JPS61127236A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JPS61127236A
JPS61127236A JP59248922A JP24892284A JPS61127236A JP S61127236 A JPS61127236 A JP S61127236A JP 59248922 A JP59248922 A JP 59248922A JP 24892284 A JP24892284 A JP 24892284A JP S61127236 A JPS61127236 A JP S61127236A
Authority
JP
Japan
Prior art keywords
optical
signal
output
circuit
branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248922A
Other languages
Japanese (ja)
Inventor
Tetsuya Kaneda
哲也 金田
Kazuo Aida
一夫 相田
Yoshihiro Hayashi
林 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59248922A priority Critical patent/JPS61127236A/en
Publication of JPS61127236A publication Critical patent/JPS61127236A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain a phase modulation system with excellent S/N by applying additive logical conversion to a modulation signal to attain phase modulation in a transmitter and using an optical system to demodulate in the lump a phase modulation and the additive logic conversion signal in a receiver to constitute simply the receiver. CONSTITUTION:An output optical signal of a phase modulator 14 propagates an optical transmission line 15 and reaches the receiver. A branch circuit 21 of the receiver branches an input optical signal to two optical paths A, B. The branching is executed so that the energy is shared even. A difference is given to the optical length in the optical paths A, B and the difference is set to a length corresponding to the time at m bits. The optical signal via the two optical paths is inputted to a branch and synthesis circuit 22. The optical signal in the optical path A in the circuit 22 is branched to two optical paths A1, A2, the optical signal of the optical path B is branched into two optical paths B1, B2, and the optical paths A1, B1 and the optical paths A2, B2 are constituted so that the optical paths are coincident respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディジタル光通信に利用される。特に、位相
変調による光伝送方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is utilized in digital optical communications. In particular, it relates to optical transmission systems using phase modulation.

〔従来の技術〕[Conventional technology]

従来の光通信では、光信号を強度変調する方式が広く用
いられている。強度変調方式にはいくつかの欠点がある
ので、これを改良するものとして、位相変調による方式
が検討されている。
In conventional optical communications, a method of intensity modulating optical signals is widely used. Since the intensity modulation method has several drawbacks, a method using phase modulation is being considered as a method to improve this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

すなわち、強度変調方式には、レーザの変調速度に限界
があり、また大電流が通過するスイッチの高速動作に限
界があるので、高速変調ができない欠点がある。さらに
、レーザ出力光に周波数変動が生じ、この出力光を光フ
ァイバに伝播させると、光ファイバの波長分散の影響に
より、波形歪が生じる欠点がある。また、強度変調を施
すとレーザ出力は連続光出力より一般に小さくなる。
That is, the intensity modulation method has the disadvantage that high-speed modulation is not possible because there is a limit to the modulation speed of the laser and a limit to the high-speed operation of the switch through which a large current passes. Furthermore, there is a drawback that frequency fluctuation occurs in the laser output light, and when this output light is propagated through an optical fiber, waveform distortion occurs due to the influence of wavelength dispersion of the optical fiber. Furthermore, when intensity modulation is applied, the laser output is generally smaller than the continuous optical output.

一方、位相変調方式では、上述の欠点がなくなるが、受
信装置の復調器の構成が複雑になる欠点がある。
On the other hand, the phase modulation method eliminates the above-mentioned drawbacks, but has the drawback that the configuration of the demodulator of the receiving device becomes complicated.

