JPS61128007A - Removing device for iron oxide in electric power plant feedwater system - Google Patents

Removing device for iron oxide in electric power plant feedwater system

Info

Publication number
JPS61128007A
JPS61128007A JP59249604A JP24960484A JPS61128007A JP S61128007 A JPS61128007 A JP S61128007A JP 59249604 A JP59249604 A JP 59249604A JP 24960484 A JP24960484 A JP 24960484A JP S61128007 A JPS61128007 A JP S61128007A
Authority
JP
Japan
Prior art keywords
water
deaerator
iron oxide
feed water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249604A
Other languages
Japanese (ja)
Inventor
孝治 青柳
丹生谷 克司
大嶽 克基
大島 義邦
正 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP59249604A priority Critical patent/JPS61128007A/en
Publication of JPS61128007A publication Critical patent/JPS61128007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は火力発電プラントおよびその他の発電プラント
における汽力原動機の給水系統中に混入する鉄酸化物を
磁石によって除去すると共に、該鉄酸化物の付着量を管
理し、上記給水管理を実施するに好適な発電プラント給
水系統中の鉄酸化物除去装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention uses a magnet to remove iron oxides mixed into the water supply system of steam power engines in thermal power plants and other power plants. The present invention relates to an apparatus for removing iron oxides in a water supply system of a power plant, which is suitable for controlling the amount of water and implementing the above-mentioned water supply management.

〔発明の背景〕[Background of the invention]

一般に、発電プラントの汽力原動機器の大半は鉄鋼材料
で作られているため、給水中に鉄酸化物が混入し易い。
In general, most of the steam power equipment in power plants is made of steel, so iron oxides are likely to be mixed into the water supply.

混入した鉄酸化物は水管の焼損。Contaminated iron oxides can cause water pipes to burn out.

原動機出力の低下、水ポンプの過負荷による損傷など種
々の故障を誘発するおそれがあるので、従来一般に給水
中に防防蝕用薬剤を添加して鉄酸化物の発生を抑制した
9、磁力を用いて給水中の鉄酸化物を除去するなどの工
夫がなされている。
Conventionally, anti-corrosion chemicals were added to the water supply to suppress the generation of iron oxides, as this could lead to various malfunctions such as a reduction in motor output and damage to the water pump due to overload9. Efforts have been made to remove iron oxides from the water supply.

上記の磁力を用いた鉄酸化物除去装置として、強磁性体
製の粒を入れた容器の外周に電磁線輪を設けた電磁フィ
ルタ(特願昭47−49482)などが有る。しかし上
記の方式の電磁フィルタは容器中の粒を励磁するため電
磁線輪に大電流を通さねばならないので電力の消費が大
きい上に、発熱するので冷却手段を付設しなければなら
ないなどの問題がめって不経済である。また、永久磁石
を用い九戸水器も開発されているがこの方式の戸水器は
目詰まシした場合の清掃が厄介なため余シ普及していな
い。その他、水中の不純物を除去する焼結金桟フィルタ
や樹脂などが開発されているが上記のフィルタは目詰ま
りによって流通抵抗が増加する不具合があシ、樹脂は高
温で分解するなどの不具合があった。
As an iron oxide removal device using the above magnetic force, there is an electromagnetic filter (Japanese Patent Application No. 47-49482) in which an electromagnetic wire ring is provided around the outer periphery of a container containing particles made of ferromagnetic material. However, the above-mentioned electromagnetic filter requires a large current to be passed through the electromagnetic coil to excite the particles in the container, so it consumes a lot of power, and it generates heat, so it has to be equipped with a cooling means. That's uneconomical. Additionally, a Kudo water dispenser using permanent magnets has been developed, but this type of water dispenser is not widely used because it is difficult to clean when it becomes clogged. In addition, sintered metal filters and resins have been developed to remove impurities from water, but these filters have problems such as increased flow resistance due to clogging, and resins decompose at high temperatures. Ta.

第1図に火力発電プラントの給水系統を示す。Figure 1 shows the water supply system of a thermal power plant.

タービン1からの復水は、復水器2、復水ホットフェル
3、復水配管4、復水ポンプ5、復水脱塩装gL6、復
水昇圧ポンプ7、低圧給水加熱器8a、8b、8c、脱
気器90の脱気器脱気室9および脱気器貯水タンク10
、送出配管11、ボイラ給水ポンプ12、および高圧給
水加熱器13a。
Condensate from the turbine 1 is supplied to a condenser 2, a condensate hot fer 3, a condensate pipe 4, a condensate pump 5, a condensate desalination system gL6, a condensate boost pump 7, low pressure feed water heaters 8a, 8b, 8c, deaerator deaerator chamber 9 and deaerator water storage tank 10 of deaerator 90
, delivery piping 11, boiler feed water pump 12, and high pressure feed water heater 13a.

