JPS61125702A - Method for machining steam turbine diaphgram - Google Patents

Method for machining steam turbine diaphgram

Info

Publication number
JPS61125702A
JPS61125702A JP24794984A JP24794984A JPS61125702A JP S61125702 A JPS61125702 A JP S61125702A JP 24794984 A JP24794984 A JP 24794984A JP 24794984 A JP24794984 A JP 24794984A JP S61125702 A JPS61125702 A JP S61125702A
Authority
JP
Japan
Prior art keywords
data
value
memory
machining
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24794984A
Other languages
Japanese (ja)
Inventor
Keiji Toyomi
豊海 恵治
Ryoei Inukai
犬養 了栄
Seiji Hida
飛田 誠司
Chiaki Yamashita
千秋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24794984A priority Critical patent/JPS61125702A/en
Publication of JPS61125702A publication Critical patent/JPS61125702A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods

Abstract

PURPOSE:To connect a nozzle welding portion smoothly by storing strain amount corresponded to a rotating angle in a memory and reading previously to correct a phase shift amount with a data in the memory as a temporary delay system according to a detected value at the time of turning. CONSTITUTION:Diaphgram deformation amount is measured previously by a measuring unit 110 and taken in a correction data memory 116 by a value of an angle detector 108 mounted to a table. In non-circle machining, the value of the detector 108 and a value of a rotating speed detector 109 are taken by table rotating number, and phase delay corresponding to rotating speed is computed by deformation frequency by the rotating number and measurement data in a correction data memory address arithmetic circuit 112 successively to perform previous reading. Attaining ratio correction is made by the taking-in data in a correction data arithmetic editing circuit 114, and non-circle machining is made by pulse output by multiplying the data of previous reading of the phase delay of the memory 116 by the reciprocal of the attaining ratio.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービンのノズルと仕切板とを一体に躊
接情成した上で切削加工t2+dxしてダイヤフラムを
製作する加工の方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a processing method in which a steam turbine nozzle and a partition plate are welded together and then subjected to cutting processing t2+dx to produce a diaphragm. be.

〔発明の背景〕[Background of the invention]

先ず、上に述べた夕゛イヤ7ラムを製作する一般的な手
順について説明する。
First, the general procedure for manufacturing the ear 7 ram mentioned above will be explained.

第2図に蒸気タービンのダイヤフラム近傍の断面図を示
す。蒸気タービンは、蒸気の熱エネルギーをタービンロ
ータ4の回転エネルギーに変える機械である。
FIG. 2 shows a cross-sectional view of the vicinity of the diaphragm of the steam turbine. A steam turbine is a machine that converts thermal energy of steam into rotational energy of a turbine rotor 4.

蒸気はタービンロータ4の動翼5に、ダイヤ7ヲムのノ
ズル2′t−通して吹きつけられる。ノズルは外輪1、
内輪3へ取付けられて分り動翼とはシールパツキン6で
他段落と仕切られ、蒸気が動翼間を通過する構造になっ
ている。第3図にダイヤ7ツムを鳥徴し次色を示す、こ
のダイヤフラム1は上下半2分割され、ロータの段落間
に設置される。ここで第4図に蒸気タービンダイヤス2
ムの製作手順を示す。スベーテリング7はノズル3の断
面形状の孔7aを設けられ、ノズル3はノズルの通路断
面が一様になる様、設計値にしたがい最大効率が発揮で
きる保うに組立てらバる。スベーサーリングの孔7aへ
組込まれたノズル3は図に示すように溶接用の開先の敗
られた外輪1.内輪2の間にセットされ、第5図に示す
ように俗接妊れる。このとき、浴接時の熱影響によって
内、外輪ともに溶接歪みを生じる。第6図は第5図のA
矢視図を示し、平行斜線を付して示した9は饅接歪を表
わしている。
Steam is blown onto the rotor blades 5 of the turbine rotor 4 through a 7-diameter nozzle 2't-. The nozzle is outer ring 1,
The rotor blades attached to the inner ring 3 are separated from other stages by a seal packing 6, and the structure is such that steam passes between the rotor blades. The diaphragm 1, which has seven diamonds as a bird symbol and the following colors are shown in FIG. 3, is divided into upper and lower halves and installed between the stages of the rotor. Here, Fig. 4 shows the steam turbine diagram 2.
This section shows the steps for making a simulator. The steering ring 7 is provided with a hole 7a having the cross-sectional shape of the nozzle 3, and the nozzle 3 is assembled so that the cross-section of the passage of the nozzle is uniform and maximum efficiency is maintained according to the design value. As shown in the figure, the nozzle 3 installed in the hole 7a of the base ring is attached to the outer ring 1 with a welding groove. It is set between the inner rings 2, and as shown in FIG. At this time, welding distortion occurs in both the inner and outer rings due to thermal effects during bath welding. Figure 6 is A of Figure 5.
The arrow 9 shows a diagram, and numeral 9 indicated with parallel diagonal lines represents the strain caused by the condensation.