本発明はこれを改良するもので、受信装置が簡単に構成
され、信号対雑音比のよい位相変調方式を提供すること
を目的とする。
The present invention is an improvement on this, and aims to provide a phase modulation method in which a receiving device is simply constructed and has a good signal-to-noise ratio.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、時系列的なディジタル入力電気信号により変
調された光信号を送信する送信装置と、この送信装置の
送信出力を光伝送路を介して受信し、上記入力電気信号
に対応する出力電気信号を出力する受信装置とを備えた
光伝送方式において、上記送信装置には、光源と、入力
電気信号についてそのmビット(mは自然数)前の出力
論理値との排他的論理和をとる和分論理変換回路と、こ
の回路の出力信号により上記光源の出力光に位相変調を
施す変調器とを備え、上記受信装置には、受信入力光を
二つの光路に分岐する分岐回路と、この二つの光路の光
信号をそれぞれさらに二つの光信号に分岐するとともに
、この二つの光信号のそれぞれが上記二つの光路の光信
号についてそれぞれ一致するように合成する分岐合成回
路とを備え、上記分岐回路からこの分岐合成回路の合成
点までの二つの光路の光路伝播時間差が上記mビットの
時間になるように設定され、さらに、上記分岐合成回路
の二つの合成出力光をそれぞれ受光する二つの受光素子
と、この二つの受光素子の出力電気信号を差動入力とす
る増幅器とを備えたことを特徴とする。
The present invention provides a transmitting device that transmits an optical signal modulated by a time-series digital input electrical signal, and a transmitting device that receives the transmitted output of the transmitting device via an optical transmission line, and outputs an electrical signal corresponding to the input electrical signal. In an optical transmission system that includes a receiving device that outputs a signal, the transmitting device includes a light source and an exclusive OR of an output logical value m bits (m is a natural number) before the input electrical signal. The receiving device includes a branching circuit that branches received input light into two optical paths, and a modulator that performs phase modulation on the output light of the light source using the output signal of this circuit. a branching/combining circuit that further branches each of the optical signals of the two optical paths into two optical signals, and combines the two optical signals so that each of the two optical signals coincides with the optical signals of the two optical paths, the branching circuit The optical path propagation time difference between the two optical paths from to the combining point of the branching and combining circuit is set to be the m-bit time, and two light receiving elements each receive the two combined output lights of the branching and combining circuit. and an amplifier which uses the output electric signals of these two light receiving elements as differential inputs.

〔作用〕[Effect]

送信装置では、変調信号に和分論理変換を施して位相変
調を行い、受信装置では位相変調信号および和分論理変
換信号を光学系で一挙に復調する。
The transmitting device performs summation logic conversion on the modulated signal to perform phase modulation, and the receiving device demodulates the phase modulation signal and the summation logic conversion signal all at once using an optical system.

〔実施例〕〔Example〕

第1図は本発明実施例装置のブロック構成図である。図
の1断は送信装置で、下段は受信装置を示す。第1図で
実線は光信号の通路を示し、破線は電気信号の通路を示
す。入力端子11には時系列的に二値ディジタル信号が
入力する。この信号は和分論理変換回路を通過して、和
分論理変換が施される。この和分論理変換回路12では
、入力信号の第n番目のビットの論理値をXnとすると
、第n番目の出力信号の論理値Ynは、 Yn=Xn■Yn−m となる。ただしm、nは自然数であり、■は排他的論理
和を示す。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. One section in the figure shows a transmitting device, and the lower section shows a receiving device. In FIG. 1, solid lines indicate optical signal paths, and broken lines indicate electrical signal paths. A binary digital signal is input to the input terminal 11 in time series. This signal passes through a summation logic conversion circuit and is subjected to summation logic conversion. In this summation logic conversion circuit 12, if the logical value of the n-th bit of the input signal is Xn, the logical value Yn of the n-th output signal is Yn=Xn■Yn-m. However, m and n are natural numbers, and ■ indicates exclusive OR.

一方、レーザ光源13は定常的に発光する光源であって
、その出力は上記和分論理変換回路12の出力とともに
位相変調器14に入力して、その出力光には位相変調が
施される。この位相変調器14では、回路12から入力
する変調信号の論理値に対して「1」ならばπ相に、r
OJならば0相にその出力光に位相変調を施すように構
成されている。
On the other hand, the laser light source 13 is a light source that emits light constantly, and its output is input to the phase modulator 14 together with the output of the summation logic conversion circuit 12, and the output light is subjected to phase modulation. In this phase modulator 14, if the logical value of the modulation signal input from the circuit 12 is "1", the r
In the case of OJ, the configuration is such that phase modulation is applied to the output light at the 0 phase.

