JPS61126425A - Volumetric flowmeter - Google Patents

Volumetric flowmeter

Info

Publication number
JPS61126425A
JPS61126425A JP24905884A JP24905884A JPS61126425A JP S61126425 A JPS61126425 A JP S61126425A JP 24905884 A JP24905884 A JP 24905884A JP 24905884 A JP24905884 A JP 24905884A JP S61126425 A JPS61126425 A JP S61126425A
Authority
JP
Japan
Prior art keywords
rotor
casing
thread
rotor member
eccentric rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24905884A
Other languages
Japanese (ja)
Other versions
JPH0148969B2 (en
Inventor
Hajime Yasugata
安形 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP24905884A priority Critical patent/JPS61126425A/en
Publication of JPS61126425A publication Critical patent/JPS61126425A/en
Publication of JPH0148969B2 publication Critical patent/JPH0148969B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability by incorporating a rotor member which is thread-cut double in the rotor chamber of a casing in an eccentric rotation state and fixing a stator member which is a single-thread spiral screw, and measuring a passing flow rate through eccentric rotation. CONSTITUTION:The cylindrical rotor chamber 3 is formed in the casing that a fluid passage penetrates, and the external cylindrical rotor member 4 in which a double-thread helical female screw is bored is incorporated so that the rotor member rotates on its own axis eccentrically and revolves around the axial line 6 of the casing. Then, large-diameter rolling flange parts 7 are formed at both ends of the rotor member 4, the stator member 10 whose outward appearance is the single-thread helical screw is arranged in the two-thread helical female screw 8, and both end fixed shafts 11 and fitted and fixed in shaft fixation part 12 extended into the casing 1. Consequently, the structure is simple and fluid is measured without any influence of the mixture of sand, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単条螺旋ねじ形状をもつ内側の部材を固定し
、外側に位置する2条螺旋ねじを内穿した部材を回転自
在にケーシング内に設け、外側の−1一 部材の流体による偏心回転から通過流量を測定するよう
にした容積式流量計に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a casing in which an inner member having a single helical thread shape is fixed, and an outer member having a double helical thread bored therein is rotatably mounted. The present invention relates to a positive displacement flowmeter that measures a passing flow rate from the eccentric rotation of an outer -1 member by fluid.

(従来技術) 従来、高粘度流体の流量測定に利用される所謂モノフロ
一式の流量計として(よ、例えば特開昭57−8832
3号のものが知られている。
(Prior art) Conventionally, so-called monoflow flow meters used for measuring the flow rate of high viscosity fluids (for example, Japanese Patent Laid-Open No. 57-8832
No. 3 is known.

この容積式流量計にあって(よ、2条螺旋の雌ねじを内
穿したステータの中に単条のねじ形状をもったロータを
回転自在に組み込んだ基本構造をもち、ステータとロー
タとの間に形成される空隙に加圧流体を押し込むことで
ロータをステータに内接しながら偏心回転させ、この[
l−夕の偏心回転を検出することで通過流量を測定する
ようにしている。
This positive displacement flowmeter has a basic structure in which a rotor with a single thread is rotatably incorporated into a stator with a double thread female thread, and the space between the stator and rotor is By forcing pressurized fluid into the gap formed in the stator, the rotor is rotated eccentrically while being inscribed in the stator.
The passing flow rate is measured by detecting the eccentric rotation of the l-axis.

(発明が解決しようとする問題点) しかlノながら、このような従来の容積式流量計にあっ
ては、流体力によりステータ内でロータを偏心回転(自
転を伴なう公転運動)させ、ロータの偏心回転から通過
流量を測定する構造であったため、流体の流路内にロー
タを偏心回転自在に支持する軸受構造を設けなければ仕
らず、しかも軸受は部分は流体の中にさらされているの
で流体による腐蝕やゴミによる損耗を充分考慮した構造
としなければならず、更にロータの偏心回転をステータ
軸心線回りの回転運動に変換するユニバーサルジヨイン
トや遊星歯車を利用するため、軸受は部が複雑で大型化
し、ロータの回転抵抗および騒音も大きくなるという問
題があった。
(Problems to be Solved by the Invention) However, in such conventional positive displacement flowmeters, the rotor is eccentrically rotated within the stator (revolutionary motion accompanied by rotation) by fluid force. Since the structure was to measure the flow rate from the eccentric rotation of the rotor, it was necessary to install a bearing structure in the fluid flow path that supported the rotor so that it could rotate freely, and the bearing was partially exposed to the fluid. Therefore, the structure must take into account corrosion caused by fluids and wear and tear caused by dust.Furthermore, in order to use universal joints and planetary gears that convert the eccentric rotation of the rotor into rotational movement around the stator axis, bearings must be The problem is that the parts are complicated and large, and the rotational resistance and noise of the rotor are also increased.

