JPS61126886A - Solid-state color photographing device - Google Patents

Solid-state color photographing device

Info

Publication number
JPS61126886A
JPS61126886A JP59246265A JP24626584A JPS61126886A JP S61126886 A JPS61126886 A JP S61126886A JP 59246265 A JP59246265 A JP 59246265A JP 24626584 A JP24626584 A JP 24626584A JP S61126886 A JPS61126886 A JP S61126886A
Authority
JP
Japan
Prior art keywords
signal
circuit
carrier wave
color
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59246265A
Other languages
Japanese (ja)
Inventor
Hiroaki Kotaki
小滝 弘昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59246265A priority Critical patent/JPS61126886A/en
Publication of JPS61126886A publication Critical patent/JPS61126886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To get a high quality colored image by calculating mutually >=two output signals of the 1st, 2nd, 3rd and 4th synchronous detection circuits which applies synchronous detection to a modulation signal R and a modulation signal B both are separated in color by two carrier waves whose phase are shifted by pi/2. CONSTITUTION:Bm(t), Rm(t) are detected by three synchronous detection circuits composed of a multiplication circuits 41-43, LPFs 44-46 of 500kHz cut-off frequency and a transfer circuit 47. A carrier wave to be put in a multiplication circuit 43 is phiB0, and carrier wave to be put in the multiplication circuit 42 is phiR0. A carrier wave phiR90 to be put in a multiplication circuit 43 shifted by pi/2 in phase from phiR0. Therefore, B(t)0, R(t)0 which are originally the same in phase and the same in synchronous detection output can be obtained from LPFs 44, 45. A D/C synchronous detection output R(t) by a carrier wave which shifts by pi/2 in phase with the carrier wave of the modulated R signal can be obtained from an LPF46. After controlled in gain on the basis of the fixed level by a gain control circuit 48, R(t)90 is added to addition circuit 50 to get B(t). MTF is improved and B detection wave in which moire is decreased, can be obtained because R(t)90 of good resolution is added to B(t).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は単−搬送波周波数分離形固体力ラー撮像装置に
おいて、加算によって得られる色信号のモアレを軽減さ
せ九固体カラー撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a single-carrier frequency separation type solid-state color imaging device that reduces moiré in color signals obtained by addition.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子を1つ用いる単一搬送波周波数分離形の固
体カラー撮像装置では、色フィルタの工夫により赤色(
以下、几と言う)信号と青色(同B)信号が周波数イン
ターリーブの関係になっていることを利用し、くシ形フ
ィルタを用いてRlBを分離している。このような撮像
装置において固体撮像素子の前面に装着する色フイルタ
配列風の一例を第6図に示す。第6図では全色光透過(
以下、Wと言う)フィルタ、緑色(同G)フィルタ、シ
アン色(同Cy)フィルタ、黄色(lifflYe)フ
ィルタの4色から構成され、ている。1つの色フィルタ
の単位は固体撮gII素子の1画素に対応しており、テ
レビジ菖ンのインターレースのために′垂直方向の2画
素が同一色となっている。また第7図には色分離のため
のくし形フィルタの構成図を示も固体撮像素子からの出
力信号は所定の帯域通過フィルタ(以下BPFと言う)
■で変調色信号成分を取り出された後、1水平走査期間
(以下IHと言う)遅延線αりと加算回路t13%減算
回路Iで構成されるくし形フィルタに加えられ、色分離
される。すなわちその加算出力からはB信号、減算出力
からはR信号が得られる。これは第6図の色フィルタ配
列において、B成分は1フイールド内の2走査線間で同
相、凡成分は逆相となシ、互いに周波数インターリーブ
の関係にあるからである。
A solid-state color imaging device using a single-carrier frequency separation type that uses one solid-state imaging device can produce red (
Taking advantage of the frequency interleaving relationship between the blue (hereinafter referred to as R) signal and the blue (B) signal, a comb-shaped filter is used to separate RlB. FIG. 6 shows an example of the arrangement of color filters mounted on the front surface of the solid-state image sensor in such an image sensor. Figure 6 shows full color light transmission (
It consists of four colors: a green (hereinafter referred to as "W") filter, a green (hereinafter referred to as "G") filter, a cyan ("Cy") filter, and a yellow (lifflYe) filter. The unit of one color filter corresponds to one pixel of the solid-state GII sensor, and two pixels in the vertical direction have the same color due to the interlacing of the television screen. Furthermore, Fig. 7 shows a configuration diagram of a comb filter for color separation.The output signal from the solid-state image sensor is passed through a predetermined band pass filter (hereinafter referred to as BPF).
After the modulated color signal components are extracted in step (3), they are applied to a comb filter consisting of a delay line α for one horizontal scanning period (hereinafter referred to as IH) and an addition circuit t13% subtraction circuit I, and are color-separated. That is, the B signal is obtained from the addition output, and the R signal is obtained from the subtraction output. This is because, in the color filter array of FIG. 6, the B component is in phase between two scanning lines within one field, and the ordinary component is in opposite phase, so that they are in a frequency interleaved relationship with each other.