この出力光信号は光伝送路15を伝播して受信装置に達
する。受信装置ではその入力光信号を分岐回路21で二
つの光路A、Bに分岐する。この分岐はエネルギがほぼ
等分になるように行われる。この二つの光路A、Bには
その光路長に差が設けてあり、その差は上述のmビット
の時間分に相当する長さに設定されている。この二つの
光路を経由した光信号は分岐合成回路22に入力する。
This output optical signal propagates through the optical transmission line 15 and reaches the receiving device. In the receiving device, the input optical signal is branched into two optical paths A and B by a branching circuit 21. This branching is performed so that the energy is approximately equally divided. There is a difference in optical path length between these two optical paths A and B, and the difference is set to a length corresponding to the above-mentioned m-bit time. The optical signals that have passed through these two optical paths are input to the branching/combining circuit 22.

この回路22では、光路Aの光信号は二つの光路A、お
よびAzに分岐され、光路Bの光信号は二つの光路B1
およびB2に分岐され、しかも、光路A1およびB、は
その光路が一致し、光路A2およびB2はその光路が一
致するように構成されている。
In this circuit 22, the optical signal on optical path A is branched into two optical paths A and Az, and the optical signal on optical path B is divided into two optical paths B1 and 2.
and B2, and the optical paths A1 and B are configured so that their optical paths coincide, and the optical paths A2 and B2 are configured so that their optical paths coincide.

この分岐合成回路22の二つの出力光は、それぞれ受光
素子23および24に入力し、それぞれ電気信号に変換
される。この出力電気信号は、一つの差動増幅器25の
差動入力に与えられる。その差動増幅器25の出力は、
識別回路26に入力して符号識別が行われる。その識別
出力は出力端子27に送出される。
The two output lights of this branching/combining circuit 22 are input to light receiving elements 23 and 24, respectively, and are converted into electrical signals. This output electrical signal is given to the differential input of one differential amplifier 25. The output of the differential amplifier 25 is
The code is input to the identification circuit 26 and code identification is performed. The identification output is sent to output terminal 27.

第2図は光路A、Bの分の具体的な構成例である。すな
わち、分岐合成回路22は光ファイバで構成された光伝
送路15に到来した光信号を平行光に変換するレンズ3
1と、このレンズ31の出方光を二つの光路に分岐する
プリズム32とを含む。プリズム32の表面で反射した
光は光路Aとしてミラー33および34に反射して、プ
リズム32を透過した光は光路Bとして直接に、分岐合
成回路22に入射する。
FIG. 2 shows a specific example of the configuration for optical paths A and B. That is, the branching/combining circuit 22 includes a lens 3 that converts an optical signal arriving at an optical transmission line 15 composed of an optical fiber into parallel light.
1, and a prism 32 that branches the light emitted from this lens 31 into two optical paths. The light reflected on the surface of the prism 32 is reflected on the mirrors 33 and 34 as an optical path A, and the light that has passed through the prism 32 is directly incident on the branching and combining circuit 22 as an optical path B.

この分岐合成回路22はプリズム35とレンズ36およ
び37とを含む。このプリズム35の表面で二つの光路
AおよびBの光は合成される。
This branching and combining circuit 22 includes a prism 35 and lenses 36 and 37. On the surface of this prism 35, the lights of the two optical paths A and B are combined.

このプリズム32および37はそれぞれその断面が直角
二等辺三角形であって、その反射率および透過率がそれ
ぞれ50%である。ミラー33および34は図示する光
路を保ちながら、符号XおよびX′で示す光路の長さを
変化させることにより、光路Aと光路Bの相対的な長さ
を変化させることができる。
Each of the prisms 32 and 37 has a right isosceles triangular cross section, and its reflectance and transmittance are each 50%. Mirrors 33 and 34 can change the relative lengths of optical path A and optical path B by changing the lengths of the optical paths indicated by symbols X and X' while maintaining the optical path shown.