(問題点を解決するための手段) 本発明は、このような従来の問題点に鑑みてなされたも
ので、回転部の軸受は構造が簡単で且つ流体にさらされ
ることのない信頼性と耐久性に優れた容積式流量計を提
供することを目的とし、次のJ:うに構成したものであ
る。
(Means for Solving the Problems) The present invention has been made in view of such conventional problems, and the bearing of the rotating part has a simple structure, is not exposed to fluid, and has high reliability and durability. The purpose of this is to provide a positive displacement flowmeter with excellent performance, and is configured as shown below.

即ち、流体通路が貫通されたケーシング内に円筒ロータ
室を形成し、このロータ室の中に2条螺旋ねじを内穿し
た円筒外形をもつロータ部材を偏心回転自在に組み込み
、このロータ部材内部の2条螺旋ねじに内接して単条螺
旋ねじ形状を有するステータ部材をケーシング側に固定
して設置し、更に流体によるロータ室内でのステータ部
材の偏心回転を磁気ピックアップ等の検出手段で検知し
て通過流量を測定表示するようにしたものである。
That is, a cylindrical rotor chamber is formed in a casing through which a fluid passage is penetrated, and a rotor member having a cylindrical outer shape with a double-threaded helical screw is installed in the rotor chamber so as to be eccentrically rotatable. A stator member having a single helical thread shape inscribed in a double helical thread is fixedly installed on the casing side, and eccentric rotation of the stator member in the rotor chamber due to fluid is detected by a detection means such as a magnetic pickup. It is designed to measure and display the passing flow rate.

即ち、本発明では従来のロータ部材を固定し、外側のス
テータ部材を回転させる逆の構成とすることで上記目的
を達成するにうにしたものである。
That is, the present invention achieves the above object by using a configuration opposite to the conventional structure in which the rotor member is fixed and the outer stator member is rotated.

(実施例) 第1図は本発明の一実施例を示した断面図である。(Example) FIG. 1 is a sectional view showing an embodiment of the present invention.

まず構成を説明すると、1は内部に流体通路が貫通形成
された2分割構造をもつケーシングであり、ケーシング
1の両側には配管と連結するためのフランジ部2が一体
に形成されている。ケーシング1の内部には円筒状の[
1−9室3が形成され、このロータ室3の中に2条螺旋
の雌ねじ8を内穿した円筒外形形状をもつロータ部材4
を偏心回転、即ち「1−夕室3との摺接でn−夕軸心1
5回りに内転運動を行ない、月つケーシング軸心線6回
りに公転運動を起こすように和み込んでいる。ロータ部
材4はロータ室3の内周壁との接触面積を小さくして滑
らかな偏心回転を可能とするため、両端に大径の転勤フ
ランジ部7を形成している。
First, the structure will be described. Reference numeral 1 is a casing having a two-part structure with a fluid passage formed therein, and flanges 2 for connecting to piping are integrally formed on both sides of the casing 1. Inside the casing 1 there is a cylindrical [
A rotor member 4 having a cylindrical outer shape in which a 1-9 chamber 3 is formed and a double-thread internal thread 8 is bored inside the rotor chamber 3.
is eccentrically rotated, that is, when sliding contact with 1-axis 3, n-axis center 1
It rotates internally around 5 rotations and rotates around 6 around the casing axis. The rotor member 4 is formed with large-diameter shifting flange portions 7 at both ends in order to reduce the contact area with the inner circumferential wall of the rotor chamber 3 and enable smooth eccentric rotation.

