JPS61126457A - Measuring method of mass of mixture of multiphase flow in conduit - Google Patents

Measuring method of mass of mixture of multiphase flow in conduit

Info

Publication number
JPS61126457A
JPS61126457A JP24816884A JP24816884A JPS61126457A JP S61126457 A JPS61126457 A JP S61126457A JP 24816884 A JP24816884 A JP 24816884A JP 24816884 A JP24816884 A JP 24816884A JP S61126457 A JPS61126457 A JP S61126457A
Authority
JP
Japan
Prior art keywords
multiphase flow
mixed
resistance value
amount
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24816884A
Other languages
Japanese (ja)
Inventor
Kazuo Koda
和郎 幸田
Yutaka Suzukawa
豊 鈴川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24816884A priority Critical patent/JPS61126457A/en
Publication of JPS61126457A publication Critical patent/JPS61126457A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To facilitate measuring operation by linking a measurement ring with a conduit and measuring the electric resistance of a multiphase flow between metallic rings, and calculating the amount of mixture of the multiphase flow from the relation between the amount of mixture and an electric resistance value calculated as to a multiphase flow whose mixture amount is already known. CONSTITUTION:A measuring device 1 consists of the measurement ring 4 constituted by linking three insulation rings 2 and two metallic rings 3 in series and an electric resistance measuring instrument 6 connected to the metallic rings 3through lead wires 5. Then, a two-phase flow obtained by mixing a material which has greatly different electric conductivity with electrically conductive liquid is run through the measurement ring 4 to measure the electric resistance between the metallic rings 3 and 3. Then, the two-phase flow whose mixture amount of a mixed material is already known is measured by the measuring device 1 to fine the mass to the mixture from a measured electric resistance value of the basis of the relation between the electric resistance value and mass of the mixture.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電気伝導性の液体と気体との混相流など、
電気伝導性の液体中に電気伝導性が前記液体と大きく異
なる物質が混合した、管路内を流れる二相の混相流の前
記物質の混合量を測定する方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a multiphase flow of an electrically conductive liquid and a gas, etc.
The present invention relates to a method for measuring the amount of a mixed substance in a two-phase multiphase flow flowing in a pipe, in which an electrically conductive liquid is mixed with a substance whose electrical conductivity is significantly different from that of the liquid.

〔従来技術とその問題点〕[Prior art and its problems]

管路内を流れる液体に気体が混合した二相の混相流の前
記気体の混合割合(以下ボイド率と称す)は、(1)ガ
ンマ線密度計による方法、(2)静電容量法、(3)電
極法、(4)光学プローブ法等によって、測定されてい
る。このうち、(3)の電極法、(4)の光学プローブ
法では、混相流中に浸漬した電極または光学プローブの
近傍の局所のボイド率が測定されるので、混相流のある
程度の大きさの有限体積中の平均のディト率を測定する
のには、適してない。また、これら(3) 、 (4)
の方法では、電極または光学ブローブを混相流中に浸漬
するので、流れの状態を乱す可能性がある。
The mixing ratio of gas (hereinafter referred to as void ratio) of a two-phase multiphase flow in which gas is mixed with liquid flowing in a pipe can be determined by (1) a method using a gamma ray densitometer, (2) a capacitance method, (3) ) electrode method, (4) optical probe method, etc. Of these, in the electrode method (3) and the optical probe method (4), the local void fraction near the electrode or optical probe immersed in the multiphase flow is measured. It is not suitable for measuring the average det rate in a finite volume. Also, these (3) and (4)
The method involves immersing electrodes or optical probes in a multiphase flow, which can disturb the flow conditions.

次に、(2)の静電容量法、(1)のガンマ線密度計に
よる方法では、混相流中にセンサーを浸漬することがな
いので、流れの状態を乱すことなく混相流のボイド率を
測定することができ、またボイド率は、混和流の有限体
積中の平均ボイド率が測定される。
Next, with the capacitance method (2) and the gamma ray density meter method (1), the sensor is not immersed in the multiphase flow, so the void ratio of the multiphase flow can be measured without disturbing the flow state. The void fraction can be measured as the average void fraction in a finite volume of the mixing flow.