このように構成された装置では、端子11の入力信号に
は和分論理変換が施される。−例として、011010
0010111・・・・ が端子11の信号の論理値であったとすると、和分論理
変換回路12の出力には、 11011000011010・・・・が得られる。こ
のときmは1である。
In the device configured in this manner, the input signal at the terminal 11 is subjected to summation logic conversion. - For example, 011010
If 0010111... is the logical value of the signal at the terminal 11, the output of the summation logic conversion circuit 12 will be 11011000011010.... At this time, m is 1.

この信号を変調信号として、変調器14で位相変調が施
される。光伝送路15に位相変調された光信号が伝送さ
れ、これが受信装置の分岐回路21で二つの光路に分岐
される。この二つの光路には1ビット分の時間差がある
ので、分岐合成回路22で合成されたときには、和分論
理変換が復号されるとともに、π相に変調された信号と
0相に変調された信号とは相互に打ち消しあって、受光
素子23の入力には、 11011000011010・・・・なる信号が得ら
れ、受光素子24の入力には、この信号とちょうど論理
が裏返しの信号 00100111100101・・・・が得られる。受
光素子23の出力が差動増幅器25の正入力に、受光素
子24の出力が差動増幅器25の負入力に接続されてい
るから、その出力にはその正入力に等しい論理値が得ら
れる。しかし、両入力の差分をとっているので、その信
号電力は2倍である。これに対して二つの光路の雑音は
、それぞれ別の受光素子で発生するので互いに相関がな
いから、雑音電力はF「倍である。したがって、一つの
光路の信号をそのまま復調した場合に比較して3dBだ
け信号対雑音比を改善することができる。
Phase modulation is performed by the modulator 14 using this signal as a modulation signal. A phase-modulated optical signal is transmitted to the optical transmission path 15, and is branched into two optical paths by a branching circuit 21 of the receiving device. Since there is a time difference of 1 bit between these two optical paths, when they are combined in the branching and combining circuit 22, the sum logic conversion is decoded, and the signal modulated to π phase and the signal modulated to 0 phase are The signals cancel each other out, and a signal 11011000011010... is obtained at the input of the light-receiving element 23, and a signal 00100111100101... whose logic is exactly the opposite of this signal is obtained at the input of the light-receiving element 24. can get. Since the output of the light-receiving element 23 is connected to the positive input of the differential amplifier 25, and the output of the light-receiving element 24 is connected to the negative input of the differential amplifier 25, the logical value equal to the positive input is obtained at the output. However, since the difference between both inputs is taken, the signal power is doubled. On the other hand, the noise on the two optical paths is generated by different light receiving elements and has no correlation with each other, so the noise power is F times as much. Therefore, compared to when the signal from one optical path is demodulated as is, can improve the signal-to-noise ratio by 3 dB.

この差動増幅器25の出力に得られる信号は、まさに送
信装置の入力端子11に与えられた伝送信号の論理値と
等しく。和分論理変換の復調および位相変調の復調が同
時に行われたことになる。このように、受信装置はきわ
めて単純な構成で和分論理変換および位相変調信号の復
調を行うことができる。
The signal obtained at the output of the differential amplifier 25 is exactly equal to the logical value of the transmission signal applied to the input terminal 11 of the transmitter. This means that demodulation of summation logic conversion and demodulation of phase modulation are performed simultaneously. In this way, the receiving device can perform summation logic conversion and demodulation of the phase modulation signal with an extremely simple configuration.

上述の実施例では、位相変調の深さについて、ディジタ
ル信号の二値に対応してO位相およびπ位相としたが、
位相にずれがある場合にも本発明を実施することができ
る。もっともこの場合にはそのずれにしたがって信号対
雑音比が劣化する。
In the above embodiment, the depth of phase modulation is set to O phase and π phase corresponding to the binary values of the digital signal.
The present invention can be implemented even when there is a phase shift. However, in this case, the signal-to-noise ratio deteriorates in accordance with the deviation.