ロータ室3に偏心回転自在に組み込まれたロータ部材4
に内穿した2条螺旋の−Iねじ8の中には単条螺旋ねじ
の外形形状を有Jるステータ部材10が内接して配置さ
れ、ステータ部材10は両端の固定軸11をケーシング
1の内部に延在した軸固定部12に嵌め入れて固定配置
されている。
Rotor member 4 built into rotor chamber 3 for eccentric rotation
A stator member 10 having the outer shape of a single helical screw is inscribed in a double-thread -I screw 8 bored in the casing 1. It is fitted and fixedly arranged in a shaft fixing part 12 extending inside.

このようなロータ室3の中に偏心回転自在に組み込んだ
2条螺旋の雌ねじ8を有するロータ部材4と、ロータ部
材4の中に内接して固定配置した単条螺旋ねじの外形形
状を有するステータ部材1Oとによって本発明の流量計
の基本構造が実現される。即ち、偏心回転自在なロータ
部材4と固定配置したステータ部材10との間には空隙
CI。
A rotor member 4 having a double-thread internal thread 8 built into the rotor chamber 3 so as to be eccentrically rotatable, and a stator having an external shape of a single-thread helical thread inscribed and fixed in the rotor member 4. The basic structure of the flowmeter of the present invention is realized by the member 1O. That is, there is a gap CI between the eccentrically rotatable rotor member 4 and the fixed stator member 10.

C2,C3が仕切り形成され、例えば矢印で示すケーシ
ング1の左側から加圧流体を供給したとすると、流体圧
力を受けて固定配置した内側のステータ部材10に対し
外側のロータ部材4がロータ室3内で偏心回転を起こし
、空隙C1,C2,C3の容積は予め定まっていること
から、ロータ部材4は通過流量に応じた偏心回転を起こ
すようになり、従って、ロータ部材4の偏心回転を検出
することで通過流量を測定することができる。
If C2 and C3 are partitioned and pressurized fluid is supplied from the left side of the casing 1 as indicated by the arrow, for example, the outer rotor member 4 is connected to the rotor chamber 3 while the inner stator member 10 is fixedly arranged under fluid pressure. Since the volumes of the gaps C1, C2, and C3 are predetermined, the rotor member 4 causes eccentric rotation in accordance with the flow rate passing through the rotor member 4. Therefore, the eccentric rotation of the rotor member 4 is detected. By doing so, the passing flow rate can be measured.

次にロータ部材4の偏心回転を検出して測定流量を表示
する手段を説明すると、まずロータ部材4及びケーシン
グ1はアルミニウム等の非磁性材料で作られており、ロ
ータ部材4の外周にマグネットリング13を固定し、マ
グネット13に相対したケーシング1の上部内にピック
アップコイル11を設【プ、図示のようにロータ部材4
が上側へ偏心回転したときのマグネットリング13の近
接による磁束変化を受けてピックアップコイル14にパ
ルス状の電圧を誘起さ1!るようにしている。
Next, to explain the means for detecting the eccentric rotation of the rotor member 4 and displaying the measured flow rate, first, the rotor member 4 and the casing 1 are made of a non-magnetic material such as aluminum, and a magnet ring is attached to the outer periphery of the rotor member 4. The pickup coil 11 is installed in the upper part of the casing 1 facing the magnet 13, and the rotor member 4 is fixed as shown in the figure.
When 1! rotates eccentrically upward, a pulse-like voltage is induced in the pickup coil 14 due to a change in magnetic flux due to the proximity of the magnet ring 13. I try to do that.