し力・しながら、(2)の静電容量法では、ボイド率を
測定できるのは、液体が非電気伝導性の混相流の場合で
あって、液体が電気伝導性の混相流の場合にはボイド率
を測定できない。また液体が非電導性の混相流にあって
も、ボイド率の変化による混相流の静電容量変化は、数
pFというように一般に極めて小さいので、ボイド率を
高い精度で測定することが内皮1tな場合が多い。これ
に対しく1)のガンマ線密度計による方法では、液体が
電気゛   伝導性の混相流にあっても、ボイド率を測
定できる。しかし、(1)の方法では、一般に測定精度
を高めるためには、線源を強力にしたり、測定時間を長
くする必要があり、測定の安全性、迅速性に問題がある
。また、混相流の流れの様式(気泡流、スラグ流、層状
流等)によらず正確な測定ができるようにするためには
、混相流が流れる管路の管外周面上に複数個の線源を設
け、測定結果を演算処理してボイド率を求めるようにす
る必要がある。
However, in the capacitance method (2), void fraction can be measured only when the liquid is a non-electrically conductive multiphase flow, and when the liquid is an electrically conductive multiphase flow. cannot measure void fraction. Furthermore, even if the liquid is in a non-conductive multiphase flow, the change in capacitance of the multiphase flow due to a change in void fraction is generally extremely small, such as a few pF. There are many cases. On the other hand, in the method 1) using a gamma ray densitometer, the void fraction can be measured even if the liquid is in an electrically conductive multiphase flow. However, in method (1), in order to improve measurement accuracy, it is generally necessary to make the radiation source more powerful or to lengthen the measurement time, which poses problems in the safety and speed of measurement. In addition, in order to make accurate measurements regardless of the flow style of the multiphase flow (bubbly flow, slug flow, laminar flow, etc.), it is necessary to place multiple lines on the outer circumferential surface of the pipe through which the multiphase flow flows. It is necessary to provide a source and calculate the void ratio by processing the measurement results.

そのため、(1)の方法ではボイド率測定のだめの費用
が増大する。
Therefore, in method (1), the cost of measuring the void ratio increases.

〔発明の目的〕[Purpose of the invention]

この発明は、上述の現状に鑑み、電気伝導性の液体と気
体との混相流など、電気伝導性の液体中に電気伝導性が
前記液体と大きく異なる物質が混合した、管路内を流れ
る二相の混相流の前記物質の混合量を、管路内で混相流
の流れの状態を乱すことなく、かつ簡便に測定すること
ができる測定方法を提供することを目的とする。
In view of the above-mentioned current situation, the present invention has been developed to provide two types of flow, such as a multiphase flow of an electrically conductive liquid and a gas, in which an electrically conductive liquid is mixed with a substance whose electrical conductivity is significantly different from that of the liquid, which flows in a pipe. It is an object of the present invention to provide a measuring method that can easily measure the mixing amount of the substances in a multiphase flow without disturbing the flow state of the multiphase flow in a pipe.

〔発明の概要〕[Summary of the invention]

この発明は、電気伝導性の液体中に前記液体と電気伝導
性が大きく異なる物質が混合した混相流が流れる管路の
途中に、3つの絶縁リングと電気抵抗測定器の測定端の
各々が接続された2つの金属リングとを、前記絶臓リン
グが両端に位置するように直列に交互に配置してなる、
前記管路の管径と同径の測定リングを連結して、前記2
つの金属リング間の前記混相流の電気抵抗値を測定し、
予め前記物質の混合量が既知の前記混相流について前記
測定リングで求めた、前記混相流の電気抵抗値と前記物
質の混合量との関係に基づいて、前記測定された電気抵
抗値から、前記電気抵′抗値を測定した前記混相流の前
記物質の混合量を求めることに特徴を有する。
In this invention, each of three insulating rings and the measuring end of an electrical resistance measuring device is connected in the middle of a pipe through which a multiphase flow in which a substance having a significantly different electrical conductivity from the liquid is mixed in an electrically conductive liquid flows. and two metal rings arranged alternately in series such that the intestine ring is located at both ends,
A measuring ring having the same diameter as the pipe diameter of the pipe line is connected to
Measuring the electrical resistance value of the multiphase flow between two metal rings,
Based on the relationship between the electrical resistance value of the multiphase flow and the mixing amount of the substance, which is determined by the measuring ring for the multiphase flow in which the mixing amount of the substance is known in advance, from the measured electrical resistance value, the The present invention is characterized in that the mixed amount of the substance in the multiphase flow whose electrical resistance value is measured is determined.

〔発明の構成〕[Structure of the invention]

以下 この発明の詳細な説明する。 This invention will be described in detail below.

第1図はこの発明の方法を実施するために用いられる混
合物質量測定装置の分解斜視図である。
FIG. 1 is an exploded perspective view of a mixed substance amount measuring device used to carry out the method of the present invention.

