JPS61127623A - Synthesizing method of transition metal chalcogen compound - Google Patents

Synthesizing method of transition metal chalcogen compound

Info

Publication number
JPS61127623A
JPS61127623A JP24654184A JP24654184A JPS61127623A JP S61127623 A JPS61127623 A JP S61127623A JP 24654184 A JP24654184 A JP 24654184A JP 24654184 A JP24654184 A JP 24654184A JP S61127623 A JPS61127623 A JP S61127623A
Authority
JP
Japan
Prior art keywords
transition metal
chalcogen
raw material
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24654184A
Other languages
Japanese (ja)
Inventor
Mitsue Koizumi
小泉 光恵
Shinichi Yoshikawa
信一 吉川
Takanori Yamamoto
貴憲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Cement Co Ltd filed Critical Osaka Cement Co Ltd
Priority to JP24654184A priority Critical patent/JPS61127623A/en
Publication of JPS61127623A publication Critical patent/JPS61127623A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce the transition metal chalcogen compds. having an optional composition easily and surely by incorporating the raw material of the transition metal and the raw material of chalcogen in a reaction vessel and allowing the mixture to react while controlling the reaction temp. in the prescribed temp. range in the high pressure. CONSTITUTION:The simple substance of transition metal M and the simple substance of chalcogen X are incorporated nin a reaction vessel and the inside of the vessel is regulated to >=100atm. When the quantity of heat is supplied to the vessel from the outside, the transition metal M and the chalcogen X are started to be allowed to react with each other and the temp. starts to descend, it is reheated to elevate the temp. till the point (b). In this case, when the transition metal chalcogen compd. MX2 is aimed, the temp. of the point (b) is regulated to >=500 deg.C and when the compd. MX3 is aimed, it is regulated to 450-1,000 deg.C. The time (b-c) holding it in this temp. is optionally preset by the aimed particle size.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、遷移金属原料とカルコゲン原料とから高圧下
で遷移金属カルコゲン化合物を合成する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for synthesizing a transition metal chalcogen compound from a transition metal raw material and a chalcogen raw material under high pressure.

[従来の技術] 遷移金属カルコゲン化合物は、遷移金属(例えば■族T
1、Zr、 Ht、 V族V、Nl+、TO1■族Cr
、Mo、W等)をM、カルコゲン(S 、 se、 T
a)をXとすルト、MX4、MX、、MX、、MX等ノ
種々ノ組成の化合物をとることができ、しかもそれら化
合物の生成領域が、遷移金属MとカルコゲンXとの反応
時におけるカルコゲンの蒸気圧に強く依存していること
が知られている。そして、遷移金属MとカルコゲンXと
から遷移金属カルコゲン化合物を合成するさいには、反
応温度や圧力によって生成化合物の組成が変わり、高温
かつ雰囲気中のカルコゲン蒸気圧が低い程カルコゲン含
有量の低い化合物が生成されやすい。
[Prior Art] A transition metal chalcogen compound is a transition metal chalcogen compound containing a transition metal (for example, group II T
1, Zr, Ht, V group V, Nl+, TO1■ group Cr
, Mo, W, etc.), chalcogen (S, se, T
If a) is X, compounds with various compositions such as Ruto, MX4, MX, MX, MX, etc. can be taken, and the formation region of these compounds is the chalcogen during the reaction between transition metal M and chalcogen X. is known to strongly depend on the vapor pressure of When synthesizing a transition metal chalcogen compound from transition metal M and chalcogen X, the composition of the resulting compound changes depending on the reaction temperature and pressure. is likely to be generated.

ところで、従来この種の化合物、例えば電池正極活物質
への利用が注目されているMX2で表わされるところの
層状構造をもつ遷移金属カルコゲン化合物を合成する方
法としては、遷移金属とカルコゲンの各原料を石英管等
に真空封入して加熱合成する方法(M + 2 X −
M X2)やTi52ノJl: ウニ遷移金属の塩化物
ど硫化水素とを反応させて合成する方法(MCI4+ 
2 H,X−MX;) ナトが一般的である。しかし、
これらの常圧付近乃至それ以ドの圧力で合成する方法で
は、合成温度が低いとMX3が生成し、温度が高いとM
1オペX (O<αく1)で表わされる不定比化合物を
生成しやすく、電比組成の化合物MX、単−相を合成す
るためには、カルコゲン蒸気圧と温度とを厳密に制御し
なければならない困難がある。
By the way, the conventional method for synthesizing this type of compound, for example, a transition metal chalcogen compound with a layered structure represented by MX2, which is attracting attention for its use as a battery positive electrode active material, is to synthesize transition metal and chalcogen raw materials. A method of vacuum sealing in a quartz tube etc. and heating synthesis (M + 2
M
2H,X-MX;) Nato is common. but,
In these methods of synthesis at pressures near normal pressure or higher, MX3 is produced when the synthesis temperature is low, and MX3 is produced when the temperature is high.
Chalcogen vapor pressure and temperature must be strictly controlled in order to easily generate a non-stoichiometric compound represented by 1 opX (O < α × 1) and to synthesize a single-phase compound MX with an electric ratio composition. There are unavoidable difficulties.

さらに、前記の真空封入して加熱合成する方法では、反
応時間に1日〜1週間と非常に長期間を必要とすること
があるし、また前記の塩化物と硫化水素とから合成する
方法では、HCIが同時に生成するためこれを分離する
工程が必要である、等の問題もある。
Furthermore, the above-mentioned method of heat synthesis in vacuum sealing may require a very long reaction time of 1 day to 1 week, and the above-mentioned method of synthesis from chloride and hydrogen sulfide There are also problems such as the need for a step to separate HCI and HCI as they are generated at the same time.