ロータ部材4の1偏心回転で得られるピックアップコイ
ル14のパルス電圧は、ケーシング1の上部に設置した
表示器15の内部に設けた流量測定回路に与えられ、こ
の流皐測定回路にはピックアップコイル14からの電圧
パルスを計数するカウンタが内蔵されており、ロータ部
材4の1偏心回転当りの通過流量が決まっていることか
ら、単位時間当りのパルス数を計数し、これに通過流量
を掛()合せることで流出表示部16に通過流量を数値
表示するようにしている。
The pulse voltage of the pickup coil 14 obtained by one eccentric rotation of the rotor member 4 is applied to a flow rate measurement circuit provided inside an indicator 15 installed at the upper part of the casing 1. Since there is a built-in counter that counts the voltage pulses from the rotor member 4 and the passing flow rate per eccentric rotation of the rotor member 4 is determined, the number of pulses per unit time is counted and this is multiplied by the passing flow rate (). By combining these values, the outflow display section 16 displays the passing flow rate numerically.

次に、第1図の実施例による流量測定動作を説明する。Next, the flow rate measurement operation according to the embodiment shown in FIG. 1 will be explained.

今、矢印に示すようにケーシング1の左側から加圧流体
の供給が行なわれたとすると、加圧流体はロータ部材4
とステータ部材10との間に形成された入口側の空隙C
1に入り込み、内側のステータ部材4が固定されている
ことから、外側の[1−夕部材10に回転力を与え、こ
の結果、外側のロータ部材4は内側のステータ部材10
に内接した状態でロータ軸心線5回りに自転運動を起こ
し、且つケーシング軸心線6回りに公転運動を起こす偏
心回転を始める。
Now, if the pressurized fluid is supplied from the left side of the casing 1 as shown by the arrow, the pressurized fluid will be supplied to the rotor member 4.
A gap C on the inlet side formed between and the stator member 10
Since the inner stator member 4 is fixed, a rotational force is applied to the outer rotor member 10, and as a result, the outer rotor member 4
In the state inscribed in the rotor axis 5, the rotor starts to rotate around the axis 5, and starts eccentric rotation around the casing axis 6 to revolve around the casing axis 6.

第2.3.4図のそれぞれは加圧流体の供給を受けたと
きの固定設置した内側のステータ部材10に対する外側
のロータ部材4の偏心回転を取り出して示したもので、
第2図は第1図の初期状態を取り出して示しており、こ
のとき、ロータ部材4はケーシング軸心線6に対し上側
に偏心した位置にある。この第2図の状態で左側から加
圧流体の供給を受けると、ロータ部材4は2条螺旋ねじ
のねじ切り方向で定まる所定方向に偏心回転を起こし、
第2図の状態から90瘍公転した位置では第3図に示す
ようにロータ部材4とステータ部材10どの間の空隙C
I、C2,C3は出口側となる右方向に移動し、更に第
2図の位置から180度公転すると、第4図に示すロー
タ部材4がケーシング軸心線6の下側に偏心した状態と
なり、ロータ部材4とステータ部材10との間の空隙C
I。
Each of Figures 2.3.4 shows the eccentric rotation of the outer rotor member 4 relative to the fixedly installed inner stator member 10 when supplied with pressurized fluid.
FIG. 2 shows the initial state shown in FIG. 1, in which the rotor member 4 is eccentrically located upward with respect to the casing axis 6. When pressurized fluid is supplied from the left side in the state shown in FIG. 2, the rotor member 4 causes eccentric rotation in a predetermined direction determined by the threading direction of the double helical screw.
At a position after 90 revolutions from the state shown in Fig. 2, a gap C between the rotor member 4 and the stator member 10 is shown in Fig. 3.
When I, C2, and C3 move to the right toward the exit side and further revolve 180 degrees from the position shown in FIG. 2, the rotor member 4 shown in FIG. 4 becomes eccentric to the lower side of the casing axis 6. , a gap C between the rotor member 4 and the stator member 10
I.

C2,C3は更に出口側に移動する。このような内側に
固定したステータ部材10との内接による外側のロータ
部材4の流体圧力にJ:る偏心回転をもって入口側から
の流体は空隙の移動で出口側に移送され、空隙の容積が
一定であることから通過流量に比例したロータ部材の偏
心回転を得ることができる。
C2 and C3 further move to the exit side. The fluid from the inlet side is transferred to the outlet side by the movement of the gap due to the eccentric rotation due to the fluid pressure of the outer rotor member 4 due to the internal contact with the stator member 10 fixed on the inside, and the volume of the gap is reduced. Since it is constant, it is possible to obtain eccentric rotation of the rotor member that is proportional to the passing flow rate.