また、プリズムの反射率および透過率についても、かな
らずしも上述のように正確に50%でなくとも、同様に
本発明を実施することができる。
Furthermore, the present invention can be implemented in the same manner even if the reflectance and transmittance of the prism are not exactly 50% as described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、■ レーザ光源
は連続光を出力するので、その出カ光のスペクトラム分
布はきわめて狭(することができる、 ■ レーザ光源を直接変調することがないので、その出
力光レベルを高くとることができる、■ 変調はレーザ
光源の出力光路で行われるので変調信号の速度は位相変
調器に依存しレーザに依存しない、 ■ 受信装置が簡単に構成できる、 ■ 受信装置の信号対雑音比が改善される、などの優れ
た効果がある。
As explained above, according to the present invention, (1) the laser light source outputs continuous light, the spectral distribution of the output light can be extremely narrow; (2) the laser light source is not directly modulated; , the output light level can be increased, ■ Modulation is performed in the output optical path of the laser light source, so the speed of the modulated signal depends on the phase modulator and does not depend on the laser, ■ The receiver can be configured easily, ■ This has excellent effects such as improving the signal-to-noise ratio of the receiving device.

本発明を実施することにより、光ファイバの波長分散が
大きいためにこれまで大容量通信に使用が難しいとされ
ていた1、5μm帯の光フアイバ通信に実施して、従来
方式より大きい容量で長い中継距離の光通信方式を実現
することができる。
By implementing the present invention, it can be applied to optical fiber communications in the 1.5 μm band, which has been difficult to use for large-capacity communications due to the large chromatic dispersion of optical fibers, and can achieve greater capacity and longer lengths than conventional methods. It is possible to realize a relay-distance optical communication system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置のブロック構成図。 第2図は受信装置の部分構成図。 11・・・入力端子、12・・・和分論理変換回路、1
3・・・し−ザ光源、14・・・位相変調器、15・・
・光伝送路、21・・・分岐回路、22・・・分岐合成
回路、23.24・・・受光素子、25・・・差動増幅
器、26・・・識別回路、27・・・出力端子。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. FIG. 2 is a partial configuration diagram of the receiving device. 11... Input terminal, 12... Summation logic conversion circuit, 1
3... Shiza light source, 14... Phase modulator, 15...
- Optical transmission line, 21... Branch circuit, 22... Branch combining circuit, 23.24... Light receiving element, 25... Differential amplifier, 26... Identification circuit, 27... Output terminal .

Claims (2)

【特許請求の範囲】[Claims] (1)時系列的なディジタル入力電気信号により変調さ
れた光信号を送信する送信装置と、 この送信装置の送信出力を光伝送路を介して受信し、上
記入力電気信号に対応する出力電気信号を出力する受信
装置と を備えた光伝送方式において、 上記送信装置には、 光源と、 入力電気信号についてそのmビット(mは自然数)前の
出力論理値との排他的論理和をとる和分論理変換回路と
、 この回路の出力信号により上記光源の出力光に位相変調
を施す変調器と を備え、 上記受信装置には、 受信入力光を二つの光路に分岐する分岐回路と、この二
つの光路の光信号をそれぞれさらに二つの光信号に分岐
するとともに、この二つの光信号のそれぞれが上記二つ
の光路の光信号についてそれぞれ一致するように合成す
る分岐合成回路とを備え、 上記分岐回路からこの分岐合成回路の合成点までの二つ
の光路の光路伝播時間差が上記mビットの時間になるよ
うに設定され、 さらに、 上記分岐合成回路の二つの合成出力光をそれぞれ受光す
る二つの受光素子と、 この二つの受光素子の出力電気信号を差動入力とする増
幅器と を備えた ことを特徴とする光伝送方式。
(1) A transmitting device that transmits an optical signal modulated by a time-series digital input electrical signal, and an output electrical signal that receives the transmitted output of this transmitting device via an optical transmission line and corresponds to the input electrical signal. In an optical transmission system, the transmitting device includes: a light source; and a summator that performs an exclusive OR of the output logical value of m bits (m is a natural number) before the input electrical signal. The receiving device includes a logic conversion circuit and a modulator that performs phase modulation on the output light of the light source using the output signal of this circuit. a branching/combining circuit that further branches each of the optical signals on the optical path into two optical signals and combines the two optical signals so that each of the two optical signals coincides with the optical signals on the two optical paths; The optical path propagation time difference between the two optical paths to the combining point of this branching and combining circuit is set to be the time of the m bits, and furthermore, two light receiving elements each receiving the two combined output lights of the branching and combining circuit are arranged. , and an amplifier that receives the output electrical signals of these two light receiving elements as differential inputs.
(2)ディジタル信号は二値信号であり、変調器はこの
二値信号に対してπ相および0相を出力する構成であり
、分岐回路および分岐合成回路はそれぞれエネルギレベ
ルがほぼ50%の二分岐を行う構成である特許請求の範
囲第(1)項に記載の光伝送方式。
(2) The digital signal is a binary signal, and the modulator is configured to output π phase and 0 phase for this binary signal, and the branch circuit and branch synthesis circuit each have a binary signal with an energy level of approximately 50%. The optical transmission system according to claim (1), which is configured to perform branching.
JP59248922A 1984-11-26 1984-11-26 Optical transmission system Pending JPS61127236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248922A JPS61127236A (en) 1984-11-26 1984-11-26 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248922A JPS61127236A (en) 1984-11-26 1984-11-26 Optical transmission system