このようにR成分は走査線間の垂直相関により一様被写
体の場合には実質的に空間サンプリングの水平方向の周
波数を2倍にすることができ、全面に存在するG成分と
同等となる。しかしながらB成分は走査線間で同相であ
るので水平方向の空間サンプリング周波数はG、几に比
して1/2となってしまうつしたがってB成分は空間サ
ンプリングによる折返し歪のレベルが大きく、またG、
R成分との解像度のバランスも悪く、再生画像ではモア
レ、偽信号と呼ばれる画質劣化の大きな原因となる現象
が発生していた。
In this way, in the case of a uniform object, the R component can substantially double the horizontal frequency of spatial sampling due to the vertical correlation between scanning lines, and becomes equivalent to the G component that exists over the entire surface. However, since the B component is in phase between the scanning lines, the spatial sampling frequency in the horizontal direction is 1/2 that of the G and F. Therefore, the B component has a large level of aliasing distortion due to spatial sampling, and the G ,
The balance between the resolution and the R component was also poor, and in the reproduced image, phenomena called moiré and false signals, which were major causes of image quality deterioration, occurred.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような従来技術の欠点を除去しB信号の
モアレ成分を軽減し、偽信号、モアレの少ない良質なカ
ラー画像の得られる固体カラー撮像装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a solid-state color imaging device that eliminates the above-mentioned drawbacks of the prior art, reduces the moiré component of the B signal, and provides a high-quality color image with less false signals and moiré.

〔発明の概要〕[Summary of the invention]

本発明は単一搬送波周波数分離形の固体撮像装置におい
て、色分離された変調R信号を互いに位相が”/2ずれ
た2つの搬送波により同期検波する第1及び第2の同期
検波回路と、色分離された変調B信号を互いに位相が“
/2ずれた2つの搬送波により同期検波する@3及び第
4の同期検波回路と、上記4つの同期検波回路の出力信
号のうち少なくとも2つ以上の出力信号を相互に演算す
る演算回路とを具備することによシ上記目的を達成する
ものである。
The present invention provides a single carrier frequency separation type solid-state imaging device including first and second synchronous detection circuits that synchronously detect a color-separated modulated R signal using two carrier waves whose phases are shifted by "/2" from each other; The phase of the separated modulated B signals is “
Comprising @3 and 4th synchronous detection circuits that perform synchronous detection using two carrier waves shifted by /2, and an arithmetic circuit that mutually calculates at least two or more output signals among the output signals of the four synchronous detection circuits. By doing so, the above objectives are achieved.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して詳細に説明する
。第1図に本発明の固体撮像素子を1つ用いる単−搬送
波周波数分離形固体力ラー撮像装置の回路構成図を示す
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a circuit configuration diagram of a single-carrier frequency separation type solid-state image pickup device using one solid-state image pickup device of the present invention.

撮像レンズQ1)を介して入射された光学像は、色フィ
ルタ@を通って固体撮像素子たとえば電荷結合撮像素子
(以下CCD撮像素子という)(ハ)の感光面上に結像
される。CCD撮像素子(ハ)はたとえば垂直方向50
0画素、水平方向400画素が配列されたものである。
The optical image incident through the imaging lens Q1) passes through a color filter @ and is imaged on the photosensitive surface of a solid-state imaging device, such as a charge-coupled imaging device (hereinafter referred to as a CCD imaging device) (c). For example, the CCD image sensor (c)
0 pixels and 400 pixels in the horizontal direction are arranged.