13b、13Cを順次に流通してボイラ14に入り、蒸
気となって主蒸気配管15を介してタービン1に流入し
て仕事をし、復水器2に戻る。16a。
13b and 13C, enters the boiler 14, becomes steam, flows into the turbine 1 via the main steam pipe 15, performs work, and returns to the condenser 2. 16a.

16b、16cは低圧給水加熱器ドレン配管、17a、
17b、17cは高圧給水加fA器トレ7配管、18は
ドレンポンプ、19a、19b〜19fはタービン1か
らの抽気配管である。
16b, 16c are low pressure feed water heater drain pipes, 17a,
17b and 17c are high-pressure water supply fA machine tray 7 pipes, 18 is a drain pump, and 19a, 19b to 19f are extraction pipes from the turbine 1.

第2図に脱気器90の内部構造を示す。脱気器90は脱
気器脱気室9と脱気器貯水タンク10とから構成される
FIG. 2 shows the internal structure of the deaerator 90. The deaerator 90 is composed of a deaerator chamber 9 and a deaerator water storage tank 10.

脱気器脱気室9は脱気器貯水タンク10の上方に設置さ
れその中央にトレイ室21、上部にスプレー弁22、側
面に加熱蒸気人口23と高圧給水加熱器ドレン入口24
がそれぞれ設けられている。
The deaerator deaeration chamber 9 is installed above the deaerator water storage tank 10, and has a tray chamber 21 in the center, a spray valve 22 in the upper part, a heating steam port 23 and a high pressure feed water heater drain inlet 24 in the side.
are provided for each.

また脱気器脱気室9と脱気器貯水タンク10との間には
給水流下用降水管25と分配管27とが介装連通されて
いる。26は均圧用の均圧管である。
Further, a downcomer pipe 25 and a distribution pipe 27 are interposed and communicated between the deaerator deaeration chamber 9 and the deaerator water storage tank 10. 26 is a pressure equalizing pipe for equalizing pressure.

スプレー弁22から脱気器脱気室9内に流入して加熱蒸
気で加熱脱気された給水と、高圧給水加熱器ドレン入口
24から脱気器脱気室9内に流入したドレンよシなる給
水とは、その全量が降水管25内を流下し、分配管27
により分流して脱気器貯水タンク10内に入シ、給水出
口28から流出する。
Feed water that flows into the deaerator deaeration chamber 9 from the spray valve 22 and is heated and deaerated with heated steam, and drain that flows into the deaerator deaeration chamber 9 from the high pressure feed water heater drain inlet 24. Water supply means that the entire amount flows down in the downpipe 25 and is transferred to the distribution pipe 27.
The water is divided into streams, enters the deaerator water storage tank 10, and flows out from the water supply outlet 28.

給水系統中に混入される鉄酸化物は上記の如く、従来技
術においても稲々の除去装置が採用されてきたが、上記
の不具合をそれぞれ有すると共に、除去装置の調節制御
、その保守管理の面においても十分でない欠点がめった
As mentioned above, iron oxide removal equipment mixed into the water supply system has been adopted in the prior art, but it has the above-mentioned problems and is difficult to control and maintain the removal equipment. There are also not enough shortcomings.

〔発明の目的〕[Purpose of the invention]

