JPS61127072A - Re-formation system of 3-dimensional picture - Google Patents

Re-formation system of 3-dimensional picture

Info

Publication number
JPS61127072A
JPS61127072A JP59248003A JP24800384A JPS61127072A JP S61127072 A JPS61127072 A JP S61127072A JP 59248003 A JP59248003 A JP 59248003A JP 24800384 A JP24800384 A JP 24800384A JP S61127072 A JPS61127072 A JP S61127072A
Authority
JP
Japan
Prior art keywords
contour
contour points
surface model
image
cut piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248003A
Other languages
Japanese (ja)
Inventor
Juntaro Arima
純太郎 有馬
Makoto Kato
誠 加藤
Tetsuo Yokoyama
哲夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59248003A priority Critical patent/JPS61127072A/en
Publication of JPS61127072A publication Critical patent/JPS61127072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To show a more accurate form with the minimum number of contour points by deciding the number of contour points according to the complicatedness of a contour and each cut piece image. CONSTITUTION:A picture is supplied and the contour of the picture is traced by means of a track ball to read the contour coordinates. This process is repeated in the same frequency as the number of sheets of the continuous cut piece images. Then the number of contour points serving as the apexes for production of a surface model in accordance with each cut piece image. Based on this number of contour points, the process to decide the coordinates of the contour points is repeated in the same frequency as the number of the cut piece images. A surface model having the decided contour points as apexes is obtained, and the density is decided on each face of the surface model in response to the surface sloping. Then the see-through conversion is carried out with the surface model. A picture thus re-formed in a 3-dimensional form is displayed to a display device.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、物体の3次元再構成において、1切片像あた
りの表面モデル作成用の輪郭点を決定することに係り、
特に、各切片像により、対象物の大きさが異なる細胞な
どの再構成に好適な方法である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to determining contour points for creating a surface model per section image in three-dimensional reconstruction of an object.
In particular, this method is suitable for reconstructing cells, etc., in which the size of the target object differs depending on each section image.

〔発明の背景〕[Background of the invention]

従来の3次元画像再構成は、人間の胴体のような円柱状
のものを対象としていたため、公知例のように、全切片
像、等角度で輪郭点を求め、すなわち、全切片像、同数
の輪郭点を決定し、3次元画像を再構成していた。しか
し、顕微鏡の対象とするのは、各切片像により、大きさ
や複雑さが異なるので、従来法では、適切な形状を表現
できない場合があった。
Conventional three-dimensional image reconstruction targets cylindrical objects such as the human torso, so as in the known example, contour points are obtained at equal angles in all section images. The contour points of the image were determined and a three-dimensional image was reconstructed. However, since the size and complexity of the microscope target differs depending on the section image, conventional methods may not be able to express an appropriate shape.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、輪郭の複雑さにより各切片像に応じた
輪郭点の数を決定し、より正確な形状を必要最小限の数
で表現させる3次元画像再構成方式を提供することにあ
る。
An object of the present invention is to provide a three-dimensional image reconstruction method that determines the number of contour points for each section image based on the complexity of the contour, and expresses a more accurate shape with the minimum necessary number. .

〔発明の概要〕[Summary of the invention]

本発明方法では、上記目的を達成するために、輪郭が複
雑なものほど、また、長いものほど、輪郭点の数を多く
するような指標を導入して輪郭点を決定した。すなわち
、まず1輪郭の長さを計算し、さらに、複雑さを示す指
標を計算し、この2つの値を用いて、新しい指標をもと
め、これに基づいて輪郭点の数を決定する。
In order to achieve the above object, in the method of the present invention, contour points are determined by introducing an index that increases the number of contour points as the contour becomes more complex or longer. That is, first, the length of one contour is calculated, then an index indicating complexity is calculated, and these two values are used to obtain a new index, and based on this, the number of contour points is determined.

ここで、未定義用語「輪郭点」、「表面モデル」につい
て、第1図を用いて説明する。
Here, the undefined terms "contour point" and "surface model" will be explained using FIG. 1.

物体の3次元再構成は、第1図のように、各切片像間を
3角形の面を貼り合わせて表現している。
Three-dimensional reconstruction of an object is expressed by pasting together triangular surfaces between each section image, as shown in FIG.

このような表現により作成された多面体を「表面モデル
」といい、3角形の頂点に対応するものを「輪郭点」と
いう。
A polyhedron created by such a representation is called a "surface model", and those corresponding to the vertices of the triangle are called "contour points".

〔発明の実施例〕[Embodiments of the invention]

以下9本発明の一実施例を1図に基づいて説明する。ま
ず、第2図は1本発明を適用した3次元画像再構成シス
テムの全体構成図である。1は、画像入出力の制御およ
び画像処理を行う処理装置。
An embodiment of the present invention will be described below based on FIG. First, FIG. 2 is an overall configuration diagram of a three-dimensional image reconstruction system to which the present invention is applied. 1 is a processing device that controls image input/output and performs image processing.