これに対し、高圧下で遷移金属カルコゲン化合物を合成
する方法では、反応系を密封することが可能でかつ外部
から反応系内部に高圧力が働くため、カルコゲンの蒸気
圧による組成の変化を考慮する必要がなく、出発原料の
組成を目的化合物の組成に合せておけば反応温度の範囲
をかなり自由に選択できる。また、外圧により原料同士
の接触が十分に行なわれるため数分〜数時間の短時間で
反応が完了し、続いて結晶の粒成長が起こる。それ故、
高圧下で合成する方法では、圧力と反応温度及び反応時
間を適当に組合せることにより、遷移金属カルコゲン化
合物の組成及び粒径の制御がより容易に行なうことがで
きる。
On the other hand, in the method of synthesizing transition metal chalcogen compounds under high pressure, it is possible to seal the reaction system and high pressure acts inside the reaction system from the outside, so changes in composition due to chalcogen vapor pressure are taken into account. This is not necessary, and the reaction temperature range can be selected quite freely by matching the composition of the starting materials to the composition of the target compound. Further, since the raw materials are brought into sufficient contact with each other due to the external pressure, the reaction is completed in a short time of several minutes to several hours, followed by grain growth of crystals. Therefore,
In the method of synthesizing under high pressure, the composition and particle size of the transition metal chalcogen compound can be more easily controlled by appropriately combining the pressure, reaction temperature, and reaction time.

しかし乍ら、遷移金属原料とカルコゲン原料とを高圧下
で反応させて合成する方法では、反応時に発生する熱量
が大きく、一旦反応が開始すると反応生成熱によって原
料が加熱され、さらに反応速度を増加させるといったプ
ロセスを経て温度が異常に一ヒ昇し、反応湿度を目的と
する化合物の生成領域にうまく設定できないという不都
合な問題点がある。
However, in the method of synthesis by reacting transition metal raw materials and chalcogen raw materials under high pressure, a large amount of heat is generated during the reaction, and once the reaction starts, the raw materials are heated by the heat generated by the reaction, further increasing the reaction rate. There is an inconvenient problem in that the temperature rises abnormally during this process, making it difficult to properly set the reaction humidity in the region where the desired compound is produced.

[発明が解決しようとする問題点] 本発明は、かかる技術背景をもとにしてなされたもので
あって、上記の高圧下で遷移金属カルコど ゲン化合物を合成する方法の問題点を克服解消し、任意
の組成を有する遷移金属カルコゲン化合物が簡単にかつ
確実に生成できるようにした合成方法を提供せんとして
いる。
[Problems to be Solved by the Invention] The present invention has been made based on the above technical background, and overcomes and eliminates the problems of the method for synthesizing transition metal chalcodogen compounds under high pressure. However, it is an object of the present invention to provide a synthetic method that allows transition metal chalcogen compounds having arbitrary compositions to be produced easily and reliably.

[問題点を解決するための手段] 本発明は、このような目的を実現するために、遷移金属
原料とカルコゲン原料とを反応容器に収容して、高圧F
で反応温度を所定の温度領域に制御しつつ遷移金属カル
コゲン化合物を合成することを特徴とする方法を提供す
るものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention accommodates a transition metal raw material and a chalcogen raw material in a reaction vessel, and
The present invention provides a method characterized in that a transition metal chalcogen compound is synthesized while controlling the reaction temperature within a predetermined temperature range.

以下、本発明について詳述する。まず、遷移金属カルコ
ゲン化合物を合成するために、本発明で使用する遷移金
属原料並びにカルコゲン原料としては、次のいずれの組
合せも可能である。第1には、最も普通に遷移金属M単
体とカルコゲンX単体とを原料とし、これら各粉末を混
合した混合物を反応させて遷移金属カルコゲン化合物を
合成することができる。第2には、使用原料の一方又は
双方に既製の遷移金属カルコゲン化合物を利用すること
ができる。すなわち、例えば遷移金属M単体とカルコゲ
ンX単体との混合物からでは電比のものを合成すること
が難しい遷移金属ジカルコゲンMX、の合成を目的とす
る場合などでは、遷移金属原料に遷移金属Mを使用する
一方力ルコゲン原料に遷移金属カルコゲン化合物MX3
を使用する組合セ(2M Xs+ M   3 M X
2)L J: ッタリ、逆ニ遷移金属原料に遷移金属カ
ルコゲン化合物MXを使用しカルコゲン原料にカルコゲ
ンXを使用する組合せ(MX+X−→MXユ)によるこ
とができる。また、遷移金属原料にカルコゲン含有量の
少ない遷移金属カルコゲン化合物MXを用い、一方力ル
コゲン原料にカルコゲン含有量の多い遷移金属カルコゲ
ン化合物MX3を使用する組合せ(MX+MX、→2 
M X2)によることもできる。これらは遷移金属カル
コケン化合物が種々のMl成をとることができることを
利用したものであって、合成せんとする目的の化合物よ
りカルコゲン含有量の少ないものを遷移金属を供給する
遷移金属原料とし、一方力ルコゲン含有量の多いものを
カルコゲンを供給するカルコゲン原料としている。そし
て、この遷移金属カルコゲン化合物を合成原料に使用す
る場合では、遷移金属単体とカルコゲン単体とより合成
する場合に比較して化合物の生成反応に伴なう発熱量が
小さく、したがって反応温度の調節が比較的容易になし
うるという利点がある。
The present invention will be explained in detail below. First, in order to synthesize a transition metal chalcogen compound, any of the following combinations of transition metal raw materials and chalcogen raw materials used in the present invention are possible. Firstly, a transition metal chalcogen compound can be synthesized by using a simple transition metal M and a simple chalcogen X as raw materials and reacting a mixture of these powders. Second, ready-made transition metal chalcogen compounds can be utilized as one or both of the raw materials used. That is, for example, when the purpose is to synthesize transition metal dichalcogen MX, which is difficult to synthesize with electric ratio from a mixture of transition metal M alone and chalcogen X alone, transition metal M is used as the transition metal raw material. On the other hand, transition metal chalcogen compound MX3 is used as a raw material for chalcogen.
The combination using (2M Xs + M 3 M
2) L J: This can be achieved by a reverse combination (MX+X-→MXY) of using a transition metal chalcogen compound MX as a transition metal raw material and using chalcogen X as a chalcogen raw material. In addition, a combination in which a transition metal chalcogen compound MX with a low chalcogen content is used as a transition metal raw material and a transition metal chalcogen compound MX3 with a high chalcogen content is used as a transition metal raw material (MX + MX, →2
M X2) can also be used. These utilize the fact that transition metal chalcokene compounds can take various Ml configurations, and use a transition metal raw material that supplies the transition metal as a transition metal raw material that has a lower chalcogen content than the target compound to be synthesized. Chalcogen materials with a high content of chalcogen are used as chalcogen raw materials that supply chalcogen. When this transition metal chalcogen compound is used as a raw material for synthesis, the amount of heat generated by the reaction to form the compound is smaller than when synthesizing a simple transition metal and a simple chalcogen, making it easier to adjust the reaction temperature. It has the advantage of being relatively easy to do.