本発明は、上記不具合等を解決すべく創案されたもので
あシ、その目的は、鉄酸化物を除去する最も効果的な個
所を見出し、上記鉄酸化物の経済的除去を図ると共に、
給水を管理し、鉄酸化物の付着量を所定値以下に保持管
理するようにする発電プラ、/ト給水系統中の鉄酸化物
除去装置を提供することにある。
The present invention was devised to solve the above-mentioned problems, and its purpose is to find the most effective location for removing iron oxides, to economically remove the iron oxides, and to
An object of the present invention is to provide an apparatus for removing iron oxides in a water supply system of a power generation plant, which manages water supply and maintains and manages the amount of attached iron oxides below a predetermined value.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、発電プラントの
汽力原動機の循環水系中における鉄酸化物の溶出個所を
研究し、鉄酸化物を最も効果的に除去しうる場所として
脱気器内を設定すると共に、該脱気器の脱気器貯水タン
ク内忙鉄酸化物を吸着する磁力吸着手段を設け、かつ、
脱気器貯水タンクの磁力吸着手段の上流側と下流側の水
位差を検出する水位検出手段、脱気器に導入されあるい
は脱気器から送出される給水中の鉄酸化物を検出する鉄
酸化物検出手段を設け、更に、これ等の検出信号によシ
、磁力吸着手段の吸着能力が限界Vc6ることを知らせ
る警報発生手段を設け、鉄酸化物の付着量を所定値以下
に保持し、かつ、上記磁力吸着手段の保守時期を適確に
把握するようにした発電プラント給水系統中の鉄酸化物
除去装置を特徴としたものである。
In order to achieve the above object, the present invention researched the elution location of iron oxides in the circulating water system of the steam engine of a power plant, and determined that the interior of the deaerator was the location where iron oxides could be most effectively removed. At the same time, a magnetic adsorption means is provided for adsorbing iron oxides in the deaerator water storage tank of the deaerator, and
Water level detection means for detecting the water level difference between the upstream and downstream sides of the magnetic adsorption means in the deaerator water storage tank; iron oxidation means for detecting iron oxides in the feed water introduced into or sent out from the deaerator; An object detection means is provided, and an alarm generation means is provided to notify that the adsorption capacity of the magnetic adsorption means is at the limit Vc6 based on these detection signals, and the amount of attached iron oxide is maintained below a predetermined value. Further, the present invention is characterized by an iron oxide removal device in a water supply system of a power generation plant, in which the maintenance timing of the magnetic attraction means can be accurately determined.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

まず、本実施例の概要を説明する。First, an outline of this embodiment will be explained.

火力発電プラントの給水系統中の鉄酸化物としては主と
して強磁性体のFe3O4および7”−Fe203r が上げられる。後述する如く、これ等の鉄酸化物は脱気
器90で除去するのが最も効果的であることが判明した
The iron oxides in the water supply system of a thermal power plant are mainly ferromagnetic materials Fe3O4 and 7"-Fe203r. As will be described later, these iron oxides are most effectively removed by the deaerator 90. It turned out to be true.

第5図に示す如く、脱気器90の脱気器貯水タンク10
内には複数個の磁力吸着手段30が配設され、給水中の
鉄酸化物を吸着除去する。脱気器貯水タンク10の水位
は、給水が磁力吸着手段に接触する前後の位置で相違し
、この水位を検出するため次位検出手段400が脱気器
貯水タンク1Gに係合して設けられている。水位検出手
段は、検出器42.43と、これ等に連結するレベル発
振器40.41等から形成される。又、復水配管50、
脱気器貯水タンク10からボイラ給水ポンプ12に給水
を送出する送出配管11および高圧給水加熱器ドレン配
管17cには、それぞれの鉄酸化物を検出する鉄酸化物
検出手段たる鉄酸化物検出手段サ60,61.62が係
合している。又、水位検出手段400のレベル発振器4
0.41および鉄酸1ヒ物検出手段60,61.62か
らの検出信号は、警報発生手段300の演算装置100
に入力される。警報発生手段300は演算装置100と
警報器201とよシ構成される。復水配管50.高圧給
水加熱器ドレン配管17c、17d内にはそれぞれ弁5
5.56が設けられている。
As shown in FIG. 5, the deaerator water storage tank 10 of the deaerator 90
A plurality of magnetic adsorption means 30 are disposed inside to adsorb and remove iron oxides in the water supply. The water level in the deaerator water storage tank 10 differs depending on the position before and after the water supply contacts the magnetic attraction means, and in order to detect this water level, a next level detection means 400 is provided in engagement with the deaerator water storage tank 1G. ing. The water level detection means is formed by detectors 42, 43, level oscillators 40, 41, etc. connected thereto. Also, condensate piping 50,
The delivery piping 11 that sends feed water from the deaerator water storage tank 10 to the boiler feed water pump 12 and the high-pressure feed water heater drain piping 17c are provided with an iron oxide detection means serving as an iron oxide detection means for detecting the respective iron oxides. 60, 61, and 62 are engaged. Further, the level oscillator 4 of the water level detection means 400
0.41 and the detection signals from the ferric acid 1 arsenic detection means 60, 61.62 are sent to the arithmetic unit 100 of the alarm generation means 300.
is input. The alarm generating means 300 is composed of the arithmetic unit 100 and the alarm device 201. Condensate piping 50. There are valves 5 in each of the high pressure water heater drain pipes 17c and 17d.
5.56 is provided.