第1図に示されるように、測定装置1は、3つの絶縁リ
ング2と2つの金属リング3とを、絶縁リング2が両端
に位置するように直列に交互に配置して連結する測定リ
ング4と、金属リング3の各々に測定端から引き出され
たリード線5を接続した電気抵抗測定器6とからなる。
As shown in FIG. 1, the measuring device 1 includes a measuring ring 4 that connects three insulating rings 2 and two metal rings 3 by alternately arranging them in series so that the insulating rings 2 are located at both ends. and an electrical resistance measuring device 6 in which lead wires 5 drawn out from measurement ends are connected to each of the metal rings 3.

2つの金属リング3.3間に挿入する中央の絶縁リング
2は、2つの金属リング3を適宜間隔で絶縁的に隔置す
るためのものである。2つの金属リング3の外側に配置
する両端の絶縁リング2は、測定リング4を連結する管
路との絶縁をとるためである。絶縁リング2としては、
例えばアクリル等の樹脂ノクイデが用いられる。金属リ
ング3としては、例えば銅等の金属ノ4イデが用いられ
る。これら絶縁リング2および金属リング3は、連結す
る管路の管径と同径に形成される。
The central insulating ring 2 inserted between the two metal rings 3.3 is for insulatingly spacing the two metal rings 3 at appropriate intervals. The insulating rings 2 at both ends disposed on the outside of the two metal rings 3 are for insulating the measurement rings 4 from the pipe line connecting them. As the insulating ring 2,
For example, a resin material such as acrylic is used. As the metal ring 3, a metal material such as copper is used, for example. These insulating ring 2 and metal ring 3 are formed to have the same diameter as the pipe diameter of the pipe line to which they are connected.

この発明では、このような測定装置1の測定リング4を
、例えば第2図に示すようなプラント7に配管された管
路8の途中に連結して、管路8内を流れる二相の混相流
を測定リング4内を流し、そのときの金属リング3,3
間の電気抵抗値を電気抵抗測定器6で測定して、混相流
中の混合物質量を求めるものである。
In this invention, the measuring ring 4 of such a measuring device 1 is connected to the middle of a pipe line 8 piped to a plant 7 as shown in FIG. The current flows through the measuring ring 4, and the metal rings 3, 3 at that time
The amount of mixed substance in the multiphase flow is determined by measuring the electrical resistance value between them using an electrical resistance measuring device 6.

水に空気が混合した二相の混相流など、電気伝導性の液
体中に電気伝導性が前記液体と大きく異なる物質が混合
した二相の混相流では、混相流を測定リング4内に流し
て金属リング3,3間の電気抵抗値を測定すると、その
電気抵抗値は、混和流中の前記混合物質の混合割合(混
和流体一定体積中の混合物質量)に比例して変化する。
In a two-phase multiphase flow in which an electrically conductive liquid is mixed with a substance whose electrical conductivity is significantly different from that of the liquid, such as a two-phase multiphase flow in which air is mixed with water, the multiphase flow is caused to flow into the measuring ring 4. When the electrical resistance value between the metal rings 3, 3 is measured, the electrical resistance value changes in proportion to the mixing ratio of the mixed substance in the mixing flow (the amount of the mixed substance in a constant volume of the mixing fluid).

従って、液体と混合物質の種類が管路8内を流れる二相
の混和流と同一で、かつ前記混合物質の混合量が既知の
二相の混相流を、管路8内を流れる二相の混相流と同一
の条件で管路8内に流して、そのときの電気抵抗値を測
定装置1で測定し、電気抵抗値と混合物質量との関係を
予めておけば、その関係から、管路8内を流れる二相の
混相流の電気抵抗値を測定装置1で測定することにより
、前記混相流中の混合物質量が一般に求まる。
Therefore, a two-phase mixed flow in which the types of liquid and mixed substance are the same as the two-phase mixed flow flowing in the pipe line 8 and the mixed amount of the mixed substance is known is replaced with a two-phase mixed flow flowing in the pipe line 8. If the electric resistance value at that time is measured with the measuring device 1 by flowing into the pipe 8 under the same conditions as the multiphase flow, and the relationship between the electric resistance value and the amount of mixed substance is determined in advance, from that relationship, the pipe line By measuring the electric resistance value of the two-phase multiphase flow flowing through the multiphase flow with the measuring device 1, the amount of the mixed substance in the multiphase flow can generally be determined.