上記の遷移金属原料とカルコゲン原料とは、いずれの組
合せによる場合も、目的とする化合物の組成に応じて定
まる所定のモル比に混合して反応容器に収容し、高圧下
での反応に供される。
In any combination, the transition metal raw material and chalcogen raw material are mixed at a predetermined molar ratio determined according to the composition of the target compound, placed in a reaction vessel, and subjected to reaction under high pressure. Ru.

本発明では1.上記の混合原料を反応容器に収容した状
態で加熱手段を備えた高圧装置内にセットし、高圧下で
合成反応を行なわしめる。ここに、高圧力を使用する主
たる理由は、合成時にカルコゲンの蒸気を反応系に封じ
込めるためであって、この目的のためには100気圧以
上の圧力が必要とされる。そして、本発明ではこの高圧
下において、適宜の加熱手段により反応容器内の混合原
料を加熱昇温してい〈。すると、所定の湿度領域(目的
の化合物が生成される温度領域)に達するまでに前記の
混合原料が反応を開始することになる。しかるに、遷移
金属カルコゲン化合物の生成熱は一般に大きくしかも反
応が急激に進行するものであるため、反応開始後も元の
昇温ペースのままに加熱すると、反応系の温度が瞬時に
増大し、目的とする生成温度領域での反応を行なわせる
ことができなくなる。つまり、目標温度を越えた高い温
度で生成反応が進行し、ひいては目的とする組成の化合
物が得られない不都合をきたす。そこで、本発明では、
反応開始と同時に反応容器に外部から供給する熱量を減
少するように調節するか、さらに必要ならば熱量の供給
を停止し、反応開始後放出される発熱量を加えた系の温
度が目的の生成温度領域内に保持されるように制御して
いる。この温度制御を実行するためには、系の温度を常
時測定するようにして、反応開始の時点及び温度変化を
逐次検出し、検出結果に即応させて供給熱量を調節する
ようにすればよい。系の温度を迅速的確に検出するため
には、熱電対のような温度センサを直接原料中に埋め込
んでおくのが最も有効であるが、反面こうすると反応容
器の構造が複雑になることや、熱電対の導入路からのカ
ルコゲンガスの洩れなどの可能性、さらにはカルコゲン
による熱電対の腐食などの不都合な問題がある。この問
題を解決するための方策として、反応容器に熱伝導性の
よい金属製のものを使用し、該容器の近傍に熱電対を配
置するようにすることができる。つまり、このようにす
ると上記のような問題を蒙らずに、しかも系の温度変化
を間接的ながらもよく即応して検出することが可能とな
り、同時に容器内の供給熱量調節による温度制御の即応
性も高まる利点がある。
In the present invention, 1. The above-mentioned mixed raw materials contained in a reaction vessel are set in a high-pressure device equipped with heating means, and a synthesis reaction is carried out under high pressure. The main reason for using high pressure here is to confine chalcogen vapor in the reaction system during synthesis, and for this purpose a pressure of 100 atmospheres or more is required. In the present invention, under this high pressure, the mixed raw materials in the reaction vessel are heated and heated by an appropriate heating means. Then, the mixed raw materials will start reacting before reaching a predetermined humidity range (temperature range in which the target compound is produced). However, since the heat of formation of transition metal chalcogen compounds is generally large and the reaction proceeds rapidly, if the heating is continued at the original temperature increase rate after the reaction has started, the temperature of the reaction system will increase instantaneously, and the desired reaction will not be achieved. It becomes impossible to carry out the reaction in the desired formation temperature range. In other words, the production reaction proceeds at a temperature higher than the target temperature, resulting in the inconvenience that a compound having the desired composition cannot be obtained. Therefore, in the present invention,
At the same time as the reaction starts, the amount of heat supplied from the outside to the reaction vessel is adjusted to decrease, or if necessary, the supply of heat is stopped, and the temperature of the system, including the amount of heat released after the reaction starts, reaches the desired production level. The temperature is controlled to be maintained within the range. In order to carry out this temperature control, the temperature of the system may be constantly measured to sequentially detect the start of the reaction and temperature changes, and the amount of heat to be supplied may be adjusted in response to the detection results. In order to quickly and accurately detect the temperature of the system, it is most effective to embed a temperature sensor such as a thermocouple directly into the raw material, but this would complicate the structure of the reaction vessel and There are disadvantageous problems such as the possibility of chalcogen gas leaking from the thermocouple introduction path, and furthermore, the thermocouple being corroded by chalcogen. As a measure to solve this problem, it is possible to use a reaction vessel made of metal with good thermal conductivity and to arrange a thermocouple near the vessel. In other words, by doing this, it is possible to detect temperature changes in the system in a timely manner, albeit indirectly, without suffering from the above-mentioned problems, and at the same time, it is possible to quickly respond to temperature control by adjusting the amount of heat supplied in the container. It also has the advantage of increasing sex.