Publications (1)

Publication Number Publication Date
JPS61127236A true JPS61127236A (en) 1986-06-14

Family

ID=17185413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248922A Pending JPS61127236A (en) 1984-11-26 1984-11-26 Optical transmission system

Country Status (1)

Country Link
JP (1) JPS61127236A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232204A (en) * 1975-09-06 1977-03-11 Fujitsu Ltd Light pcm communication system
JPS5484402A (en) * 1977-12-19 1979-07-05 Nippon Telegr & Teleph Corp <Ntt> Single-mode fiber optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232204A (en) * 1975-09-06 1977-03-11 Fujitsu Ltd Light pcm communication system
JPS5484402A (en) * 1977-12-19 1979-07-05 Nippon Telegr & Teleph Corp <Ntt> Single-mode fiber optical communication system

Similar Documents

Publication Publication Date Title
CA2295390C (en) Methods of and apparatus for optical signal transmission
EP2175574B1 (en) Transmission system comprising a CS-RZ DPSK optical transmitter
US5023948A (en) Polarization modulation of optical signals using birefringent medium
US7340182B2 (en) Multiplexer
US20120281990A1 (en) Optical receiver configurable to accommodate a variety of modulation formats
CN109361472B (en) Polarization-independent coherent light access method and system
KR100557142B1 (en) Rz-ami optical receiver module
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
EP1289215B1 (en) Optical MSK modulator
CN101401331B (en) Method and apparatus for optically filtering a communication signal
JPH11220443A (en) Optical transmission and reception system
EP1749357B1 (en) Method and apparatus for producing high extinction ratio data modulation formats
JPS61127236A (en) Optical transmission system
CN102118337A (en) Method and device for regenerating phase modulation format signal
JP4713142B2 (en) Apparatus for reproducing optical signal, method of using the apparatus, and equipment equipped with the apparatus
US7277646B2 (en) Duobinary optical transmitter
RU62316U1 (en) OPTICAL COMMUNICATION SYSTEM
JP3447965B2 (en) Optical transmitter
JPS61292617A (en) Light frequency modulation method
CA2215145A1 (en) Wavelength converter suitable for high bit rates
KR0168911B1 (en) Long distance optical transmission link using spectrum conversion
CA1337438C (en) Digital signal transmission/reception using differential polarization modulation/demodulation
CN114844628A (en) Integrated chip high-dimensional quantum key distribution system
JPS6248823A (en) Optical communication method and optical transmission equipment
JP2021061509A (en) Polarization multiplexed light transmission device