ロータ部材4の外側にはマグネットリング13が固定さ
れており、第1図に示すようにロータ部材4の偏心回転
でケーシング軸心線6の上側に偏心したとき、ケーシン
グ1内のピックアップコイル14にマグネットリング1
3が最も近接し、このマグネットリング13の近接によ
る磁束変化でピックアップコイル14にパルス状の電圧
が誘起され、ロータ部材4の1偏心回転、即ち1公転毎
にピックアップコイル111はパルス電圧を1つ発生す
る。ピックアップコイル14のパルス電圧は表示器15
に内蔵1)た測定回路のカウンタで計数され、単位時間
当りのカウント値に空隙CI、C2、C3の合計容積(
定数)を掛は合せることで単位時間当りの通過流量を演
篩し、この演算流量を流量表示部18に数値表示する。
A magnet ring 13 is fixed to the outside of the rotor member 4, and when the rotor member 4 eccentrically rotates to the upper side of the casing axis 6 as shown in FIG. magnet ring 1
3 is the closest, and a pulse-like voltage is induced in the pickup coil 14 due to the magnetic flux change due to the proximity of the magnet ring 13, and the pickup coil 111 generates one pulse voltage for each eccentric rotation of the rotor member 4, that is, for each revolution. Occur. The pulse voltage of the pickup coil 14 is displayed on the display 15.
1) The total volume of the air gaps CI, C2, and C3 (
The flow rate passing per unit time is calculated by multiplying the constants by the constants), and the calculated flow rate is numerically displayed on the flow rate display section 18.

次に、第1図の実施例における作用を、従来の内側のス
テータ10を偏心回転自在に設は外側のロータ部材4を
固定した場合と対比して説明すると、流路の中央に置か
れる単条外形ねじ形状をもつステータ部材4は軸固定部
12によって固定配置されているだけであることから、
このステータ部材10については軸受構造が全く不要と
なり、流路の中に軸受構造を設けないことから、軸受構
造の腐食や耐久性を考慮1′る必要が全くない。また、
外側のロータ部材4は内側のステータ部材10に内接し
た状態でケーシング1の[1−夕室3に組み込むだけで
特別な軸受構造を必要とすることなく[1−夕空3の中
で偏心回転することができ、構造が極めてシンプルとな
る。
Next, the operation of the embodiment shown in FIG. 1 will be explained in comparison with a conventional case in which the inner stator 10 is eccentrically rotatable and the outer rotor member 4 is fixed. Since the stator member 4 having a striped external thread shape is only fixedly arranged by the shaft fixing part 12,
This stator member 10 does not require a bearing structure at all, and since no bearing structure is provided in the flow path, there is no need to consider corrosion and durability of the bearing structure. Also,
The outer rotor member 4 is inscribed in the inner stator member 10 and can be eccentrically rotated in the evening sky 3 without requiring a special bearing structure by simply incorporating it into the casing 1 [1-Year chamber 3]. The structure is extremely simple.

尚、ロータ室3の中でのロータ部材4の偏心回転を滑ら
かにするため、ロータ部材4の使用材料を選択して、よ
り軽量化を図ることが望ましい。
In order to smooth the eccentric rotation of the rotor member 4 within the rotor chamber 3, it is desirable to select a material for the rotor member 4 to further reduce its weight.

また、ロータ部材4は流体圧力によるスラスト方向の力
を受・プるので、ロータ部材4の端面にボールベアリン
グ等を介在させ、スラスト力によって[l−夕部材4の
動きが妨げられないようにすることが望ましい。
In addition, since the rotor member 4 receives and receives force in the thrust direction due to fluid pressure, a ball bearing or the like is interposed on the end face of the rotor member 4 to prevent movement of the rotor member 4 from being hindered by the thrust force. It is desirable to do so.