そして、上述の方法により反応条件が決定されれば、同
じ試料については前もって昇温パターンをプログラムす
ることにより、以後自動的に最適な温度制御を行なわし
めることが可能となる。
Once the reaction conditions are determined by the method described above, by programming a temperature increase pattern in advance for the same sample, it becomes possible to automatically perform optimal temperature control thereafter.

また、遷移金属カルコゲン化合物の生成反応に伴なう発
熱量が非常に大きく、反応開始直後に外部からの熱エネ
ルギの供給を停止してもなお反応が加速されるような場
合では、混合原料を反応容器内に分散して収容するのが
好適である。かくすれば、原料から周囲の圧力媒体への
放熱が促進され、原料内部に蓄熱されるのを効果的に防
止することができる。
In addition, in cases where the amount of heat generated by the production reaction of transition metal chalcogen compounds is extremely large and the reaction is still accelerated even if the supply of external thermal energy is stopped immediately after the start of the reaction, the mixed raw material may be It is preferable to house them in a dispersed manner within the reaction vessel. In this way, heat radiation from the raw material to the surrounding pressure medium is promoted, and heat accumulation inside the raw material can be effectively prevented.

なお、反応容器に外部から供給する熱量を減少して反応
温度を制御する場合の具体的な調整パターンの一例を示
すと、第1図の通りである。第1図は、縦軸に供給熱エ
ネルギー(電力)、横軸に時間をとった高圧反応時にお
ける加熱スケジュールの概要を図示している。すなわち
、このスケジュールにしたがうと、まず系を昇温して遷
移金属MとカルコゲンXとが反応を開始し急激に発熱す
るa点にまで達すると、一旦(通常数分間)加熱を停止
し、次いで系の温度が下り始めたら再び加熱してb点に
まで昇温し、さらにb点から0点ま温度一定に加熱保持
してから放冷するようにしている。ここにおいて、a点
の温度は原料の種類、組成に関係なく300〜500℃
の範囲に設定される一方、b点の温度(合成温度)は目
的組成に応じ、即ち、M X4−t’は300〜600
℃、MX3テは450−1000℃、MX2では500
℃以上と、各別に設定される。また、b−c間の温度は
合成温度や合成物の目的とする粒径によって異なり、例
えば低い合成温度でかつ粒径の大きなもの得たいとき稈
長時間に設定される。しかし、その場合でも最大限24
時間程度の保持時間をとれば十分である。
An example of a specific adjustment pattern for controlling the reaction temperature by reducing the amount of heat supplied to the reaction container from the outside is shown in FIG. 1. FIG. 1 shows an outline of a heating schedule during a high-pressure reaction, with the vertical axis representing supplied heat energy (electric power) and the horizontal axis representing time. That is, according to this schedule, the system is first heated up, and when it reaches point a, where the transition metal M and chalcogen X begin to react and rapidly generate heat, the heating is stopped once (usually for several minutes), and then When the temperature of the system begins to drop, it is heated again to raise the temperature to point b, and then heated and maintained at a constant temperature from point b to point 0, and then allowed to cool. Here, the temperature at point a is 300 to 500°C regardless of the type and composition of the raw materials.
On the other hand, the temperature at point b (synthesis temperature) depends on the target composition, that is, M
℃, 450-1000℃ for MX3, 500℃ for MX2
℃ or above, each is set separately. Further, the temperature between b and c varies depending on the synthesis temperature and the intended particle size of the composite, and is set to a long culm time, for example, when it is desired to obtain a large particle size at a low synthesis temperature. However, even in that case, the maximum
It is sufficient to take a holding time of about 1 hour.

[作用] 以上のような様々の手段により、本発明では遷移金属原
料とカルコゲン原料とを高圧下でその反応温度を所定の
温度領域に制御しつつ合成するようにしたものであって
、予め出発原料の組成を目的化合物の組成に合せてさえ
おけば、その反応温度によって定まるところの特定組成
をもった遷移金属カルコゲン化合物のみが合成されるも
のとなる。そして、この方法では高圧下で反応系を密封
して合成するものであるから、前記遷移金属ジカルコゲ
ンMX2のように従来の方法では合成時にカルコゲン不
足をきたしてM++1tX (α〉0)で表わされる不
定比組成のものが生成されたり、あるいはMX、、MX
4などのカルコゲンを多く含む化合物が混入してMX、
の単−相が得にくいといった問題が解決される。また、
カルコゲン含有量の大きなものについても単相が難なく
合成できる特徴をもっている。
[Function] By the various means described above, the present invention synthesizes a transition metal raw material and a chalcogen raw material under high pressure while controlling the reaction temperature within a predetermined temperature range. As long as the composition of the raw materials is matched to the composition of the target compound, only transition metal chalcogen compounds having a specific composition determined by the reaction temperature will be synthesized. In this method, the reaction system is sealed under high pressure. Therefore, in the conventional method, chalcogen is insufficient during synthesis, as in the transition metal dichalcogen MX2, resulting in an indefinite amount expressed as M++1tX (α〉0). MX, MX
MX due to contamination with compounds containing a large amount of chalcogen such as 4,
This solves the problem that it is difficult to obtain a single phase. Also,
It has the characteristic that single-phase products can be easily synthesized even for products with a large chalcogen content.

[実施例] 以下に本発明の実施例を掲げて説明する。[Example] Examples of the present invention will be described below.