また色フィルタ(イ)はたとえば第6図に示すような配
列である。すなわち第n走査線ではWフィルタとGフィ
ルタとが水平方向に2画素周期で交互に並び、第n+1
走査線ではayフィルタとYCフィルタとが水平方向に
2画素周期で交互に並び、それ以下の水平走査行では上
記2つの水平行が交互に繰り返されるという構成になっ
ている。なおテレビジランのインターレースのために、
奇数フィールドでは走査線n 、 n+1 、・・・の
ように読出され、偶数フィールドでは走査線n+263
 。
Further, the color filters (A) are arranged, for example, as shown in FIG. That is, in the n-th scanning line, the W filter and the G filter are arranged alternately in the horizontal direction at a 2-pixel period, and the
In the scanning line, the ay filter and the YC filter are arranged alternately in the horizontal direction at a two-pixel period, and in the subsequent horizontal scanning lines, the two horizontal lines are alternately repeated. In addition, for the interlacing of TV Gillan,
In odd fields, scanning lines n, n+1,... are read out, and in even fields, scanning lines n+263 are read out.
.

n+264のようにずらして読出される。It is read out with a shift such as n+264.

このような色フィルタ(至)を通シ空間変調された光は
、パルス発生回路(至)から得られるパルス信号駆動回
路(ロ)を通して変換した駆動パルスでCCDCC撮像
素子駆動させることにより電気的に変調さ・れた電気信
号となシ、増幅器−を介して所定のレベルに増幅される
。色フィルタ(ハ)は周波数分離形の配列であるので、
増幅器@の出力信号は直流成分である輝度信号と、互い
に周波数インターリーブの関係にあるR、Bの変調色信
号成分とが合成された形となっている。水平方向が40
0画素の場合、変調色信号の中心周波数は3.58MH
zである。
The light that has been spatially modulated through such a color filter (to) is electrically converted to a CCDC image sensor by driving the CCDC image sensor with a drive pulse converted through a pulse signal drive circuit (b) obtained from a pulse generation circuit (to). The modulated electrical signal is then amplified to a predetermined level via an amplifier. Since the color filter (c) is a frequency-separated array,
The output signal of the amplifier @ is a combination of a luminance signal, which is a DC component, and R and B modulated color signal components, which are in a frequency interleaved relationship with each other. horizontal direction is 40
In the case of 0 pixel, the center frequency of the modulated color signal is 3.58MH
It is z.

この増幅器Q4の出力は速断周波数がそれぞれ3.01
1i[Hz、 0.5MHzの第1の低域通過フィルタ
(以下LPFと言う)番*ホ(ハ)、第2のLPF@を
介してそれぞれ輝度信号Y、低周波色信号YLとなる。
The output of this amplifier Q4 has a fast-cutting frequency of 3.01, respectively.
1i [Hz, 0.5 MHz first low-pass filter (hereinafter referred to as LPF) No. *E (C) and second LPF@, respectively, to become a luminance signal Y and a low-frequency chrominance signal YL.

低周波色信号YLは第2の減算回路(至)に加えられる
The low frequency color signal YL is applied to a second subtraction circuit (to).

一方増@a@の出力信号の一部は通過帯域が3.58 
MHz±0.5 MHzのBPF@を通シ変調色信号C
となる。この変調色信号CはRとBが周波数インターリ
ーブの関係にあるので、IH遅延線(至)、加算回路−
及び第1の減算回路(30)から構成されるくし形フィ
ルタにより変調R信号、変調B信号に分離される。色フ
ィルタ(22の配列によりこの場合は、加算回路■から
は変調B信号が得られ、第1の減算回路(30)からは
変調R信号が得られる。これらの変調R1B信号は検波
及び七アレ軽減回路Gυにて検波され、かつ七アレが軽
減されてR,B信号となる。これらのR,B信号の一部
は低周波色信号YLとともに第2の減算回路GSDにて
G信号を生成する。以上のようにして得なれた輝度信号
Y及びG、8.几信号はカラーエンコーダ(至)K加え
られ、標準のテレビジョン信号の1つであるNT8C信
号が出力端子(至)から得られるという構成になってい
る。
On the other hand, the passband of a part of the output signal of increase@a@ is 3.58
MHz±0.5 MHz BPF @ through-modulation color signal C
becomes. This modulated color signal C has R and B in a frequency interleaved relationship, so the IH delay line (end), adder circuit -
and a first subtraction circuit (30), the signal is separated into a modulated R signal and a modulated B signal. In this case, the modulated B signal is obtained from the adder circuit (2) and the modulated R signal is obtained from the first subtractor circuit (30) due to the arrangement of color filters (22).These modulated R1B signals are The signal is detected by the reduction circuit Gυ, and the seven elements are reduced to become R and B signals.A part of these R and B signals is used together with the low frequency color signal YL to generate the G signal in the second subtraction circuit GSD. The luminance signals Y and G and the 8.Light signal obtained as above are added to the color encoder (to) K, and the NT8C signal, which is one of the standard television signals, is obtained from the output terminal (to). The structure is such that