以上の構成により、脱気器貯水タンク10内で鉄酸化物
を除去すると共に、磁力吸着手段30に捕集された鉄酸
化物の量を上記検出手段により検出し、給水系統中の鉄
酸化物の量を管理すると共に、磁力吸着手段30の保守
時期を適確に把握し、これを保守し、上記目的を達成す
るようにしたものである。
With the above configuration, iron oxides are removed in the deaerator water storage tank 10, and the amount of iron oxides collected by the magnetic attraction means 30 is detected by the detection means, and iron oxides in the water supply system are removed. In addition to managing the amount of magnetic attraction means 30, the maintenance timing of the magnetic attraction means 30 is accurately grasped and maintained, thereby achieving the above object.

以下、本実施例を更に詳細に説明する。This example will be explained in more detail below.

給水系統中の鉄酸化物の発生源を解明するため発電屑入
(発電出力250 MW ) 、発電所B(同350M
W)、発電所C(同350MW)、発電所D(同4 s
 OMW ) 、及び発電所E(同100100Oの5
火力発電所において総合水質試験を実施し九結果を第3
図に示す。
In order to elucidate the source of iron oxides in the water supply system, power generation waste input (power generation output 250 MW) and power station B (power generation output 350 MW) were conducted.
W), Power Plant C (350 MW), Power Plant D (4 s
OMW), and Power Plant E (5 of 100,100O)
A comprehensive water quality test was carried out at a thermal power plant and the results were published in the 3rd edition.
As shown in the figure.

第3図は横軸上に給水テンプルを採取した個所をと)、
縦軸に鉄酸化物の含有度を鉄濃度で示しである。X印は
発゛遣屑入、0印は同B、Δ印は同010印は同DXψ
印は同Eにおける測定値を表わしている。
Figure 3 shows the locations where water supply temples were collected on the horizontal axis).
The vertical axis shows the iron oxide content in terms of iron concentration. The X mark indicates the discharged waste, the 0 mark indicates the same B, the Δ mark indicates the same 010 mark indicates the same DXψ
The mark represents the measured value at E.

本図から理解されるように、系統水中の鉄は復水脱塩装
置6の出口で減少し、脱気器脱気室90入口ではほとん
ど増加しないが、脱気器貯水タンク10の出口では増加
し、ボイラ14の入口では再び減少している。そこで、
脱気器脱気室9に入る高圧給水加熱器ドレ/の鉄分を分
析したところこのドレン水中からは多量の鉄分が検出さ
れた。
As can be understood from this figure, iron in the system water decreases at the outlet of the condensate desalination device 6, hardly increases at the inlet of the deaerator chamber 90, but increases at the outlet of the deaerator water storage tank 10. However, at the inlet of the boiler 14, it decreases again. Therefore,
When the iron content of the high-pressure feed water heater drain water entering the deaerator deaeration chamber 9 was analyzed, a large amount of iron content was detected in this drain water.

以上の調査結果から、(イ)給水中の鉄分は復水脱塩装
置6で除去されるが、(ロ)鉄分の多い高圧給水加熱器
13a、13b、13cのドレンが脱気器(脱気器脱気
室9と脱気器貯水タンク10とによって構成されている
)に流入するため給水中の鉄濃度が増加し、(ハ)上記
の鉄分の一部は高圧給水加熱器13a、13b、13C
内に堆積し、に)残部はボイラ14に流入して、その内
の一部はボイラ水管に堆積し、(ホ)ボイラ14を通過
した鉄分は蒸気とともにタービン1に流入して同タービ
ン1内に堆積するものと判断される。
From the above investigation results, (a) the iron content in the feed water is removed by the condensate demineralizer 6, but (b) the drains of the high-pressure feed water heaters 13a, 13b, and 13c, which have a high iron content, are removed by the deaerator (deaerator). The iron concentration in the feed water increases because it flows into the deaerator chamber 9 and the deaerator water storage tank 10), and (c) some of the iron content is transferred to the high-pressure feed water heaters 13a, 13b, 13C
(b) The remainder flows into the boiler 14 and a part of it is deposited in the boiler water pipe, and (e) The iron that has passed through the boiler 14 flows into the turbine 1 with steam and is deposited inside the turbine 1. It is determined that the

上述のような系統水中の鉄分の挙動により、鉄酸化物の
発生源は高圧給水加熱器13a、13b。
Due to the behavior of iron in the system water as described above, the source of iron oxides is the high-pressure feed water heaters 13a and 13b.

