅めっき液を濃縮
後、冷却することを特徴とする特許請求の範囲第1項記
載の無電解銅めっき液の連続的再生方法。
(2) The method for continuously regenerating an electroless copper plating solution according to claim 1, wherein the electroless copper plating solution is concentrated in steps (1) and (a) and then cooled.
JP13111584A 1984-06-27 1984-06-27 Method for continuously regenerating electroless copper plating solution Pending JPS6112871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13111584A JPS6112871A (en) 1984-06-27 1984-06-27 Method for continuously regenerating electroless copper plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13111584A JPS6112871A (en) 1984-06-27 1984-06-27 Method for continuously regenerating electroless copper plating solution

Publications (1)

Publication Number Publication Date
JPS6112871A true JPS6112871A (en) 1986-01-21

Family

ID=15050332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13111584A Pending JPS6112871A (en) 1984-06-27 1984-06-27 Method for continuously regenerating electroless copper plating solution

Country Status (1)

Country Link
JP (1) JPS6112871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076840A (en) * 1989-01-13 1991-12-31 Hitachi Chemical Co. Ltd. Electroless copper plating solution
JP2002339080A (en) * 2001-05-16 2002-11-27 Ibiden Co Ltd Method for supplying component of chemical plating solution
CN105543808A (en) * 2014-10-23 2016-05-04 亚智科技股份有限公司 Liquid medicine recovery equipment and system and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076840A (en) * 1989-01-13 1991-12-31 Hitachi Chemical Co. Ltd. Electroless copper plating solution
JP2002339080A (en) * 2001-05-16 2002-11-27 Ibiden Co Ltd Method for supplying component of chemical plating solution
JP4642268B2 (en) * 2001-05-16 2011-03-02 イビデン株式会社 How to replenish chemical plating solution components
CN105543808A (en) * 2014-10-23 2016-05-04 亚智科技股份有限公司 Liquid medicine recovery equipment and system and method thereof

Similar Documents

Publication Publication Date Title
US3658470A (en) Metal ion recovery system
EP0327572A1 (en) Recovery of acids from materials comprising acid and salt.
US4076618A (en) Treatment of liquids containing complexed heavy metals and complexing agents
CA1220759A (en) Regeneration of plating bath by acidification and treatment of recovered chelating agent in membrane cell
KR101797516B1 (en) Method for removing impurities from plating solution
EP1420891B1 (en) Electroless nickel plating solution and process for its use
US4289597A (en) Process for electrodialytically regenerating an electroless plating bath by removing at least a portion of the reacted products
US5472585A (en) Regeneration of spent electroless copper plating solution
JPS6112871A (en) Method for continuously regenerating electroless copper plating solution
JPH0416549B2 (en)
CA1093911A (en) Electroless copper plating
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
US2871142A (en) Chemical nickel and cobalt plating process
JPS62247884A (en) Treatment of iron ion-containing liquid
KR100209987B1 (en) The reproduction method for sodium sulphate
EP0192310B1 (en) Method of continuously regenerating an electroless-plating bath and device for carrying out the method
US3407129A (en) Process for reclaiming spent electrolytes used for electrolytically descaling steel
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
JP3468650B2 (en) Electroless nickel plating method
JPS6357799A (en) Treatment of plating solution
JP3020137B2 (en) Equipment for recovering valuable components of chemical plating solutions
JP2002241952A (en) Electroless plating method and apparatus therefor
JP3312299B2 (en) Apparatus and method for recovering valuable component of chemical plating solution
JPS5937745B2 (en) Recycling treatment method and equipment for chemical copper plating solution
JPH04128392A (en) Surface treatment of aluminum support for printing plate