更に、第1図の実施例では、ロータ部材4の外側にマグ
ネットリング13を直接固定し、ロータ部材4のケーシ
ング軸心線6に対する偏心位置の変化に応じてピックア
ップコイル14で回転検出を行なうようにしているが、
他の実施例としてロータ部材4の端面に所定間隔で複数
のマグネットバーを放射状に埋め込んでおき、このマグ
ネットバーを埋め込んだ端面に相対してピックアップコ
イルを設け、ロータ部材4の自転回数から通過流量を測
定するようにしてもよい。勿論、ロータ部材4の偏心回
転における公転運動のみを取り出して磁極ロータを回転
し、この磁極ロータの回転数から通過流量を測定するこ
とも可能である。
Furthermore, in the embodiment shown in FIG. 1, the magnet ring 13 is directly fixed to the outside of the rotor member 4, and rotation is detected by the pickup coil 14 in accordance with changes in the eccentric position of the rotor member 4 with respect to the casing axis 6. However,
As another example, a plurality of magnet bars are embedded radially in the end surface of the rotor member 4 at predetermined intervals, and a pickup coil is provided opposite to the end surface where the magnet bars are embedded. may also be measured. Of course, it is also possible to extract only the orbital motion of the rotor member 4 during eccentric rotation, rotate the magnetic pole rotor, and measure the passing flow rate from the rotational speed of the magnetic pole rotor.

(発明の効果) 以上説明してきたように本発明によれば、流体通路が貫
通されたケーシング内に円筒ロータ室を形成し、このロ
ータ室内に2条螺旋ねじを内部した円筒外形形状をもつ
ロータ部材を偏心回転自在に組み込み、ロータ部材の2
条螺旋ねじに内接して単条螺旋ねじの外形形状を有する
ステータ部材をケーシング内に固定設置し、更に加圧流
体の供給によるロータ部材の0−全室内での偏心回転を
検出して通過流量を測定表示する手段を設けるようにし
たため、流体通路を内部にもった螺旋ロータの回転であ
ることから、流体通路の中に軸受構造を設ける必要がな
く、また外側のロータ部材はケーシングのロータ室に格
別な支持構造を必要とすることなく、組み込むだけで内
側に固定設置されたステータ部材との内接で加圧流体の
供給を受けて偏心回転を起こすことができ、通過流量に
応じた偏心回転を得るための構造が極めて簡潔となり、
0−夕回転の検出も内部を通過する流体通路から切り峻
して行なうことができるため、砂やゴミ等が混入した流
体の測定であっても、測定流体による影響を受けること
はない。
(Effects of the Invention) As described above, according to the present invention, a cylindrical rotor chamber is formed in a casing through which a fluid passage is penetrated, and a rotor having a cylindrical outer shape with a double-threaded helical screw inside the rotor chamber. The members are assembled eccentrically rotatably, and two of the rotor members
A stator member that is inscribed in the threaded helical thread and has the outer shape of a single threaded thread is fixedly installed in the casing, and the eccentric rotation of the rotor member in the 0-all chambers by supply of pressurized fluid is detected to detect the passing flow rate. Since it is a rotation of a helical rotor with a fluid passage inside, there is no need to provide a bearing structure in the fluid passage, and the outer rotor member is connected to the rotor chamber of the casing. No special support structure is required, just by incorporating it into the stator member, which is fixedly installed inside, it can receive pressurized fluid and cause eccentric rotation, and the eccentric rotation according to the passing flow rate can be caused. The structure for obtaining rotation is extremely simple,
Since the detection of the zero-evening rotation can also be carried out by cutting through the fluid passage passing through the interior, even when measuring fluid mixed with sand, dirt, etc., it will not be affected by the measured fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した断面図、第2.3.
4図は流体によるロータ部材の偏心回転を取り出して示
した説明図である。 1:ケーシング 2:7ランジ部 3:ロータ室 4:ロータ部材 5:ロータ軸心線 6:ケーシング軸心線 7:転勤7ランジ部 8:雌ねじ 10:ステータ部材 11:固定軸 12:軸固定部 13:マグネットリング 14:ピックアップコイル 15:表示器 18二流量表示部
FIG. 1 is a sectional view showing one embodiment of the present invention, and Section 2.3.
FIG. 4 is an explanatory diagram showing eccentric rotation of the rotor member due to fluid. 1: Casing 2: 7 Lunge portion 3: Rotor chamber 4: Rotor member 5: Rotor axis 6: Casing axis 7: Transfer 7 Lunge portion 8: Female thread 10: Stator member 11: Fixed shaft 12: Shaft fixing portion 13: Magnet ring 14: Pick-up coil 15: Display 18 Two flow rate display parts