〈実施例1〉 遷移金属(■族T1、Z、、 V族Nb、 Ta) c
7)各粉末(200メツシユ)をそれぞれイオウと1=
2のモル比で混合したものを原料とし、これを金製の反
応容器(試料カプセル)に詰めその周囲を窒化ホウ素(
BN)粉末でつつみ、白金−白金ロジウム熱電対をセッ
トした。そして、その外側にカーボンヒータを取り付け
て高圧容器に入れ、正六面体型高圧力発生装置により3
万気圧まで加圧した。なお、第2図(a)、(b)に、
実施例に供した高圧反応装置の試料室の概要を示してい
る。図中1は反応容器、2はカーボンヒータ、3はBN
粉、4は雲母、5は熱電対を示し、6.7はこれらを包
囲して高圧用セルを構成するパイロフィライトと銅板で
ある。そして、この高圧用セル8がWCアンビル9によ
って六方向から加圧される高圧力発生装置lOにセット
される(このときアンビル9.9の一対に前記銅板7.
7が挟持され、前記カーボンヒータ2への通電がなされ
るともに、もう一対のアンビル9.9に前記熱電対5が
挟持され熱起電力の測定がなされる)。
<Example 1> Transition metals (group ■ T1, Z, group V Nb, Ta) c
7) Each powder (200 mesh) is mixed with sulfur and 1=
The raw material is a mixture with a molar ratio of 2:2 and 2:2, which is packed into a gold reaction vessel (sample capsule) and surrounded by boron nitride (
BN) powder, and a platinum-platinum rhodium thermocouple was set. Then, a carbon heater is attached to the outside and placed in a high pressure container, and a regular hexahedral high pressure generator is used to generate 3
It was pressurized to 10,000 atmospheres. In addition, in Fig. 2 (a) and (b),
The outline of the sample chamber of the high-pressure reaction device used in Examples is shown. In the figure, 1 is a reaction vessel, 2 is a carbon heater, and 3 is a BN
4 is mica, 5 is a thermocouple, and 6.7 is pyrophyllite and a copper plate that surround these and constitute a high-pressure cell. Then, this high pressure cell 8 is set in a high pressure generator 10 that is pressurized from six directions by a WC anvil 9 (at this time, a pair of anvils 9.9 are attached to the copper plate 7.
7 is held between them to energize the carbon heater 2, and the thermocouple 5 is held between another pair of anvils 9 and 9 to measure the thermoelectromotive force).

しかして、カーボンヒータに通電し、熱電対によって温
度を測定しながら昇温した。昇温速度は、最初は毎分5
0℃の割合で行ない、T7−3、Z、−Sの系について
は450℃から、Nb−3,T(1−Sの系については
500℃から毎分lO℃の昇温速度とした0反応が始ま
り温度が急激に上昇し始めた時点で直ちに通電を停止し
た。そして、温度が下降し始めると同時に再び通電を開
始し、50〜100℃毎分の昇温速度で目的の合成温度
まで昇温した0合成温度は500℃、600℃、800
℃、1000℃とし、保持時間は15分から6時間まで
変化させた。その後、降温、降圧し、試料を容器から取
り出した。これらの試料を粉末X線回折並びに光学顕微
鏡によって同定したところ、いずれの条件でも電比組成
のMXユ(T、 S、、zrS2、NbS2、T(13
2)が単−相で合成されていることが確認された。
Then, electricity was applied to the carbon heater, and the temperature was raised while measuring the temperature with a thermocouple. The heating rate was initially 5 per minute.
The heating rate was 0°C from 450°C for the T7-3, Z, -S system, and 500°C per minute for the Nb-3, T (1-S system). As soon as the reaction started and the temperature started to rise rapidly, the electricity was turned off.Then, as soon as the temperature started to fall, the electricity was turned on again, and the temperature was raised at a heating rate of 50 to 100°C per minute until the desired synthesis temperature was reached. The heated 0 synthesis temperature is 500℃, 600℃, 800℃
The holding time was varied from 15 minutes to 6 hours. Thereafter, the temperature and pressure were lowered, and the sample was taken out from the container. When these samples were identified by powder X-ray diffraction and optical microscopy, it was found that under all conditions, the electrical composition was MX (T, S, zrS2, NbS2, T(13
It was confirmed that 2) was synthesized in a single phase.

〈実施例2〉 遷移金属(■族T+、 Zl−1V族Nb、 Th)の
各粉末(200メツシユ)をそれぞれイオウと1=3の
モル比で混合したものを原料とし、これを実施例1と同
様の作業手順で高圧力発生装置にセットした。そして、
2万気圧まで加圧後、いずれの系も400℃までは毎分
50℃の速度で昇温し、それ以後は毎分lO℃の速度で
目的の合成温度まで昇温した。合成温度は400℃、5
00℃、700℃とし、保持時間は15分から2時間ま
で変化させた。降温、降圧後、試料を容器から取り出し
<Example 2> A mixture of each powder (200 mesh) of transition metals (group ■ T+, Zl-1V group Nb, Th) and sulfur at a molar ratio of 1=3 was used as the raw material, and this was used as the raw material for Example 1. It was set in the high pressure generator using the same procedure as above. and,
After pressurizing to 20,000 atm, the temperature of each system was raised at a rate of 50°C per minute up to 400°C, and thereafter the temperature was raised at a rate of 10°C per minute to the desired synthesis temperature. Synthesis temperature is 400℃, 5
The temperature was 00°C and 700°C, and the holding time was varied from 15 minutes to 2 hours. After lowering the temperature and pressure, remove the sample from the container.

粉末X線回折並びに光学顕微鏡にで同定したところ、い
ずれの合成条件でもM X3 (TI S、、 ZiS
、、Nl>33、TaS、)が単−相で合成されている
ことがわかった。
Identification using powder X-ray diffraction and optical microscopy revealed that M
, , Nl>33, TaS,) was found to be synthesized in a single phase.

