JPS6112633A - Separation of unsaturated hydrocarbon - Google Patents

Separation of unsaturated hydrocarbon

Info

Publication number
JPS6112633A
JPS6112633A JP59131929A JP13192984A JPS6112633A JP S6112633 A JPS6112633 A JP S6112633A JP 59131929 A JP59131929 A JP 59131929A JP 13192984 A JP13192984 A JP 13192984A JP S6112633 A JPS6112633 A JP S6112633A
Authority
JP
Japan
Prior art keywords
exchange resin
unsaturated hydrocarbon
ion exchange
ion
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131929A
Other languages
Japanese (ja)
Inventor
Eiichirou Nishikawa
西川 瑛一郎
Teiji Nakamura
悌二 中村
Hiroshi Furukawa
寛 古川
Takeo Koyama
小山 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP59131929A priority Critical patent/JPS6112633A/en
Publication of JPS6112633A publication Critical patent/JPS6112633A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To separate unsaturated hydrocarbon, using a silver ion-type ion exchange resin as an adsorbent producible and handleable easily, having high durability and free from side reactions, by contacting a gas containing unsaturated hydrocarbon with said adsorbent, and eluting the adsorbed unsaturated hydrocarbon. CONSTITUTION:An ion exchange resin containing silver ion as the counter ion and prepared by the ion exchange of a cation exchange resin with silver ion (preferably a highly porous resin) is made to contact with a gas containing unsaturated hydrocarbon, especially olefins, at normal temperature - 150 deg.C under atmospheric pressure - 30kg/cm<2> to effect the adsorption of the unsaturated hydrocarbons. The adsorbed unsaturated hydrocarbons are eluted by reducing the pressure below the partial pressure of the unsaturated hydrocarbon in the adsorption process or raising the temperature at a level higher than the temperature of adsorption.

Description

【発明の詳細な説明】 本発明は、不飽和炭化水素、特にオレフィン類を含有す
るガスを、銀イオンを対立イオンとするイオン交換樹脂
に接触させ、該イオン交換樹脂に不飽和炭化水素、特に
オレフィン類を可逆的に吸着させることによる不飽和炭
化水素、特に芽レフイン類の分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves bringing a gas containing unsaturated hydrocarbons, especially olefins, into contact with an ion exchange resin having silver ions as an opposing ion, and causing the ion exchange resin to contain unsaturated hydrocarbons, especially olefins. The present invention relates to a method for separating unsaturated hydrocarbons, particularly olefins, by reversibly adsorbing olefins.

従来、オレフィンと分子錯体を成形するような吸収液、
例えば二金属塩(auhtata )・トルエン液、硝
酸銀水溶液などを用いて混合ガスからオレフィンを選択
的に分離する方法が知られている。しかし、これらの方
法は、装置の腐食、金属成分の析出、溶媒回収などによ
る工程の複雑化、さ′らには塩化アルミ系錯体を用いる
場合は原料ガス中の水分による錯体の分解が発生するな
どの欠点があった。一方、吸収液を用いないものとして
は、例えば特公昭59−16491号公報に、可逆的に
反応する対イオンを含有する半透性イオン交換膜による
エチレンの分離方法が記載されている。しかし、この方
法は、透過ガスが掃去ガスで稀釈されること、および分
離構造上から半透性イオン交換膜の耐久性が十分でない
。また、半透性イオン交換膜は成形加工が難しく高価で
あるなどという問題があった。
Conventionally, absorption liquids that form molecular complexes with olefins,
For example, methods are known in which olefins are selectively separated from a mixed gas using a dimetallic salt, toluene solution, silver nitrate aqueous solution, or the like. However, these methods complicate the process due to equipment corrosion, precipitation of metal components, solvent recovery, etc., and furthermore, when aluminum chloride complexes are used, decomposition of the complexes due to moisture in the raw material gas occurs. There were drawbacks such as. On the other hand, as a method that does not use an absorption liquid, for example, Japanese Patent Publication No. 59-16491 describes a method for separating ethylene using a semipermeable ion exchange membrane containing a counterion that reacts reversibly. However, in this method, the permeate gas is diluted with the scavenging gas, and the durability of the semipermeable ion exchange membrane is insufficient due to the separation structure. Additionally, semipermeable ion exchange membranes have problems such as being difficult to mold and expensive.