13Cのドレン配管系17C,17b、17aの腐食で
あることが明らかKなった。
It became clear that the drain piping system 17C, 17b, and 17a of 13C was corroded.

以上説明したように、火力発電プラントの汽力原動機の
各部に析出して堆積する鉄酸化物は高圧給水加熱器のド
レン中に含まれて脱気器90に流入するものであるから
、脱気器90に於いて鉄酸化物除去を行うことが最も合
理的であり効果的であることが明確になった。
As explained above, iron oxides that precipitate and accumulate in various parts of the steam engine of a thermal power plant are contained in the drain of the high-pressure feed water heater and flow into the deaerator 90. It has become clear that removing iron oxides in 1990 is the most rational and effective method.

又、脱気器脱気室9内で処理された給水の全量は降水管
25および分配管27を通過して脱気器貯水タンク10
内に流下し、同貯水タンク10内を流通して給水出口2
8から流出するので、磁力吸着手段30の設置場所とし
てはこの流路系統が適しており、特に、流路断面積の大
きい脱気器貯水タンク10内が最適である。
In addition, the entire amount of feed water treated in the deaerator degassing chamber 9 passes through the down pipe 25 and the distribution pipe 27 to the deaerator water storage tank 10.
The water flows down into the water tank 10, flows through the water storage tank 10, and reaches the water supply outlet 2.
8, this channel system is suitable for installing the magnetic attraction means 30, and in particular, inside the deaerator water storage tank 10, which has a large channel cross-sectional area, is most suitable.

第4図に示す如く、脱気器貯水タンク10内の分配管2
7の出口よシ中心側に向った位置には、適宜の間隔を距
て、複数個の磁力吸着手段30が設けられている。磁力
吸着手段30は、永久磁石32とこれを支持する支柱と
から構成され、給水中の鉄酸化物は永久磁石32面に捕
集される。
As shown in FIG. 4, the distribution pipe 2 in the deaerator water storage tank 10
A plurality of magnetic attraction means 30 are provided at appropriate intervals at positions facing the center side from the outlet 7. The magnetic attraction means 30 is composed of a permanent magnet 32 and a column supporting the permanent magnet 32, and iron oxides in the water supply are collected on the surface of the permanent magnet 32.

分配管27から脱気器貯水タンク10内に流出した給水
は、磁力吸着手段30間を通過した後、給水出口28か
ら送出されるが、磁力吸着手段30間を流れる流れ抵抗
によシ、給水が磁力吸着手段30に接触する前後で給水
の液面レベルが相異する。この相異する液面レベルの水
位を検出するための検出器42.43が図示の如く設け
られる。
The feed water flowing out from the distribution pipe 27 into the deaerator water storage tank 10 is sent out from the water supply outlet 28 after passing between the magnetic attraction means 30, but due to the flow resistance flowing between the magnetic attraction means 30, the water supply The liquid level of the supplied water differs before and after it contacts the magnetic attraction means 30. Detectors 42 and 43 for detecting the different liquid levels are provided as shown.

次に、第5図に示す如く、検出器42.43には、これ
等からの検出信号を入力し、その水位信号を演算装置1
00に入力するレベル発振器40゜41が接続している
Next, as shown in FIG.
A level oscillator 40°41 input to 00 is connected.