例えば、管路を流れる水に空気が混合した空気の混合量
が既知の混和流について測定装置1で電気抵抗値を測定
すると、第3図に示すような電気抵抗値と空気のボイド
率(混合割合)との関係が得られる(なお、第3図では
、ボイド率y (VOlume係)は、x = 100
− Vなる水の混合割合X(VOlume  %)を使
って表示しである)。従って、管路を流れる水に空気が
混合した混相流について、測定装置1で同一の条件の下
で電気抵抗値を測定すれば、第3図から、混和流のボイ
ド率が求まる。
For example, when measuring the electrical resistance value using measuring device 1 for a mixed flow with a known mixing amount of air mixed with water flowing through a pipe, the electrical resistance value and air void ratio (mixture (in Figure 3, the void ratio y (VOlume ratio) is x = 100
- It is expressed using the mixing ratio of water X (VOlume %) called V). Therefore, if the electrical resistance value of a multiphase flow in which air is mixed with water flowing through a pipe is measured under the same conditions using the measuring device 1, the void ratio of the mixed flow can be determined from FIG.

以上のように、この発明では、測定装置1の測定リング
4を管路の途中に連結して、管路を流れる二相の混相流
の電気抵抗値を測定して、混和流の混合物質量を求める
ので、混相流の流れの状態を乱すことなく混合物質量の
測定ができる。また混合物質量が測定できる混相流とし
ては、水に空気が混合した混相流に限られず、水に油が
混合したもの、水にプラスチックが混合したもの、水に
鉄微粒子が混合したものなど、電気伝導性の液体中に電
気伝導性が前記液体と大きく異なる物質が混合した二相
の混相流ならば、いずれも測定可能である。さらに、こ
の発明では、測定装置】の構成が簡単で、市販の電気抵
抗測定器等を用いて容易に製作できる利点もある。
As described above, in this invention, the measuring ring 4 of the measuring device 1 is connected in the middle of the pipe, and the electrical resistance value of the two-phase multiphase flow flowing through the pipe is measured, and the amount of mixed substances in the mixing flow is determined. Therefore, the amount of mixed substances can be measured without disturbing the flow state of the multiphase flow. In addition, multiphase flows for which the amount of mixed substances can be measured are not limited to multiphase flows in which water and air are mixed, but also include those in which oil is mixed in water, plastics are mixed in water, iron particles are mixed in water, etc. Any two-phase multiphase flow in which a conductive liquid contains a substance whose electrical conductivity is significantly different from that of the liquid can be measured. Further, the present invention has the advantage that the measuring device has a simple configuration and can be easily manufactured using a commercially available electric resistance measuring device.

〔発明の効果〕〔Effect of the invention〕

この発明の方法によれば、電気伝導性の液体中に電気伝
導性が前記気体と大きく異なる物質が混合した、管路内
を流れる二相の混相流について、混和流の流れを乱すこ
となく、混相流の混合物質量を測定することができ、ま
た測定に使用する装置も構成が簡単で、かつ測定も容易
に行なえる。
According to the method of the present invention, for a two-phase multiphase flow flowing in a pipe in which a substance whose electrical conductivity is significantly different from that of the gas is mixed in an electrically conductive liquid, without disturbing the flow of the mixed flow, The amount of mixed substances in a multiphase flow can be measured, and the device used for the measurement has a simple configuration and can be easily measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法に使用する測定装置の一態様を
示す分解斜視図、第2図は第1図の装置の使用法を示す
説明図、第3図は第1図の装置によって測定された二相
流の抵抗値と混合物質量との関係を示すグラフである。 図面において、1・・・測定装置、     2・・・
絶R’)ング、3・・・金属リング、    4・・・
測定リング、5・・・リード線、     6・・・電
気抵抗測定器、7・・・プラント、    8・・・管
路。
Fig. 1 is an exploded perspective view showing one aspect of the measuring device used in the method of the present invention, Fig. 2 is an explanatory diagram showing how to use the device shown in Fig. 1, and Fig. 3 is a measurement using the device shown in Fig. 1. It is a graph which shows the relationship between the resistance value of the two-phase flow, and the amount of mixed substances. In the drawings, 1... measuring device, 2...
Absolute R') ng, 3...metal ring, 4...
Measuring ring, 5...Lead wire, 6...Electric resistance measuring device, 7...Plant, 8...Pipeline.