本発明は、従来知られている不飽和炭化水素、例えばオ
レフィンを含有する混合ガスからオレフィンの選択的分
離回収方法におけるこのような欠点を改良することを目
的になされたものであって、すなわち、本発明の不飽和
炭化水素の分離方法は、不飽和炭化水素を含有するガス
を、銀イオンを対立イオンとするイオン交換樹脂と接触
させ、該イオン交換樹脂に不飽和炭化水素を吸着させ、
次いで脱離させるものである。
The present invention has been made with the object of improving such drawbacks in the conventionally known methods for selectively separating and recovering olefins from a mixed gas containing unsaturated hydrocarbons, such as olefins, namely: The method for separating unsaturated hydrocarbons of the present invention includes contacting a gas containing unsaturated hydrocarbons with an ion exchange resin having silver ions as opposing ions, and adsorbing the unsaturated hydrocarbons on the ion exchange resin.
Then, it is desorbed.

本発明において用いる銀イオンを対立イオンとするイオ
ン交換樹脂は、陽イオン交換樹脂を銀イオンでイオン交
換することによって得られる。陽イオン交換樹脂として
は、スルホン酸基、カルボン酸基などの酸性基をもつ酸
性陽イオン交換樹脂があげられる。
The ion exchange resin having silver ions as the counter ion used in the present invention can be obtained by ion-exchanging a cation exchange resin with silver ions. Examples of the cation exchange resin include acidic cation exchange resins having acidic groups such as sulfonic acid groups and carboxylic acid groups.

杜の基体樹脂としては、例えばスチレン、アクリル酸、
メタクリル酸およびこれら化合物のハロゲン化物、アル
キル化物などとジビニルベンゼンなどポリビニ牛ベンゼ
ンとの架橋共重合体S−tたけこれら架橋共重合体のハ
ロゲン化物、フェノール系縮合樹脂、フッ化ビニルエー
テA/とフルオロカーボンとの共重合体、その他α−オ
レフインの鎖状重合体、例えばポリエチレン、アイオノ
マーなどをあげることができる。また、これら酸性陽イ
オン交換樹脂の幾何学的゛な構造面では、ゲル型、物理
的な細孔を有する多孔性のポーラス型またはハイポーラ
ス型などのものがあ゛げられるが、これらのうちでは特
に多・孔性のハイポーラス型のものが好ましい。陽イオ
ン゛交換樹脂への銀イオンのイオン交換は、銀イオンを
含む水溶液、例えば硝酸銀水溶液中などで、陽イオン交
換樹脂との間に陽イオン交換を行うことによって達成で
きる。この銀イオン交換量はイオン交換樹脂の交換容量
にょシー概に規定できないが、通常はイオン交換樹脂の
交換容量に対して10〜100Nの範囲である。なお、
銀以外の金属は、不飽和炭化水素以外のガスに不活性な
ものであれば少量を含んでいても差しつかえない。この
イオン交換樹脂の形状は、ガスとの接触を効率的に行う
ために、通常粉状9粒状1球状などで用いられる。
Examples of base resins for Mori include styrene, acrylic acid,
Cross-linked copolymers of methacrylic acid and halides and alkylated products of these compounds and polyvinylbenzene such as divinylbenzene S-t Take halides of these cross-linked copolymers, phenolic condensation resins, fluorinated vinyl ether A/and fluorocarbons copolymers with α-olefins, and chain polymers of other α-olefins, such as polyethylene and ionomers. In terms of geometrical structure, these acidic cation exchange resins include gel type, porous type with physical pores, and hyperporous type. In particular, highly porous type materials are preferred. Ion exchange of silver ions with the cation exchange resin can be achieved by performing cation exchange with the cation exchange resin in an aqueous solution containing silver ions, such as an aqueous silver nitrate solution. Although the amount of silver ion exchanged cannot be generally defined based on the exchange capacity of the ion exchange resin, it is usually in the range of 10 to 100 N based on the exchange capacity of the ion exchange resin. In addition,
A small amount of metals other than silver may be included as long as they are inert to gases other than unsaturated hydrocarbons. The shape of this ion exchange resin is usually in the form of a powder, nine particles, one sphere, etc. in order to efficiently contact the gas.