〈実施例3〉 ニオブ金属粉末とセレンをl:4のモル比で混合したも
のを原料とし、これを実施例1と同様の作業手順で高圧
力発生装置にセットした。そして、3万気圧まで加圧後
、300’Oまでは毎分50℃の速度で昇温し、それ以
後は毎分5℃の速度で目的の合成温度まで昇温した0合
成温度は、400℃、450℃とし、保持時間は1〜4
時間とした。降温、降圧後、試料を容器から取り出し、
粉末X線回折並びに光学顕微鏡にで同定したところ、い
ずれの合成条件でもN b S e4の単−相で合成さ
れていることがわかった。
<Example 3> A mixture of niobium metal powder and selenium at a molar ratio of 1:4 was used as a raw material, and this was set in a high pressure generator using the same procedure as in Example 1. After pressurizing to 30,000 atm, the temperature was raised at a rate of 50°C per minute until 300'O, and thereafter the temperature was raised at a rate of 5°C per minute to the desired synthesis temperature. ℃, 450℃, holding time 1 to 4
It was time. After lowering the temperature and pressure, remove the sample from the container.
Identification using powder X-ray diffraction and optical microscopy revealed that the product was synthesized as a single phase of NbSe4 under all synthesis conditions.

〈実施例4〉 実施例1と同じ原料および装置を使用し、この場合は熱
電対をセットすることなく、ヒータの通電量をモニター
することにより合成した0通電量と反応系温度との関係
は、実施例1により相関を調べている。しかして、T+
−5,Zr−3,N’D−S、T、−3の反応系につい
て3万気圧まで加圧後、毎分20ワツトの通電量増加で
190ワツトまで通電量を上げた後直ちに通電を止め、
1分後再び毎分40ワツトの通電量増加で410ワツト
まで通電量を増加させた。この状態で4時間保持した後
1通電を停止し降温、降圧してから試料を容器から取り
出した。これを粉末X線回折により同定したところ、や
はりいずれも電比組成のMX2(T+ 52、ZrS、
、NbS2、TaS、)単−相であった。
<Example 4> Using the same raw materials and equipment as in Example 1, in this case, without setting a thermocouple, the relationship between the amount of 0 current applied and the reaction system temperature was synthesized by monitoring the amount of current applied to the heater. , the correlation is investigated using Example 1. However, T+
-5, Zr-3, N'D-S, T, -3 reaction systems were pressurized to 30,000 atmospheres, and the current was increased by 20 watts per minute to 190 watts, and then the current was immediately turned off. Stop,
One minute later, the amount of current was increased again by 40 watts per minute to 410 watts. After maintaining this state for 4 hours, the current supply was stopped for one time, the temperature and pressure were lowered, and then the sample was taken out from the container. When these were identified by powder X-ray diffraction, it was found that they all had electrical compositions of MX2 (T+ 52, ZrS,
, NbS2, TaS,) were single-phase.

〈実施例5〉 遷移金属トリカルコゲン化合物T、 S、、NbS3に
金属チタン粉末または金属ニオブ粉末をMX、:M=2
:1のモル比になるように加え粉砕混合したものを、実
施例1と同様の作業手順で高圧力発生装置にセットし、
1万気圧まで加圧した。温度は毎分100℃の一定速度
で反応温度1ooo℃まで一気に昇温した。そして、4
時間保持した後降温、降圧して試料を取り出し、粉末X
線回折により同定したところ、それぞれ電比のTiS2
、NbS2の単−相であった。
<Example 5> MX of metallic titanium powder or metallic niobium powder to transition metal trichalcogen compound T, S, NbS3: M=2
: The mixture was added and pulverized to a molar ratio of 1 and set in a high pressure generator using the same procedure as in Example 1.
It was pressurized to 10,000 atmospheres. The temperature was raised at a constant rate of 100°C per minute to a reaction temperature of 100°C. And 4
After holding for a period of time, lower the temperature and pressure, take out the sample, and powder
Identification by line diffraction revealed that the electrical ratio of TiS2
, was a single phase of NbS2.

〈実施例6〉 遷移金属ジカルコゲン化合物TiS2、NbS、に各々
イオウをMX、:x= l : lのモル比になるよう
に加え、実施例1と同様にして3万気圧まで加圧した。
<Example 6> Sulfur was added to the transition metal dichalcogen compounds TiS2 and NbS at a molar ratio of MX:x=l:l, and the mixture was pressurized to 30,000 atmospheres in the same manner as in Example 1.

温度は毎分50℃の一定速度で反応温度700℃まで連
続的に昇温した。そして、4時間保持した後通電を停止
して試料を取り出し、粉末X線回折により同定したとこ
ろ、それぞれT+ 33、Nb5jの単−相が合成され
た。
The temperature was raised continuously at a constant rate of 50°C per minute to a reaction temperature of 700°C. After holding the sample for 4 hours, the electricity was turned off, the sample was taken out, and the samples were identified by powder X-ray diffraction. As a result, single phases of T+ 33 and Nb5j were synthesized, respectively.

〈実施例7〉 IG Se、とNbSe、とをl:1のモル比で粉砕混
合したものを、実施例1と同様にして2万気圧まで加圧
した。温度は毎分100℃の一定速度で反応温度700
℃まで連続的に昇温した。そして、4時間保持した後降
温、降圧して試料を取り出し、粉末X線回折により同定
したところ、Nb5I2単−相が生成していた。
<Example 7> IG Se and NbSe were pulverized and mixed at a molar ratio of 1:1, and the mixture was pressurized to 20,000 atmospheres in the same manner as in Example 1. The reaction temperature was 700°C at a constant rate of 100°C per minute.
The temperature was raised continuously to ℃. After holding the sample for 4 hours, the temperature and pressure were lowered, and a sample was taken out and identified by powder X-ray diffraction. As a result, a single Nb5I2 phase was formed.