ここで本発明の要点である検波及びモアレ軽減回路01
)の動作を図面をもって詳細に説明する。第2図に検波
及びモアレ軽減回路C31)の内部構成図を示す。第1
図のくし形フィルタの出力である色分離された変調B、
R信号をそれぞれ第2図の細0Rm(t)とする。この
Bm(t) 、 Rm(1)は乗算回路ha乃至(43
速断周波数2>E 500KHzであるLPF(44乃
至−1移相回路回で構成される3つの同期検波回路で検
波される。ここで乗算回路(41)K入る般送波は変調
B信号と周波数と位相が等しいφB0であり乗算回路(
ハ)に入る搬送波は変調R信号と周波数と位相が等しい
φ8゜であり、乗算回路器に入る搬送波φ1.。は移相
回路4?)Kよシφ と位相が′/2ずれている。
Here, the detection and moiré reduction circuit 01 which is the main point of the present invention
) will be explained in detail with reference to the drawings. FIG. 2 shows an internal configuration diagram of the detection and moiré reduction circuit C31). 1st
The color-separated modulation B, which is the output of the comb filter in the figure,
Let the R signal be the narrow 0Rm(t) in FIG. These Bm(t) and Rm(1) are multiplier circuits ha to (43
Detected by three synchronous detection circuits consisting of LPF (44 to -1 phase shift circuit circuits) with fast-acting frequency 2>E 500KHz.Here, the general transmission wave that enters the multiplier circuit (41) K is the modulated B signal and the frequency φB0 has the same phase as the multiplier circuit (
The carrier wave entering c) is φ8° with the same frequency and phase as the modulated R signal, and the carrier wave φ1. . Is it phase shift circuit 4? ) The phase is shifted by '/2 from K and φ.

O したがってLPFf44及び(ハ)からはそれぞれ本来
の同相同期検波出力であるB(00及びR(t)。が得
られ、Lppt4からは変、調B信号の搬送波と位相が
f/2ずれた搬送波による直交同期検波出力R(t)、
oが得られる。
O Therefore, from LPFf44 and (c), the original in-phase synchronous detection outputs B(00 and R(t)) are obtained, respectively, and from Lppt4, the phase is shifted by f/2 from the carrier wave of the modulated and harmonic B signal. Quadrature synchronous detection output R(t) by carrier wave,
o is obtained.

回路の動作が理想状態ではB(t)、。、 R(t)9
0ともに出力信号はOとなるが、実際には乗算回路(6
)の特性のばらつきKより、直交同期検波出力には同相
同期検波出力の微分波形に類似した出力が得られる。
When the circuit operates in an ideal state, B(t). , R(t)9
0, the output signal is O, but in reality the multiplier circuit (6
), an output similar to the differential waveform of the in-phase synchronous detection output is obtained as the orthogonal synchronous detection output.

その様子を第3図及び第4図を用いて説明する。The situation will be explained using FIGS. 3 and 4.