本発明における不飽和炭化水素とは、炭素数が2〜5個
のモノオレフィン、ジオレフィンなどのオレフィン類ま
たはアセチレン類で、例えばエチレン、プロピレン、イ
ソブチン、n−ブテン、グロパジェン、ブタジェン、ペ
ンテン。
The unsaturated hydrocarbon in the present invention refers to olefins such as monoolefins and diolefins having 2 to 5 carbon atoms, or acetylenes, such as ethylene, propylene, isobutyne, n-butene, glopadiene, butadiene, and pentene.

ペンタジェン、アセチレン、メチルアセチレンなどがあ
げられる。
Examples include pentagene, acetylene, and methylacetylene.

本発明の方法が適用できる不飽和炭化水素を含有するガ
スは、上記の不飽和炭化水素を含有するものであるが、
その含有量は特に限定されない。また、それらのガスに
は飽和炭化水素、窒素、酸素、二酸化炭素、−酸化炭素
、アルゴン、ヘリウム、水素、水蒸気などが共存してい
てもよく、微量ならば硫黄化合物の存在も差し支えない
。このような不飽和炭化水素を含有するガスとしては、
例えば石油精製や石油化学工業における石油の熱分解、
接触分解、水蒸気分゛解、改質などで得られるエチレン
、プロピレン、イソブチン、n−ブテン、ペンテンなど
を含有する副生ガスあるいはコークス炉ガスなどの混合
ガスをあげることができる。
The gases containing unsaturated hydrocarbons to which the method of the present invention can be applied include those containing the above-mentioned unsaturated hydrocarbons,
Its content is not particularly limited. In addition, saturated hydrocarbons, nitrogen, oxygen, carbon dioxide, carbon oxide, argon, helium, hydrogen, water vapor, etc. may coexist in these gases, and the presence of sulfur compounds may also be present in trace amounts. Gases containing such unsaturated hydrocarbons include:
For example, thermal decomposition of petroleum in petroleum refining and petrochemical industries,
Examples include by-product gases containing ethylene, propylene, isobutyne, n-butene, pentene, etc. obtained by catalytic cracking, steam cracking, reforming, etc., or mixed gases such as coke oven gas.

本発明は、不飽和炭化水素を含有するガスを前記の銀イ
オンを交換したイオン交換樹脂に接触させ、ガス中の不
飽和炭化水素を該銀イオン型交換樹脂に吸着させ、次い
で脱離させることによって達成できる。この不飽和炭化
水素を含むガスとイオン交換樹脂との接触は、固定床、
流動床、移動床などで行うことができる。
The present invention involves bringing a gas containing unsaturated hydrocarbons into contact with the ion exchange resin in which silver ions have been exchanged, causing the unsaturated hydrocarbons in the gas to be adsorbed onto the silver ion type exchange resin, and then desorbing them. This can be achieved by The contact between this unsaturated hydrocarbon-containing gas and the ion exchange resin is carried out in a fixed bed,
This can be carried out in a fluidized bed, moving bed, etc.

不飽和炭化水素の吸着条件は、温度が300℃以下、好
ましくは常温〜150℃の範囲で、圧力−は特に限定さ
れないが、常圧〜3011/cIIiの範囲が好ましい
。また、不飽和炭化水素や脱離条件は、吸着時の不飽和
炭化水素の分圧より低い圧力による脱離(圧力スウィン
グ)、吸着時の温度よシ高い温度による脱離(温度スウ
ィング)、またはそれらの組合せによって行われる。
The adsorption conditions for unsaturated hydrocarbons are such that the temperature is 300°C or less, preferably in the range of room temperature to 150°C, and the pressure is not particularly limited, but is preferably in the range of normal pressure to 3011/cIIi. In addition, unsaturated hydrocarbons and desorption conditions are determined by desorption at a pressure lower than the partial pressure of unsaturated hydrocarbons during adsorption (pressure swing), desorption at a temperature higher than the temperature during adsorption (temperature swing), or This is done by a combination of them.