又、低圧給水加熱器8Cと脱気器90とを連結する復水
配管50と、脱気器貯水タンク10の出口と給水ポンプ
12を介して高圧給水加熱器13aとを連結する送出配
管11および高圧給水加熱器ドレン配管17Cには、こ
れ等の配管内を流れる給水中の鉄酸化物を検出する鉄酸
化物検出手段た器ドレン配管17C1高圧給水加熱器1
3aと低圧給水加熱器8Cを連結する高圧給水加熱器ド
レン配管17dには、弁55.56がそれぞれ介設され
る。又、警報発生手段300の演算装置100には、レ
ベル発振器40.41からの水位信号と、各鉄酸化物濃
度センサ60,61.62からの鉄酸化物の検出信号が
入力され、水位差Δhおよび鉄酸化物濃度差ΔFeが演
算されると共に、予め入力された設定値との比較演算が
行われる。%報発生手段300には、上記演算値が設定
値を越えた場合にこれを警報する警報器201が付設さ
れている。
Further, a condensate pipe 50 connects the low pressure feed water heater 8C and the deaerator 90, a delivery pipe 11 connects the outlet of the deaerator water storage tank 10 and the high pressure feed water heater 13a via the water pump 12, and The high-pressure feed water heater drain pipe 17C has an iron oxide detection means for detecting iron oxides in the feed water flowing through these pipes.
Valves 55 and 56 are respectively interposed in the high-pressure feed water heater drain pipe 17d that connects the high-pressure feed water heater 3a and the low-pressure feed water heater 8C. Further, the water level signal from the level oscillator 40.41 and the iron oxide detection signal from each iron oxide concentration sensor 60, 61.62 are input to the arithmetic unit 100 of the alarm generating means 300, and the water level difference Δh and the iron oxide concentration difference ΔFe are calculated, and a comparison calculation with a set value inputted in advance is performed. The percentage alarm generating means 300 is attached with an alarm device 201 that issues an alarm when the above-mentioned calculated value exceeds a set value.

次に、第6図に脱気器貯水タンク10内の磁力吸着手段
30間を流れる給水の流速(m/3)(横軸に示す)と
、磁力吸着手段30に吸着された鉄酸化物の脱落する鉄
酸化物脱落率(チ)(縦軸に示す)との関係を示す。流
速が約0.05m/sを越すと、鉄酸化物脱落率は立上
夛始め、以下、2次曲線に沿って増加する。永久磁石3
2に鉄酸化物が捕集されろく伴って、この間を流れる給
水の流速が増加し、水位差Δhが大きくなると共に、上
記の0.05m/sを越すと、捕集した鉄酸化物の一部
が脱落し、間圧給水加熱器13a側に送出される給水中
の鉄酸化物の1[を増加することくなる。以上のことに
よシ、水位差Δhと、鉄ra化物の濃度および濃度差Δ
peを検出し、所定値Δhay ΔFe、と比較するこ
とによプ、給水系路の状態を管理できると共に、磁力吸
虐手R30の使用限界すなわち保守時期を把握すること
ができる。
Next, FIG. 6 shows the flow rate (m/3) of the feed water flowing between the magnetic attraction means 30 in the deaerator water storage tank 10 (shown on the horizontal axis) and the amount of iron oxide adsorbed by the magnetic attraction means 30. The relationship with the iron oxide shedding rate (chi) (shown on the vertical axis) is shown. When the flow velocity exceeds about 0.05 m/s, the iron oxide shedding rate starts to rise and increases along a quadratic curve. Permanent magnet 3
2, as the iron oxides are collected, the flow rate of the feed water flowing between them increases, the water level difference Δh increases, and when it exceeds the above 0.05 m/s, part of the collected iron oxides increases. This results in an increase in the amount of iron oxide in the feed water sent to the intermediate pressure feed water heater 13a side. Based on the above, the water level difference Δh, the concentration of iron ra oxide, and the concentration difference Δ
By detecting pe and comparing it with a predetermined value Δhay ΔFe, the condition of the water supply system can be managed, and the usage limit of the magnetic force absorption hand R30, that is, the maintenance period can be grasped.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

第7図は、横軸に時間を示し、11従軸には、鉄酸化物
濃度(Fe4度と表示する)および脱気器貯水タンクレ
ベルが示されている。
In FIG. 7, the horizontal axis shows time, and the 11th minor axis shows the iron oxide concentration (expressed as 4 degrees Fe) and the deaerator water storage tank level.

時間経過に伴い、水位差Δhは次第に増加すると共に、
脱気!1)900Å口と出口とのp4度差Δpeも増加
し、これ等が設定値ΔhglΔF e sを越えるΔh
/ 、Δp e /に到ると警報が発せられる。
As time passes, the water level difference Δh gradually increases, and
Degassing! 1) The p4 degree difference Δpe between the 900 Å inlet and the outlet also increases, and these exceed the set value ΔhglΔF e s
/, Δp e /, an alarm is issued.