第3図は乗算回路の一例で、いわゆる二重平衡差動増幅
器と呼ばれている回路である。いiR倍信号例にとると
、変調R(t)信号が端子(64)から入力され、搬送
波φ8.。が端子(63)から入力される。旦Qが第4
図(a)に示される様な波形の場合、第3図のトランジ
スタ(61)及び(62)のコレクタ電流の波形は第4
図中) 、 (C)に示すように相互に微小時間差Δt
が発生する。これはトランジスタ(61)のベースから
エミッタまでの遅延時間に相当する遅れである。この微
小時間差とトランジスタ自身の周波数特性のばらつきに
より、本来の同相同期検波出力部)。が第4図(d)に
示されるものであるとすると、直交同期検波出力Fat
)9oは同図<e)に示される様な微分波形に類似した
出力が得られるのである。ただし速断周波数が500K
HzのLPFf43を通っているので、mu、oもその
帯域内での応答ということになる。
FIG. 3 shows an example of a multiplication circuit, which is a so-called double-balanced differential amplifier. Taking the iR times signal example, the modulated R(t) signal is input from the terminal (64), and the carrier wave φ8. . is input from the terminal (63). Dan Q is the 4th
In the case of the waveform shown in Figure (a), the waveform of the collector current of transistors (61) and (62) in Figure 3 is
) and (C), there is a small time difference Δt between them.
occurs. This is a delay corresponding to the delay time from the base to the emitter of the transistor (61). Due to this minute time difference and variations in the frequency characteristics of the transistors themselves, the original in-phase synchronous detection output section). is shown in FIG. 4(d), the orthogonal synchronous detection output Fat
)9o provides an output similar to the differential waveform shown in <e) of the same figure. However, the fast-acting frequency is 500K.
Since the signal passes through the Hz LPF f43, mu and o are also responses within that band.

このR+(t)、oは利得制御回路6υによシ所定のレ
ベルに利得制御された後、玖0の同相同期検波出力B(
t)oとともに加算回路Qに加えられ、最終的な検波出
力であるB(t)が得られる。このB(t)は解像度の
良いR(t)、。
After the gain of R+(t) and o is controlled to a predetermined level by the gain control circuit 6υ, the in-phase synchronous detection output B(
It is added to the adder Q together with t)o, and the final detection output B(t) is obtained. This B(t) is R(t) with good resolution.

が加えられているので、低周波部分では輪郭強調がなさ
れ、500KHzに比較的近い部分ではレベル増強がな
される。そして結果としてMTFQldodulati
on Transfer Function)が向上し
、七アレが軽減されたB検波信号が得られる。なおり検
波信号の補正をした分、全体としての白バランスを取る
ために、R(t)soは第2の利得制御回路531Cよ
り所定のレベルに利得制御されて、R(t5とともに第
2の加算回路(財)に入り最終的な8検波信号である&
0が得られる。
is added, the contour is emphasized in the low frequency part, and the level is enhanced in the part relatively close to 500 KHz. and as a result MTFQldodulati
On Transfer Function) is improved, and a B detection signal with reduced noise can be obtained. In order to maintain white balance as a whole by correcting the detection signal, R(t)so is gain controlled to a predetermined level by the second gain control circuit 531C. Enters the adder circuit (incorporated) and becomes the final 8-detection signal &
0 is obtained.

七アレ軽減及び検波回路は第2図により説明したが回路
構成はこれに限るものではない。例えば色フィルタ配列
が第8図に示されるものである場合、1フイールド内の
2走査線間でR成分は同相、B成分は逆相となる。した
がってモアレ軽減及び検波回路は第5図に示すように構
成される。第5図において第2図と同じ部分には同じ番
号が付しである。
Although the seven-array reduction and detection circuit has been described with reference to FIG. 2, the circuit configuration is not limited to this. For example, if the color filter array is as shown in FIG. 8, the R component will be in phase and the B component will be in opposite phase between two scanning lines within one field. Therefore, the moiré reduction and detection circuit is constructed as shown in FIG. In FIG. 5, the same parts as in FIG. 2 are given the same numbers.

すなわち変調B信号Bm(t)を検波する乗算回路(6
1)が設けられ、搬送波φBoを移相回路(63)で“
/2移相させた搬送波φB90がにの乗算回路(61)
に加えられる。乗算回路(61)の出力はL P F 
(62)を介して検波信号B(0,。となり、これが利
得制御回路(ハ)す1でレベル調整された後、加算回路
fi 、 5m)に加えられ検波信号B(t)。、  
R(t)。を補正する。
That is, a multiplication circuit (6
1) is provided, and the carrier wave φBo is transferred by a phase shift circuit (63).
/2 phase shifted carrier wave φB90 multiplication circuit (61)
added to. The output of the multiplication circuit (61) is L P F
(62) becomes the detected signal B(0,.), which is level-adjusted by the gain control circuit (c) 1 and then added to the adder circuit fi, 5m to form the detected signal B(t). ,
R(t). Correct.