本発明は、以上のように構成したものであるが、本発明
の方法によれば、不飽和炭化水素を含むガス中から不飽
和炭化水素を選択的に分離回収することができる。また
、本発明の銀イオン型イオン交換樹脂(吸着剤)は、水
分に対して耐久性がオシ、不飽和炭化水素の重合や芳香
核アルキレーションなどの副反応を起さず、炭素数3個
以上の不飽和炭化水素についても可逆的に吸脱着ができ
る。また、吸着剤の製造および惑扱いはきわめて簡単で
耐久性があシ、半透膜のものに比べて製造コストが安価
である。
The present invention is configured as described above, and according to the method of the present invention, unsaturated hydrocarbons can be selectively separated and recovered from a gas containing unsaturated hydrocarbons. In addition, the silver ion type ion exchange resin (adsorbent) of the present invention has good durability against moisture, does not cause side reactions such as polymerization of unsaturated hydrocarbons or alkylation of aromatic nuclei, and has a carbon number of 3. The above unsaturated hydrocarbons can also be adsorbed and desorbed reversibly. In addition, the adsorbent is extremely easy to manufacture and handle, is durable, and costs less to manufacture than semipermeable membranes.

以下に本発明を実施例において詳細に説明する。The present invention will be explained in detail in Examples below.

実施例1 スチレンジビニルベンゼン共重合体からなるハイポーラ
ス型の強酸性陽イオン交換樹脂(市販品粒状、架橋度2
ON、スルホン酸基含有、イオン交換容量49 meg
 /g−6ry、水素イオン型)を1規定の硝酸銀水溶
液に浸漬してイオン交換を行い、Ag+イオン型イオン
交換樹脂(銀担持量3&3重量X)を得た。
Example 1 Highly porous strongly acidic cation exchange resin made of styrene divinylbenzene copolymer (commercial product granular, crosslinking degree 2)
ON, contains sulfonic acid group, ion exchange capacity 49 meg
/g-6ry, hydrogen ion type) was immersed in a 1N silver nitrate aqueous solution to perform ion exchange to obtain an Ag + ion type ion exchange resin (silver supported amount: 3 & 3 weight X).

このAg+イオン型イオン交換樹脂(以下吸着剤)11
!を通常の閉鎖循環系吸着装置に仕込み、エチレンとエ
タンの混合ガス(エチレン含有量90容量%、以下容量
X)を常温、常圧にて導入しポンプを用いて混合ガスを
一環して固定床の吸着剤と接触させた。第1図に示すよ
うにエチレンの吸着は迅蓮で10分後には2A4mのエ
チレンを吸着し、60分後に平衡に達した。この時のエ
チレン吸着量は245m(標準状態換算、以下の吸脱着
量は標準状態換算)であった。なお、エタンの吸着量は
、無視できる程度に微量であった。
This Ag + ion type ion exchange resin (hereinafter referred to as adsorbent) 11
! A mixed gas of ethylene and ethane (ethylene content 90% by volume, hereinafter referred to as volume X) is introduced at normal temperature and pressure, and a pump is used to pump the mixed gas into a fixed bed. of adsorbent. As shown in FIG. 1, the adsorption of ethylene was rapid, and 2A4m of ethylene was adsorbed after 10 minutes, and equilibrium was reached after 60 minutes. The amount of ethylene adsorbed at this time was 245 m (converted to standard conditions; the following amounts of adsorption and desorption are converted to standard conditions). Note that the amount of ethane adsorbed was negligible.

吸着終了後、系内を1 w Hg 以下の減圧にし、脱
離したガスを液体窒素で冷却補集してその量を測定した
ところ18.0m のエチレンの脱離が富められた。上
記の吸着および脱離を繰り返したところ2曲目のエチレ
ン吸着量は1&2i1、脱離量は11LO−であシ、可
逆的にエチレンが吸脱着することが認められた。
After the adsorption was completed, the pressure inside the system was reduced to 1 w Hg or less, and the desorbed gas was cooled and collected with liquid nitrogen, and its amount was measured, and it was found that 18.0 m 2 of ethylene had been desorbed. When the above adsorption and desorption were repeated, the amount of ethylene adsorbed in the second track was 1&2i1, and the amount desorbed was 11LO-, and it was confirmed that ethylene was adsorbed and desorbed reversibly.