以上により、磁力吸着手段30により、有効に鉄酸化物
の吸着除去が行われると共に、その使用限界を容易に、
かつ確実に把握し、磁力吸着手段30を保守することで
、再び吸着除去を続行することができる。又、磁力吸着
手段30は永久磁石32によシ鉄酸化物を除去するもの
で従来技術の如く、電磁フィルタのように大電力を消費
しないため、運転コストが安く、発熱する虞れがないの
で別の冷却手段を付設する必要もなく経済的である。
As described above, the magnetic attraction means 30 effectively adsorbs and removes iron oxides, and also easily limits its use.
By grasping this accurately and maintaining the magnetic attraction means 30, it is possible to continue the attraction and removal process again. In addition, the magnetic attraction means 30 removes iron oxide using the permanent magnet 32, and does not consume a large amount of power like the electromagnetic filter in the prior art, so the operating cost is low and there is no risk of generating heat. It is economical and requires no additional cooling means.

又、従来技術に係るp水密式の鉄酸化物除去装置のよう
に目詰まシする虞れが無く、永久磁石32の表面に付着
した鉄酸化物を容易に拭い取って洗浄するなど取扱いに
手数を要せず保守管理が容易である。
In addition, there is no risk of clogging as in conventional p-watertight iron oxide removal devices, and the iron oxides adhering to the surface of the permanent magnet 32 can be easily wiped off and cleaned, resulting in a hassle-free handling process. Maintenance and management are easy as no maintenance is required.

更に、従来技術に係る樹脂を用いた鉄酸化物除去装置の
ように耐熱性に関する不具合が無く、耐久住に優れてい
る。
Furthermore, unlike conventional iron oxide removal devices using resin, there is no problem with heat resistance, and the device is excellent in durability.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかの如く、本発明によれば、給
水中の鉄酸化物を経済的に除去すると共に、給水管理に
よシ鉄酸化物の付着量を所定値以下に保持管理し得る効
果が上げられる。
As is clear from the above explanation, according to the present invention, it is possible to economically remove iron oxides in water supply, and to maintain and manage the amount of iron oxides adhering to a predetermined value or less through water supply management. It can be raised.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は火力発電プラントの給水系統図、第2図は系統
中の脱気器の断面図、第3図は系統中の水質試験結果を
示す線図、第4図は本発明一実施例の磁力吸着手段を示
す断面図、第5図は本実施例の構成を説明する系統図、
第6図は給水の流速と鉄酸化物脱落率との関係を示す線
図、第7図は本実施例の作用特性を示す線図である。 1・・・タービン、2・・・復水器、8a、8b、Qc
・・・低圧給水加熱器、9・・・脱気器脱気室、10・
・・脱気器貯水タンク、11・・・送出配管、13a、
13b。 13C・・・高圧給水加熱器、14・・・ボイラ、17
a。 17b、17c、17d・・・高圧給水加熱器ドレン配
管、27・・・分配管、28・・・給水出口、30・・
・磁力吸着手段、31・・・支柱、32・・・永久磁石
、40゜41・・・レベル発振器、42.43・・・検
出器、50・・・復水配管、55,56・・・弁、60
,61.62・・・鉄酸化物検出センサ、90・・・脱
気器、100・・・演算装置、201・・・警報器、3
00・・・警報発生手段、400・・・水位検出手段。
Figure 1 is a water supply system diagram of a thermal power plant, Figure 2 is a sectional view of a deaerator in the system, Figure 3 is a line diagram showing the results of water quality tests in the system, and Figure 4 is an embodiment of the present invention. FIG. 5 is a sectional view showing the magnetic attraction means, and FIG. 5 is a system diagram explaining the configuration of this embodiment.
FIG. 6 is a diagram showing the relationship between the flow rate of water supply and the iron oxide shedding rate, and FIG. 7 is a diagram showing the operational characteristics of this embodiment. 1... Turbine, 2... Condenser, 8a, 8b, Qc
...Low pressure feed water heater, 9...Deaerator deaeration chamber, 10.
... Deaerator water storage tank, 11... Delivery piping, 13a,
13b. 13C...High pressure water heater, 14...Boiler, 17
a. 17b, 17c, 17d...High pressure water heater drain pipe, 27...Distribution pipe, 28...Water supply outlet, 30...
・Magnetic attraction means, 31... Strut, 32... Permanent magnet, 40° 41... Level oscillator, 42.43... Detector, 50... Condensate piping, 55, 56... valve, 60
, 61.62... Iron oxide detection sensor, 90... Deaerator, 100... Arithmetic device, 201... Alarm, 3
00...Alarm generation means, 400...Water level detection means.