CCD撮像素子の水平画素数は400を例に説明したが
、これに限るものではない。また撮像素子としてはCC
D撮像素子を例に取り上げたがこれに限定するものでは
なく、MO8型撮像素子など他の撮像素子であってもよ
い。さらにCCD撮像素子の電荷蓄積方式は実施例で説
明したフレーム蓄積ではなく、フィールド蓄積の場合で
もよい。
Although the number of horizontal pixels of the CCD image sensor is described as 400 as an example, it is not limited to this. Also, as an image sensor, CC
Although the D image sensor is taken as an example, the present invention is not limited to this, and other image sensors such as an MO8 type image sensor may be used. Furthermore, the charge storage method of the CCD image sensor may be field storage instead of the frame storage described in the embodiment.

いずれにせよ単一搬送波周波数分離形カラーカメラであ
れば本発明は実施することができる。このように本発明
はその主旨から逸脱しない範囲において種々の変形が可
能である。
In any case, the present invention can be implemented with a single carrier frequency separation type color camera. As described above, the present invention can be modified in various ways without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、色分離された変調R,B信号から同相
同期検波と直交同期検波の結果を巧みに演算して検波J
B倍信号得ている0従来、同一フィールド内の隣接走査
線間で同相であるB成分は、その解像度がG、凡に比べ
て悪く、再生画像でのモアレ、偽信号の大きな原因の1
つになっていた。しかし解像度が良く、微分特性に類似
した特性をもつ凡の直交同期検波信号を加えることによ
り、低周波側では輪郭強調がなされ、500 KHzに
近い周波数ではし°ベル増強がなされるので、検波B信
号のレスポンスを補償することができる。
According to the present invention, the detection J
Conventionally, the resolution of the B component, which is in phase between adjacent scanning lines in the same field, is poorer than that of G, and is one of the major causes of moiré and false signals in reproduced images.
It had become. However, by adding an ordinary orthogonal synchronous detection signal with good resolution and characteristics similar to the differential characteristics, the contour is emphasized on the low frequency side and the amplitude is enhanced at frequencies close to 500 KHz, so the detection B The response of the signal can be compensated for.

これにより画質劣化の主要原因の1つであるモア、 し
、偽信号を大いに軽減できるという特徴をもつり再生画
像上で特にモアレ、偽信号が目立つのは被写体が無彩色
で比較的高周波成分の多い場合であるが、この無彩色画
像の場合は直交同期検波出力波形が自然となり、本発明
の効果はさらに大なるものがある。また同期検波方式で
あるので被写体の暗い所から明るい所まで、すなわち信
号レベルの小さいところから大きいところまで検波特性
の直線性が良く、忠実なカラー再生画像が得られるとい
う利点もある。さらに乗算回路を構成している二重平衡
差動増幅器も高性能のものは必要な〈従来性能の1まで
よいと−う製造上の利点もある。
This feature greatly reduces moiré and false signals, which are one of the main causes of image quality deterioration. In the case of this achromatic image, which is often the case, the orthogonal synchronous detection output waveform becomes natural, and the effect of the present invention is even greater. Furthermore, since it is a synchronous detection method, the linearity of the detection characteristics is good from dark to bright areas of the subject, that is, from low to high signal levels, and it has the advantage that faithful color reproduction images can be obtained. Furthermore, the double-balanced differential amplifier constituting the multiplier circuit is also required to have high performance (it has the manufacturing advantage of being able to achieve the conventional performance of 1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による固体カラー撮像装置の一実施例を
示す構成図、第2図は第1図の要部を詳細に示すブロッ
ク図、第3図は第2図の要部の一例を示す回路構成図、
第4図は第3図の動作を説明するための波形図、第5図
は第2図の要部の他の例を示す回路構成図、第6図は色
フィルタ配列の一例を示す構成図、第7図はくし形フィ
ルタの回路構成図、第8図は色フィルタ配列の他の例を
示す構成図である。 る・・パ固体撮像素子、  路・・・1水平走査期間遅
延線、四・・加算回路、   刃・・・減算回路。 41〜43 、61・・・乗算回路、 44〜46 、62・・・低域通過フィルタ、   4
7 、63・・・移相回路、48.49・・利得制御回
路、閣、51・・・加算回路。 第1図 第2図 第38 第4図 第512!
FIG. 1 is a block diagram showing an embodiment of a solid-state color imaging device according to the present invention, FIG. 2 is a block diagram showing the main part of FIG. 1 in detail, and FIG. 3 is an example of the main part of FIG. A circuit diagram showing
4 is a waveform diagram for explaining the operation of FIG. 3, FIG. 5 is a circuit configuration diagram showing another example of the main part of FIG. 2, and FIG. 6 is a configuration diagram showing an example of a color filter arrangement. , FIG. 7 is a circuit configuration diagram of a comb filter, and FIG. 8 is a configuration diagram showing another example of a color filter arrangement. Ru...P solid-state image sensor, Line...1 horizontal scanning period delay line, Fourth...addition circuit, Blade...subtraction circuit. 41-43, 61...Multiplication circuit, 44-46, 62...Low pass filter, 4
7, 63...Phase shift circuit, 48.49...Gain control circuit, 51...Addition circuit. Figure 1 Figure 2 Figure 38 Figure 4 Figure 512!