2は、入力画像や出力画像である3次元再構成画像を出
力する表示装置である。3は1表示画像上に、重ねて表
示したカーソル(マーカ)を移動させて輪郭座標を読み
こませるトラックボール、4は、いろいろな操作を行う
キーボードである。5は1輪郭データ、元の画像データ
および再構成された3次元画像を格納するディスクであ
る。
2 is a display device that outputs three-dimensional reconstructed images that are input images and output images. 3 is a trackball for moving a superimposed cursor (marker) on the displayed image to read contour coordinates, and 4 is a keyboard for performing various operations. 5 is a disk that stores one contour data, original image data, and reconstructed three-dimensional image.

次に、上記構成において、その3次元画像再構成の全体
の流れを第3図で、本発明である多面体モデル作成用の
頂点となる輪郭点の1切片像あたすの数の決定の流れを
第3図で説明する。
Next, in the above configuration, the entire flow of three-dimensional image reconstruction is shown in FIG. will be explained using FIG.

まず、全体の流れ図を第4図に示す0画像を入力(処理
ioo、以下r処理Jと略す)し、トラックボールを用
いて、輪郭をトレースし、その座標を読み込ませる(1
01)、この過程を、連続した切片像の枚数だけ繰り返
す(102)、次に。
First, input the 0 image (processing ioo, hereinafter abbreviated as r processing J) whose overall flowchart is shown in Figure 4, trace the outline using a trackball, and read its coordinates (1
01), this process is repeated for the number of consecutive section images (102), and then.

表面モデル作成用の頂点となる輪郭点の数を、各切片像
に応じて決定する(103)、これについては、第3図
を用いて詳しく説明する。この輪郭点の数に基づいて、
輪郭点の座標を決定する(104)、103,104の
過程を、連続切片像の数だけ繰り返す(105)、決定
した輪郭点を頂点する表面モデルを作成し、その表面の
傾きに応じて各面に濃度付けを行い、透視変換を行う(
106)、このようにして、でき上がった3次元再構成
された画像を表示装置に表示する。
The number of contour points serving as vertices for creating a surface model is determined according to each section image (103). This will be explained in detail using FIG. 3. Based on this number of contour points,
Determine the coordinates of the contour points (104). Repeat steps 103 and 104 for the number of continuous section images (105). Create a surface model with the determined contour points as vertices, and Add density to the surface and perform perspective transformation (
106), the resulting three-dimensionally reconstructed image is displayed on a display device.

次に103について第4図を用いて説明する。Next, 103 will be explained using FIG. 4.

各切片像により、対象物の大きさ、複雑さが異なるので
、それらに応じた必要最小限の輪郭点で、輪郭を表現し
たいので、形状の長さ、複雑さに関する指標 KEIJO=L/(4*XS/L”) を導入した。ここで、Lは長さ、Sは面積を表す。
Since the size and complexity of the object differ depending on each section image, we want to express the contour with the minimum necessary contour points according to these, so the index regarding the length and complexity of the shape KEIJO = L / (4 *XS/L") was introduced. Here, L represents length and S represents area.

ここで、分母の(4πXS/L”)は、円の場合には1
となり、最も大きくなり、対象物が複雑になるほど小さ
くなる性質をもっているので、これで、長さを割ると同
一長さであった場合には大きくなる。
Here, the denominator (4πXS/L") is 1 in the case of a circle.
, which is the largest and has the property of becoming smaller as the object becomes more complex, so if you divide the length by this, it will become larger if the length is the same.

そこで、この指標を各切片像ごとに求め、それによって
、各切片像ごとの輪郭点の数を決定する。
Therefore, this index is obtained for each section image, and thereby the number of contour points for each section image is determined.

ここで、この効果について、模式図を用いて説明する。Here, this effect will be explained using a schematic diagram.

第5図−(a)、(b)は、上下の連続した切片像に対
して1本方式と従来法で、各切片像へ輪郭点の数を割り
ふったものである。すなわち、第5図−(a)には、本
方式で、各切片像ごとに指標を算出し、それに基づき、
上図には12点下図には4点を割りふっているが、第5
図−(b)には、従来法で、全切片像に8点づつ割りふ
っている。この例では、第5図−(a)、(b)とも全
体で同じ数の輪郭点であるが、本方式では、各切片像の
大きさ。
FIGS. 5(a) and 5(b) show the number of contour points assigned to each section image using the one-line method and the conventional method for upper and lower continuous section images. That is, in FIG. 5-(a), an index is calculated for each section image using this method, and based on it,
The upper figure has 12 points, and the lower figure has 4 points, but the fifth
In Fig. 2(b), 8 points are assigned to each section image using the conventional method. In this example, the total number of contour points is the same in both FIGS. 5-(a) and (b), but in this method, the size of each section image is the same.