Claims (1)

【特許請求の範囲】[Claims] 電気伝導性の液体中に前記液体と電気伝導性が大きく異
なる物質が混合した混相流が流れる管路の途中に、3つ
の絶縁リングと電気抵抗測定器の測定端の各々が接続さ
れた2つの金属リングとを、前記絶縁リングが両端に位
置するように直列に交互に配置してなる、前記管路の管
径と同径の測定リングを連結して、前記2つの金属リン
グ間の前記混相流の電気抵抗値を測定し、予め前記物質
の混合量が既知の前記混相流について前記測定リングで
求めた、前記混相流の電気抵抗値と前記物質の混合量と
の関係に基づいて、前記測定された電気抵抗値から、前
記電気抵抗値を測定した前記混相流の前記物質の混合量
を求めることを特徴とする、管路内混相流の混合物質量
測定方法。
In the middle of a pipe through which a multiphase flow consisting of an electrically conductive liquid mixed with a substance whose electrical conductivity is significantly different from that of the liquid flows, there are two pipes connected to each of three insulating rings and the measuring end of an electrical resistance measuring device. The mixed phase between the two metal rings is measured by connecting measurement rings having the same diameter as the pipe diameter of the conduit, which are arranged alternately in series such that the insulating rings are located at both ends. The electric resistance value of the flow is measured, and based on the relationship between the electric resistance value of the multiphase flow and the mixing amount of the substance, which is determined by the measuring ring for the multiphase flow in which the mixing amount of the substance is known in advance, A method for measuring the amount of a mixed substance in a multiphase flow in a pipe, the method comprising determining the amount of the substance mixed in the multiphase flow whose electrical resistance value is measured from the measured electrical resistance value.
JP24816884A 1984-11-26 1984-11-26 Measuring method of mass of mixture of multiphase flow in conduit Pending JPS61126457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816884A JPS61126457A (en) 1984-11-26 1984-11-26 Measuring method of mass of mixture of multiphase flow in conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816884A JPS61126457A (en) 1984-11-26 1984-11-26 Measuring method of mass of mixture of multiphase flow in conduit

Publications (1)

Publication Number Publication Date
JPS61126457A true JPS61126457A (en) 1986-06-13

Family

ID=17174224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816884A Pending JPS61126457A (en) 1984-11-26 1984-11-26 Measuring method of mass of mixture of multiphase flow in conduit

Country Status (1)

Country Link
JP (1) JPS61126457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776875A (en) * 2014-01-23 2014-05-07 天津大学 Four-section distributed conductivity sensor for two-phase flow detection
CN110243876A (en) * 2019-06-25 2019-09-17 西安交通大学 Conductivity sensor for biphase gas and liquid flow void fraction instantaneous measurement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155893A (en) * 1978-05-29 1979-12-08 Saburou Miyazaki Method and device for confirming mixed state of plural substances

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155893A (en) * 1978-05-29 1979-12-08 Saburou Miyazaki Method and device for confirming mixed state of plural substances

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776875A (en) * 2014-01-23 2014-05-07 天津大学 Four-section distributed conductivity sensor for two-phase flow detection
CN110243876A (en) * 2019-06-25 2019-09-17 西安交通大学 Conductivity sensor for biphase gas and liquid flow void fraction instantaneous measurement
CN110243876B (en) * 2019-06-25 2020-11-10 西安交通大学 Conductivity sensor for transient measurement of gas-liquid two-phase flow gas content

Similar Documents

Publication Publication Date Title
CA2360256A1 (en) Measuring multiphase flow in a pipe
US4101827A (en) Method and apparatus for determining the location of a leak in a pipe buried underground
US2859617A (en) Thermal flowmeter
US4644263A (en) Method and apparatus for measuring water in crude oil
US4366714A (en) Pressure/temperature probe
US6956376B2 (en) Devices for characterizing a multiphase fluid having a continuous conductive phase
US2728225A (en) Thermal flowmeter
JPS6352015A (en) Mass flow measuring device
JPS5822973B2 (en) Red bean sprouts
CN101419180B (en) Conductive sensor for phase separation containing rate in two-phase stream and structure parameter optimizing method thereof
Sajben Hot wire anemometer in liquid mercury
CN104729595A (en) Intra-tube phase-separated-type two-phase fluid electromagnetic flow meter measuring device and method
US3374672A (en) Flowmeter
US3358229A (en) Electrical corrosion probe having a plurality of test specimen segments
CN106932444B (en) A kind of batching interface test experience device and experimental method based on conductivity
JPS61126457A (en) Measuring method of mass of mixture of multiphase flow in conduit
JP2000249673A (en) Method for measuring constitution rate of multi-phase fluid and constituent rate meter utilizing the same
US3736798A (en) Permanent magnet probe flowmeter
EP4165378B1 (en) Flow meter for measuring flow velocity in oil continuous flows
JPH10282035A (en) Mixture volume ratio measurement sensor
JPH0473743B2 (en)
SU650024A1 (en) Method of determining charge and electric conductivity of charged dielectric liquid
JP2965464B2 (en) Flowmeter
US3040571A (en) Electromagnetic flowmeter for conductive fluids
JPH03110456A (en) Sensor for measuring bubble in liquid