実施例2 実施例1で用いた吸着剤および吸着装置をそのまま引続
き用いて、エチレンとエタンの混合ガス(エチレン含有
量90X)を用いて吸脱着温度およびエチレン分圧を変
化させた以外は実施例1と同様の方法で吸脱着を行い、
その結果を表−1に示した。表−1から明らかなように
、各条件においてエチレンを可逆的に吸脱着することが
わかる。
Example 2 The adsorbent and adsorption apparatus used in Example 1 were continued as they were, except that the adsorption/desorption temperature and ethylene partial pressure were changed using a mixed gas of ethylene and ethane (ethylene content: 90X). Adsorption and desorption is performed in the same manner as in 1.
The results are shown in Table-1. As is clear from Table 1, it can be seen that ethylene is reversibly adsorbed and desorbed under each condition.

表−1 実施例3 実施例1において、エチレンとエタンの混合ガスに代シ
、エチレン50X、−酸化炭素10%、水素10X1窒
素25Nおよび酸素5Xの混合ガスを用いた以外は実施
例1と同様の方法で吸脱着を行ったところエチレンの吸
着量は、17.1R/、脱離量17.0+dであった。
Table 1 Example 3 Same as Example 1 except that instead of the mixed gas of ethylene and ethane, a mixed gas of 50X ethylene, 10% carbon oxide, 10X hydrogen, 25N nitrogen, and 5X oxygen was used. When adsorption and desorption was carried out using the method described above, the amount of ethylene adsorbed was 17.1 R/, and the amount desorbed was 17.0+d.

また、他の成分の吸脱着量は痕跡であった。In addition, the amounts of adsorption and desorption of other components were only traces.

比較例1 実施例1において使用した強酸性陽イオン交換樹脂を、
銀イオン交換を行わずそのままで用いた以外は実施例1
と同様の方法でエチレンとエタンの混合ガス(エチレン
含有量90x)の吸着量を測定したところtOdと僅か
でエチレンの分離回収ができなかった。
Comparative Example 1 The strongly acidic cation exchange resin used in Example 1 was
Example 1 except that silver ion exchange was not performed and the product was used as is.
When the amount of adsorption of a mixed gas of ethylene and ethane (ethylene content: 90x) was measured in the same manner as above, it was only tOd, and ethylene could not be separated and recovered.

比較例2 実施例1において用いた強酸性陽イオン交換樹脂を、1
規定の塩化ナトリウム水溶液に浸漬してイオン交換を行
い、Na+イオン型イオン交換樹脂(す) IJウム担
担持量1註0た。このイオン交換樹脂を用いて実施例1
と同様にエチレンとエタンの混合ガス(エチレン含有量
90%)の吸着量を測定したところ2.O.idと僅か
でエチレンの分離回収ができなかった。
Comparative Example 2 The strongly acidic cation exchange resin used in Example 1 was
Ion exchange was performed by immersing it in a specified aqueous sodium chloride solution, and the amount of IJium supported on the Na + ion type ion exchange resin was 1. Example 1 using this ion exchange resin
The amount of adsorption of a mixed gas of ethylene and ethane (ethylene content 90%) was measured in the same manner as in 2. O. It was not possible to separate and recover ethylene due to the small amount of id.

実施例4,5 実施例1において、エチレンとエタンの混合ガスに代シ
、プロピレンとプロパンの混合ガス(プロピレン90X
)およびブテン−1とイソブタンの混合ガス(ブテン−
L9 0 N )を用いた以外は実施例1と同様の方法
で吸脱着を行い、その結果を表−2に示した。表−2か
ら明らかなように、本発明の方法によればプロピレン(
実施例4)およびブテン−1(実施例5)も可逆的に吸
脱着することが認められる。・表−2
Examples 4 and 5 In Example 1, a mixed gas of propylene and propane (propylene 90X) was used instead of a mixed gas of ethylene and ethane.
) and a mixed gas of butene-1 and isobutane (butene-1 and isobutane
Adsorption and desorption was performed in the same manner as in Example 1, except that L90N) was used, and the results are shown in Table 2. As is clear from Table 2, according to the method of the present invention, propylene (
Example 4) and butene-1 (Example 5) are also found to be reversibly adsorbed and desorbed.・Table-2

【図面の簡単な説明】[Brief explanation of drawings]