複雑さに応じて1輪郭点の数を割りふることができる。The number of contour points can be assigned depending on the complexity.

C5!明の効果〕 以上、実施例によって説明したように1本発明によれば
、各切片像の対象物の形状の大きさ、複雑さに応じた数
の輪郭点で、より正しい形状を表現できる。
C5! Effect of Brightness] As described above with reference to the embodiments, according to the present invention, a more accurate shape can be expressed with a number of contour points corresponding to the size and complexity of the shape of the object in each section image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面モデル模式図、第2図は3次元画像再構成
におけるハード構成図、第3図は3次元画像再構成プロ
グラムの流れ図、第4図は本発明の詳細な説明するため
の流れ図、第5図(a)t(b)は従来法で輪郭点の数
を決定する対象物の模式図である。 1・・・画像処理装置、2・・・表示*置、3・・・ト
ラック茅 1 目 茅 2 固 #3 ロ ギ 4−9 茅、5′″固
Fig. 1 is a schematic diagram of a surface model, Fig. 2 is a hardware configuration diagram for three-dimensional image reconstruction, Fig. 3 is a flowchart of a three-dimensional image reconstruction program, and Fig. 4 is a flowchart for explaining the present invention in detail. , FIGS. 5(a) and 5(b) are schematic diagrams of an object for which the number of contour points is determined by the conventional method. 1...Image processing device, 2...Display*position, 3...Track thatch 1 Eye grass 2 Hard #3 logi 4-9 Thatch, 5'' hard

Claims (1)

【特許請求の範囲】[Claims] 1、複数枚の切片像を利用して物体の3次元再構成を行
い、その形状を表面モデルを用いて表示するに際し、表
面モデルの頂点となる輪郭点の1切片像あたりの数を形
状の複雑さを表す指標と物体輪郭の長さとを利用して各
切片像に応じて決定することを特徴とする3次元画像再
構成方式。
1. When performing three-dimensional reconstruction of an object using multiple section images and displaying its shape using a surface model, the number of contour points that are the vertices of the surface model per one section image is calculated as follows: A three-dimensional image reconstruction method is characterized in that a determination is made according to each section image using an index representing complexity and the length of an object contour.
JP59248003A 1984-11-26 1984-11-26 Re-formation system of 3-dimensional picture Pending JPS61127072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248003A JPS61127072A (en) 1984-11-26 1984-11-26 Re-formation system of 3-dimensional picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248003A JPS61127072A (en) 1984-11-26 1984-11-26 Re-formation system of 3-dimensional picture

Publications (1)

Publication Number Publication Date
JPS61127072A true JPS61127072A (en) 1986-06-14

Family

ID=17171740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248003A Pending JPS61127072A (en) 1984-11-26 1984-11-26 Re-formation system of 3-dimensional picture

Country Status (1)

Country Link
JP (1) JPS61127072A (en)

Similar Documents

Publication Publication Date Title
US6208360B1 (en) Method and apparatus for graffiti animation
US6549201B1 (en) Method for constructing a 3D polygonal surface from a 2D silhouette by using computer, apparatus thereof and storage medium
US6307554B1 (en) Apparatus and method for generating progressive polygon data, and apparatus and method for generating three-dimensional real-time graphics using the same
Dietrich et al. Edge transformations for improving mesh quality of marching cubes
US6989830B2 (en) Accurate boolean operations for subdivision surfaces and relaxed fitting
Stanculescu et al. Freestyle: Sculpting meshes with self-adaptive topology
JPH07120434B2 (en) Method and apparatus for volume rendering
Peng et al. Interactive modeling of topologically complex geometric detail
CN115984476A (en) Three-dimensional model cutting method based on texture
JP2020035216A (en) Image processing device, method, and program
JPS61127072A (en) Re-formation system of 3-dimensional picture
JP3341549B2 (en) 3D shape data processing device
WO2013038548A1 (en) Rendering device, rendering method and rendering program
JP3337608B2 (en) Analysis simulation device
CN112002019A (en) Method for simulating character shadow based on MR mixed reality
Wang Robust Geometry Kernel and UI for Handling Non-orientable 2-Mainfolds
Shimabukuro et al. Visualisation and reconstruction in dentistry
JPH10111934A (en) Method and medium for three-dimensional shape model generation
Becher et al. Multi-attribute Visualization and Improved Depth Perception for the Interactive Analysis of 3D Truss Structures
CN112182721B (en) Method, device and equipment for brushing and pasting areas of three-dimensional building materials and storage medium
JP2671652B2 (en) 3D shape modeling device
JPS61196375A (en) Method of reconstructing three-dimensional image
JP2002328958A (en) Mesh generation method, program, recording medium, and mesh generation system
JPH03144781A (en) Computer graphic apparatus and method
JPS61195469A (en) Picture displaying method