〈実施例8〉 実施例1で使用した同量の各混合原料について、それら
を均等に4分割し、それぞれ試料カプセルに入れ窒化ホ
ウ素粉末で互いのカプセルを隔離して高圧用セルに収容
した。そして、4つの試料カプセルの中心に熱電対をセ
ットするとともに、3万気圧で加圧した。但し、実施例
1とは異なり、毎分50℃の昇温速度で途中加熱を中断
することなく連続的に1000℃まで昇温した。その後
、4時間保持し、降温、降圧してから試料を取り出し、
それぞれ粉末X線回折により同定したところ、いずれも
電比組成のM X2(T+ S、、zrs2、NbS2
、Ta S2)単−相カ生成しテlz’だ。
<Example 8> The same amount of each mixed raw material used in Example 1 was equally divided into four parts, each of which was placed in a sample capsule, separated from each other by boron nitride powder, and housed in a high-pressure cell. Thermocouples were then set in the centers of the four sample capsules, and the capsules were pressurized at 30,000 atmospheres. However, unlike in Example 1, the temperature was raised continuously to 1000°C at a heating rate of 50°C per minute without interrupting heating midway. After that, it was held for 4 hours, the temperature and pressure were lowered, and then the sample was taken out.
When identified by powder X-ray diffraction, they all had electrical specific compositions of M X2 (T+ S, zrs2, NbS2
, Ta S2) Single-phase force is generated and TELz'.

[発明の効果] 以上のように、本発明では遷移金属原料とカルコゲン原
料とを高圧下で特にその反応温度を所定温度領域に制御
しつつ合成するようにしたものであるから、従来の方法
では組成を制御することが困難であった種々の組成比を
もつ遷−移金属力ルコゲン化合物を簡単かつ確実に合成
することが可能なものである。
[Effects of the Invention] As described above, in the present invention, a transition metal raw material and a chalcogen raw material are synthesized under high pressure while particularly controlling the reaction temperature within a predetermined temperature range. It is now possible to easily and reliably synthesize transition metal lucogen compounds having various composition ratios, which have been difficult to control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る反応温度制御の一例を示す加熱
スケジュールの図である。第2図は、本発明の実施例に
供した高圧反応装置の概要を示し、第2図(a)は高圧
用セルの縦断面図、第2図(b)は高圧力発生装置の試
料室の横断面図である。 棧理人 弁理士 赤澤−博 ロー ビ
FIG. 1 is a diagram of a heating schedule showing an example of reaction temperature control according to the present invention. FIG. 2 shows an overview of the high-pressure reactor used in the examples of the present invention, FIG. 2(a) is a longitudinal cross-sectional view of the high-pressure cell, and FIG. 2(b) is a sample chamber of the high-pressure generator. FIG. Rito Satoshi Patent Attorney Hirobi Akazawa

Claims (8)

【特許請求の範囲】[Claims] (1)遷移金属原料とカルコゲン原料とを反応容器に収
容して、高圧下で反応温度を所定の温度領域に制御しつ
つ遷移金属カルコゲン化合物を合成することを特徴とす
る遷移金属カルコゲン化合物の合成方法。
(1) Synthesis of a transition metal chalcogen compound, characterized in that a transition metal raw material and a chalcogen raw material are housed in a reaction vessel, and the transition metal chalcogen compound is synthesized while controlling the reaction temperature within a predetermined temperature range under high pressure. Method.
(2)遷移金属原料が遷移金属単体からなり、カルコゲ
ン原料がカルコゲン単体からなることを特徴とする特許
請求の範囲第1項記載の遷移金属カルコゲン化合物の合
成方法。
(2) The method for synthesizing a transition metal chalcogen compound according to claim 1, wherein the transition metal raw material consists of a simple transition metal, and the chalcogen raw material consists of a simple chalcogen.
(3)遷移金属原料が遷移金属単体からなり、カルコゲ
ン原料が遷移金属カルコゲン化合物からなることを特徴
とする特許請求の範囲第1項記載の遷移金属カルコゲン
化合物の合成方法。
(3) The method for synthesizing a transition metal chalcogen compound according to claim 1, wherein the transition metal raw material consists of a simple transition metal, and the chalcogen raw material consists of a transition metal chalcogen compound.
(4)遷移金属原料が遷移金属カルコゲン化合物からな
り、カルコゲン原料がカルコゲン単体からなることを特
徴とする特許請求の範囲第1項記載の遷移金属カルコゲ
ン化合物の合成方法。
(4) The method for synthesizing a transition metal chalcogen compound according to claim 1, wherein the transition metal raw material is composed of a transition metal chalcogen compound, and the chalcogen raw material is composed of a simple substance of chalcogen.
(5)遷移金属原料がカルコゲン含有量の少ない遷移金
属カルコゲン化合物からなり、カルコゲン原料がカルコ
ゲン含有量の多い遷移金属カルコゲン化合物からなるこ
とを特徴とする特許請求の範囲第1項記載の遷移金属カ
ルコゲン化合物の合成方法。
(5) The transition metal chalcogen according to claim 1, wherein the transition metal raw material is composed of a transition metal chalcogen compound with a low chalcogen content, and the chalcogen raw material is composed of a transition metal chalcogen compound with a high chalcogen content. Methods for synthesizing compounds.
(6)反応温度を所定の温度領域に制御するために、遷
移金属原料とカルコゲン原料の反応開始後、反応容器に
外部から供給する熱量を減少するように調節することを
特徴とする特許請求の範囲第1項、第2項、第3項、第
4項又は第5項記載の遷移金属カルコゲン化合物の合成
方法。
(6) In order to control the reaction temperature within a predetermined temperature range, the amount of heat supplied from the outside to the reaction vessel is adjusted to decrease after the reaction between the transition metal raw material and the chalcogen raw material starts. A method for synthesizing a transition metal chalcogen compound according to scope 1, 2, 3, 4, or 5.
(7)反応容器に金属製容器を使用することを特徴とす
る特許請求の範囲第1項、第2項、第3項、第4項、第
5項又は第6項記載の遷移金属カルコゲン化合物の合成
方法。
(7) The transition metal chalcogen compound according to claim 1, 2, 3, 4, 5, or 6, wherein a metal container is used as the reaction container. synthesis method.
(8)反応温度を所定の温度領域に制御するために、遷
移金属原料とカルコゲン原料との混合原料を反応容器に
分散して収容することを特徴とする特許請求の範囲第1
項、第2項、第3項、第4項、第5項、第6項又は第7
項記載の遷移金属カルコゲン化合物の合成方法。
(8) In order to control the reaction temperature within a predetermined temperature range, a mixed raw material of a transition metal raw material and a chalcogen raw material is dispersed and stored in a reaction vessel.
Paragraph 2, Paragraph 3, Paragraph 4, Paragraph 5, Paragraph 6 or Paragraph 7
A method for synthesizing a transition metal chalcogen compound as described in .
JP24654184A 1984-11-20 1984-11-20 Synthesizing method of transition metal chalcogen compound Pending JPS61127623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24654184A JPS61127623A (en) 1984-11-20 1984-11-20 Synthesizing method of transition metal chalcogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24654184A JPS61127623A (en) 1984-11-20 1984-11-20 Synthesizing method of transition metal chalcogen compound