′ 第1図は本発明に係るAg+イオン型イオン交換樹
脂を用いてエチレンを吸着させた場合のエチレン吸着量
を示すグラフである。
' Figure 1 is a graph showing the amount of ethylene adsorbed when ethylene is adsorbed using the Ag + ion type ion exchange resin according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 不飽和炭化水素を含有するガスを、銀イオンを対立イオ
ンとするイオン交換樹脂と接触させ、該イオン交換樹脂
に不飽和炭化水素を吸着させ、次いで脱離させることを
特徴とする不飽和炭化水素の分離方法。
An unsaturated hydrocarbon characterized in that a gas containing an unsaturated hydrocarbon is brought into contact with an ion exchange resin having silver ions as an opposing ion, the unsaturated hydrocarbon is adsorbed onto the ion exchange resin, and then desorbed. separation method.
JP59131929A 1984-06-28 1984-06-28 Separation of unsaturated hydrocarbon Pending JPS6112633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131929A JPS6112633A (en) 1984-06-28 1984-06-28 Separation of unsaturated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131929A JPS6112633A (en) 1984-06-28 1984-06-28 Separation of unsaturated hydrocarbon

Publications (1)

Publication Number Publication Date
JPS6112633A true JPS6112633A (en) 1986-01-21

Family

ID=15069504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131929A Pending JPS6112633A (en) 1984-06-28 1984-06-28 Separation of unsaturated hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6112633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452574A (en) * 1994-01-14 1995-09-26 Solar Turbines Incorporated Gas turbine engine catalytic and primary combustor arrangement having selective air flow control
JP2015155402A (en) * 2005-04-27 2015-08-27 カルゴン、カーボン、コーポレーションCalgon Carbon Corp. Method of separating e and z isomers of alkene alcohol and derivatives thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988801A (en) * 1972-12-29 1974-08-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988801A (en) * 1972-12-29 1974-08-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452574A (en) * 1994-01-14 1995-09-26 Solar Turbines Incorporated Gas turbine engine catalytic and primary combustor arrangement having selective air flow control
JP2015155402A (en) * 2005-04-27 2015-08-27 カルゴン、カーボン、コーポレーションCalgon Carbon Corp. Method of separating e and z isomers of alkene alcohol and derivatives thereof

Similar Documents

Publication Publication Date Title
EP0147960B1 (en) Selective adsorption and recovery of organic gases using ion-exchanged faujasite
EP1080056B1 (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
US20050241478A1 (en) Adsorption mass and method for removing carbon monoxide from flows of material
EP0964904B1 (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
CA1242684A (en) Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US6315816B1 (en) Adsorbents, method for the preparation and method for the separation of unsaturated hydrocarbons for gas mixtures
KR102011393B1 (en) Adsorbents for the separation of olefin-paraffin mixtures including C2-C4 hydrocarbons and a separation method of olefin-paraffin gas mixtures using the same
WO2003048087A1 (en) Purification of polyolefin feedstocks using multiple adsorbents
IL29764A (en) Purification of h2s containing gases
EP0199341B1 (en) An adsorbent for use in selective gas adsorption-separation and a process for producing the same
KR20080036137A (en) Adsorbents for purification of c2-c3 olefins
EP2158021A1 (en) Process for reducing carbon monoxide in olefin-containing hydrocarbon feedstocks
US3273314A (en) Removal of alkynes from gaseous streams with a silver carboxylate ion exchange resin
TW201418194A (en) Sulphur adsorption before oligomerization plants
JPS6112633A (en) Separation of unsaturated hydrocarbon
US5396018A (en) Method of recovery acid catalyst from acid catalyzed processes
CN113710359A (en) Adsorbent for separating organic chlorine compound from liquid hydrocarbon and method thereof
WO1995021146A1 (en) Removal of carbon monoxide from hydrocarbon streams
KR102348345B1 (en) Improved adsorption of acid gases
JPS6128449A (en) Adsorbent for olefin and method of selectively removing olefin by using said adsorber
CN114534441B (en) Method for deeply removing alkyne and allene from complex cracking gas by one step
US20030105378A1 (en) Process for recovery of diene-free feedstocks from olefinic process streams
US5057629A (en) Process for reducing isopropyl alcohol in diisopropyl ether
KR100426957B1 (en) Adsorbent Preparations and Applications for C4 Olefin Separation from Mixtures
JPH03213115A (en) Removal of carbonyl sulfide in fluid