Claims (1)

【特許請求の範囲】[Claims] 流体通路が貫通されたケーシング内に円筒ロータ室を形
成し、該ロータ室内に2条螺旋の雌ねじを内穿した円筒
外形をもつロータ部材を偏心回転自在に組み込み、該ロ
ータ部材の2条螺旋ねじに内接して単条螺旋ねじの外形
形状を有するステータ部材をケーシング側に固定して設
置し、更に加圧流体の供給による前記ロータ部材のロー
タ室内での偏心回転を検出して通過流量を測定表示する
手段を設けたことを特徴とする容積式流量計。
A cylindrical rotor chamber is formed in a casing through which a fluid passage is penetrated, and a rotor member having a cylindrical outer shape with a double-thread internal thread is installed in the rotor chamber so as to be eccentrically rotatable. A stator member that is inscribed in the stator member and has the outer shape of a single helical thread is fixedly installed on the casing side, and the eccentric rotation of the rotor member within the rotor chamber due to the supply of pressurized fluid is detected to measure the passing flow rate. A positive displacement flowmeter characterized by being provided with a display means.
JP24905884A 1984-11-26 1984-11-26 Volumetric flowmeter Granted JPS61126425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24905884A JPS61126425A (en) 1984-11-26 1984-11-26 Volumetric flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24905884A JPS61126425A (en) 1984-11-26 1984-11-26 Volumetric flowmeter

Publications (2)

Publication Number Publication Date
JPS61126425A true JPS61126425A (en) 1986-06-13
JPH0148969B2 JPH0148969B2 (en) 1989-10-23

Family

ID=17187381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24905884A Granted JPS61126425A (en) 1984-11-26 1984-11-26 Volumetric flowmeter

Country Status (1)

Country Link
JP (1) JPS61126425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388042U (en) * 1989-12-25 1991-09-09
DE19513781B4 (en) * 1994-05-05 2005-01-20 Kräutler Ges.m.b.H. & Co. Device for volume measurement of flowing media
JP2016045160A (en) * 2014-08-26 2016-04-04 兵神装備株式会社 Flowmeter, and pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388042U (en) * 1989-12-25 1991-09-09
DE19513781B4 (en) * 1994-05-05 2005-01-20 Kräutler Ges.m.b.H. & Co. Device for volume measurement of flowing media
JP2016045160A (en) * 2014-08-26 2016-04-04 兵神装備株式会社 Flowmeter, and pump device

Also Published As

Publication number Publication date
JPH0148969B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
CA2764083C (en) Mass flow meter
US5027653A (en) Flowmeters having rotors with grooved bores and lands
JPS61126425A (en) Volumetric flowmeter
US4295369A (en) Dual magnetic drive for gear meters
US4911010A (en) Fluid flowmeter
JPS6199818A (en) Volumetric flow meter
JP3063809B2 (en) Volumetric flow meter
JPH0148967B2 (en)
CA2068640A1 (en) Dual revolving vane meter-motor-pump
US1035225A (en) Measuring apparatus.
KR101132008B1 (en) Flow sensor
JPS61126426A (en) Volumetric flowmeter
CN104568021A (en) Three-screw-rod flow meter
US4107992A (en) Fluid meter
JP2005257309A (en) Turbine flowmeter and fluid rotary machine
JPH0135287B2 (en)
JP2023007390A (en) Rotary piston type flowmeter
JPH04318426A (en) Flowmeter
JPH08285642A (en) Flow meter
JP2786687B2 (en) Transmission method of displacement flow meter
JP3282638B2 (en) Flowmeter
KR20020076418A (en) A turbine flow meter
JPH0323533Y2 (en)
US3358508A (en) Primary metering device
JPH0547293Y2 (en)