Claims (1)

【特許請求の範囲】[Claims] 1、上流側の復水器から低圧給水加熱器を介して送られ
る給水および下流側の高圧給水加熱器からドレンされて
送られる給水を脱気し、脱気後の給水を脱気器貯水タン
ク内に蓄留しながら上記高圧給水加熱器側に送る脱気器
を有する発電プラント給水系統において、上記脱気器貯
水タンク内に、上記給水中に混入する鉄酸化物を吸着す
る磁力吸着手段を設けると共に、上記脱気器に、上記脱
気器貯水タンク内の磁力吸着手段の上流側と下流側の水
位差を検出する水位検出手段と、上記脱気器に導入され
る給水および上記脱気器から下流側に送られる給水内の
上記鉄酸化物を検出する鉄酸化物検出手段と、上記水位
検出手段からの水位差信号および鉄酸化物検出手段から
の鉄酸化物濃度差信号に基づき、警報を発生する警報発
生手段を設けたことを特徴とする発電プラント給水系統
中の鉄酸化物除去装置。
1. Deaerate the feed water sent from the upstream condenser via the low-pressure feed water heater and the feed water drained from the downstream high-pressure feed water heater, and transfer the degassed feed water to the deaerator water storage tank. In a power plant water supply system having a deaerator which supplies water to the high-pressure feed water heater while storing it in the water supply tank, a magnetic adsorption means for adsorbing iron oxides mixed in the feed water is provided in the deaerator water storage tank. In addition, the deaerator is provided with water level detection means for detecting a water level difference between the upstream side and the downstream side of the magnetic adsorption means in the deaerator water storage tank, and water supply introduced into the deaerator and the deaerator. Based on an iron oxide detection means for detecting the iron oxide in the water supply sent downstream from the water container, a water level difference signal from the water level detection means, and an iron oxide concentration difference signal from the iron oxide detection means, An apparatus for removing iron oxides in a water supply system of a power plant, characterized in that an alarm generating means for generating an alarm is provided.
JP59249604A 1984-11-28 1984-11-28 Removing device for iron oxide in electric power plant feedwater system Pending JPS61128007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249604A JPS61128007A (en) 1984-11-28 1984-11-28 Removing device for iron oxide in electric power plant feedwater system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249604A JPS61128007A (en) 1984-11-28 1984-11-28 Removing device for iron oxide in electric power plant feedwater system

Publications (1)

Publication Number Publication Date
JPS61128007A true JPS61128007A (en) 1986-06-16

Family

ID=17195489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249604A Pending JPS61128007A (en) 1984-11-28 1984-11-28 Removing device for iron oxide in electric power plant feedwater system

Country Status (1)

Country Link
JP (1) JPS61128007A (en)

Similar Documents

Publication Publication Date Title
CA2481540C (en) Liquid degassing system for power plant system layup
CN108187402A (en) A kind of stainless steel cold continuous rolling emulsion filtration system and method
EP0078499B1 (en) Method and apparatus for purifying liquid
CN203829776U (en) Condensate polishing front deironing filtering system
CN102161542A (en) Method and device for precisely processing nuclear power station condensation water
CN109979635B (en) Pressurized water reactor nuclear power plant steam generator sewage treatment system
CN104296125B (en) Condensing hot air furnace processing system for gas fired-boiler
CN202148231U (en) Bypass magnetic bar bag type dosing device for filtered water treatment
CN110067610B (en) Method for operating power plant and thermal power plant
CN2789235Y (en) Deironing system for coagulated water
JPS61128007A (en) Removing device for iron oxide in electric power plant feedwater system
CN201551887U (en) Deironing and deoiling filter for drainage
KR20120020898A (en) Apparatus and process for removing iron particles in water solution
CN104436804B (en) A kind of emulsion processing system
JP2738473B2 (en) Method and apparatus for monitoring turbine through which steam in condensate circulation system passes
CN219663033U (en) Independent filtering system for rust-preventive oil of oiling machine of continuous production strip steel production line
CN220550021U (en) Condensate polishing system and device for water cooling unit
CN204213895U (en) For the condensing hot air furnace treatment system of gas fired-boiler
JPS5855086A (en) Removing device for iron oxide in feed water system of power generation plant
KR20130065400A (en) Apparatus for purification of condenser wastewater of thermal power plant using superconducting magnetic separator
JP3909973B2 (en) Condensate storage facility and its operation control method
CN209974447U (en) Condensate water deoiling deironing retrieval and utilization processing apparatus
CN207375856U (en) New type high temperature condensate polishing system
CN209276280U (en) A kind of Boiler water treatment system
JPS5866703A (en) Device for removing iron oxide in feedwater system in generating plant