Publications (1)

Publication Number Publication Date
JPS61127623A true JPS61127623A (en) 1986-06-14

Family

ID=17149940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24654184A Pending JPS61127623A (en) 1984-11-20 1984-11-20 Synthesizing method of transition metal chalcogen compound

Country Status (1)

Country Link
JP (1) JPS61127623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261202A (en) * 1985-05-14 1986-11-19 エルケム・メタルズ・カンパニ− Manufacture of metal sulfide
FR2705439A1 (en) * 1993-05-13 1994-11-25 Thermotechnique Cuenod Sa Control device for oxidant air for forced-air burner, and burner equipped with such a device
EP0806396A1 (en) * 1996-05-07 1997-11-12 H.C. Starck GmbH & Co. KG Process for the preparation of metal disulfides and further processing thereof to dimetal trisulfides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278792A (en) * 1975-12-03 1977-07-02 Exxon Research Engineering Co Industrial manufacturing process for sulfide form transition metallic halide
JPS5617909A (en) * 1979-07-24 1981-02-20 Agency Of Ind Science & Technol Manufacture of selenonickel ferrite (nife2se4) by applying high pressure and high temperature
JPS5617908A (en) * 1979-07-24 1981-02-20 Agency Of Ind Science & Technol Manufacture of telluronickel ferrite (nife2te4) by applying high pressure and high temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278792A (en) * 1975-12-03 1977-07-02 Exxon Research Engineering Co Industrial manufacturing process for sulfide form transition metallic halide
JPS5617909A (en) * 1979-07-24 1981-02-20 Agency Of Ind Science & Technol Manufacture of selenonickel ferrite (nife2se4) by applying high pressure and high temperature
JPS5617908A (en) * 1979-07-24 1981-02-20 Agency Of Ind Science & Technol Manufacture of telluronickel ferrite (nife2te4) by applying high pressure and high temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261202A (en) * 1985-05-14 1986-11-19 エルケム・メタルズ・カンパニ− Manufacture of metal sulfide
JPH0542361B2 (en) * 1985-05-14 1993-06-28 Elkem Metals
FR2705439A1 (en) * 1993-05-13 1994-11-25 Thermotechnique Cuenod Sa Control device for oxidant air for forced-air burner, and burner equipped with such a device
EP0806396A1 (en) * 1996-05-07 1997-11-12 H.C. Starck GmbH & Co. KG Process for the preparation of metal disulfides and further processing thereof to dimetal trisulfides

Similar Documents

Publication Publication Date Title
WO2014171444A1 (en) Heat storage material
Linton et al. The MgTiO 3-FeTiO 3 join at high pressure and temperature
Liu et al. Calorimetric study of the coesite-stishovite transformation and calculation of the phase boundary
US6475428B1 (en) Method of producing titanium powder
Hirata et al. In situ X-ray diffractometry study of the hydride in the intermetallic compound Mg2Ni
CN110482498A (en) A kind of synthetic method of γ phase indium selenide
JPS61127623A (en) Synthesizing method of transition metal chalcogen compound
Li et al. Effect of synthesis temperature on the purity of product in hydriding combustion synthesis of Mg2NiH4
Liang et al. Growth of millimeter-size single-crystal boron phosphide by eutectic melt at 5.0 GPa and 3000° C
Kaylor et al. HIGH TEMPERATURE HEAT CONTENT AND ENTROPIES OF CESIUM CHLORIDE AND CESIUM IODIDE1
Robbins et al. Some observations on the use of strontium carbonate as a temperature standard for DTA
JPS6011293A (en) Manufacture of znse single crystal
Pasierb et al. Structural properties and thermal behavior of Li2CO3–BaCO3 system by DTA, TG and XRD measurements
CN106477534B (en) A kind of preparation method of selenium arsenic alloy
JP2011178626A (en) Method and apparatus for producing nitride crystal
KR101709755B1 (en) Chemical compound forming method using isostatic-pressure solid-state reaction
Chrissafis et al. Studying Cu 2–x Se phase transformation through DSC examination
Hiramoto et al. Self-propagating high-temperature synthesis of nonstoichiometric wüstite
KR950009442B1 (en) Method of titanium powder from titanium sponge
JP4846634B2 (en) Titanium-based hydrogen storage alloy manufacturing method and titanium-based hydrogen storage alloy manufacturing apparatus
KR950013068B1 (en) Process for the preparation of titanium nitride powders
Solozhenko Thermoanalytical study of the polymorphic transformations of wurtzitic boron nitride modification into graphite-like ones
Abdullaev et al. Preparation and properties of stoichiometric vanadium oxides
Asada et al. Synthesis of new mono-carbonitride Mo (C, N) powder by heating Mo+ C mixed powder in high-pressure nitrogen gas
Moser et al. Preparation of plutonium phosphide by direct combination of the elements