Claims (1)

【特許請求の範囲】 2次元に画素が配列された固体撮像素子に色フィルタア
レイを介して結像される光情報を前記固体撮像素子によ
り電気信号に変換して順次読出しその読出された信号と
この信号を1水平走査期間遅延した信号とを加算して第
1の変調色信号を分離し減算して第2の変調色信号を分
離する単一搬送波周波数分離形のカラー固体撮像装置に
おいて、前記第1の変調色信号を第1の搬送波で同期検
波する第1の検波回路と、 前記第2の変調色信号を第2の搬送波で同期検波する第
2の検波回路と、 前記第2の変調色信号を前記第2の搬送波と位相がπ/
2異なる第3の搬送波で同期検波する第3の検波回路と
、 前記第3の検波回路の出力を前記第1第2の検波回路の
出力に加算して第1第2の色信号を得る手段とを具備し
たことを特徴とする固体カラー撮像装置。
[Claims] Optical information imaged on a solid-state image sensor in which pixels are arranged two-dimensionally through a color filter array is converted into an electrical signal by the solid-state image sensor and sequentially read out. In the single carrier frequency separation type color solid-state imaging device, the signal is added to a signal delayed by one horizontal scanning period to separate the first modulated color signal and subtracted to separate the second modulated color signal. a first detection circuit that synchronously detects a first modulated color signal with a first carrier wave; a second detection circuit that synchronously detects the second modulated color signal with a second carrier wave; and the second modulation circuit. The phase of the color signal and the second carrier wave is π/
a third detection circuit that performs synchronous detection using two different third carrier waves; and means for adding the output of the third detection circuit to the output of the first and second detection circuit to obtain a first and second color signal. A solid-state color imaging device comprising:
JP59246265A 1984-11-22 1984-11-22 Solid-state color photographing device Pending JPS61126886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246265A JPS61126886A (en) 1984-11-22 1984-11-22 Solid-state color photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246265A JPS61126886A (en) 1984-11-22 1984-11-22 Solid-state color photographing device

Publications (1)

Publication Number Publication Date
JPS61126886A true JPS61126886A (en) 1986-06-14

Family

ID=17145948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246265A Pending JPS61126886A (en) 1984-11-22 1984-11-22 Solid-state color photographing device

Country Status (1)

Country Link
JP (1) JPS61126886A (en)

Similar Documents

Publication Publication Date Title
JP3735867B2 (en) Luminance signal generator
JP2936760B2 (en) Color television camera device
JPH0575235B2 (en)
JPH0352276B2 (en)
JPH0117316B2 (en)
JPH0724422B2 (en) Luminance signal generation circuit for color TV camera
JPS6118912B2 (en)
JPS60217762A (en) Output signal reproducing circuit of solid-state image pickup device
JPS6048953B2 (en) Color solid-state imaging device
JPS6118913B2 (en)
JPS6251037B2 (en)
JPS61126886A (en) Solid-state color photographing device
JPH08275185A (en) Contour correction circuit
JPH054878B2 (en)
JPS6238390Y2 (en)
JP3087013B2 (en) Color video camera signal processing circuit and video signal processing method
JPS6127955B2 (en)
JPH0474916B2 (en)
JPH07107496A (en) Solid state image pickup device
JPH1155680A (en) Video camera system
JPS60132487A (en) Solid-state image pickup device
JPH0644824B2 (en) Solid-state imaging device
JPS6243398B2 (en)
JPH06153217A (en) Digital signal processing camera
JPS6246113B2 (en)