従来技術におい・ては、上記のよりに歪を生じたダイヤ
グラム半成品lOを、第7図に示すようなターニングの
テーブル11上に段取りして回転させ、ツールバー12
の先端に取シ付けた切削工具をX軸、Z軸方向く移動さ
せながら真円を削り出していた。
In the prior art, the diagram semi-finished product lO, which has been distorted as described above, is set up and rotated on a turning table 11 as shown in FIG.
A cutting tool attached to the tip of the machine was moved in the X-axis and Z-axis directions to cut out a perfect circle.

上記のような加工では、各ノズルの間を通過する蒸気の
流路断面積が均一にならないので、第8図に示すように
外輪1とノズル2との付根付近に平行斜線を付して示し
た部分13を手作業によるグライダ加工で取#)l!7
き、蒸気の渦損失を防ぐためノズル2の出口と外輪1の
側面とを滑らかに続けるように仕上げていた34449
図は上記のグラインダ加工部分13の形状を示す為に描
いた部分的な展開図でわる。
In the process described above, the cross-sectional area of the steam passing between the nozzles is not uniform, so the area near the base of the outer ring 1 and the nozzle 2 is shown with parallel diagonal lines as shown in Figure 8. Part 13 was removed by manual glider machining #)l! 7
34449, which was finished so that the outlet of the nozzle 2 and the side surface of the outer ring 1 were smoothly continuous to prevent steam vortex loss.
The figures are partially exploded views drawn to show the shape of the grinder-processed portion 13 described above.

このような手作業によって仕上げていた従来の加工方法
では高度の熟練と多大の労力とを要し、製造コストを上
昇せしめていた。
Conventional processing methods in which finishing was done by hand required a high degree of skill and a great deal of labor, leading to an increase in manufacturing costs.

〔発明の目的〕[Purpose of the invention]

本発明は上述の4悄Kmみて為されたもので、手作業に
よることなく、ダイヤフラムのノズル溶接部と内、外輪
の真内部とを滑らかに繋ざ、しかも各蒸気流路の断面積
を適正に保ち得る自動的機械加工方法を提供しようとす
るものである。
The present invention was developed in consideration of the above-mentioned 4 km, and allows the nozzle welding part of the diaphragm to be smoothly connected to the inner and inner parts of the inner and outer rings without any manual work. The purpose of this invention is to provide an automatic machining method that can maintain the

蒸気タービンのダイヤグラムを上記のように自動機で切
削加工することについては先行の公知技術が無く、従来
は全て手作業によっていた。
There is no prior known technology for cutting the diagram of a steam turbine using an automatic machine as described above, and conventionally all cutting has been done by hand.

〔発明の低置〕[Low position of invention]

上記の目的を達成する為に創作した本発明の加工方法に
ついて、先ず、その基本的な原理を略述する。
First, the basic principle of the processing method of the present invention created to achieve the above object will be briefly described.

被加工物であるところの、溶接歪を生じたダイヤフラム
半製品をターニングテーブル上で回転させながら、切削
加工に先立って予め歪量を測定し、歪量を回転角に対応
させて記憶させておき、切削の際は上記の記憶データに
基づいて、被加工物の回転角の変、化に対応して刃先の
移動量をパルス信号でNC截のパルス取込部へ送出し、
非円形変形部を加工する。この時NC制御機は一次遅れ
系と考えることができ、入力パルスに対して出力値は位
相差をもち、又指令の到達率は系のポジジョンゲインと
移動量の角速度とにより100%とはならず、自動補正
の処理が必要となるが、本発明の加工方法とは後述する
ようにしてこれを可能ならしめた。
While rotating the diaphragm semi-finished product, which is the workpiece, which has undergone welding distortion, on a turning table, the amount of distortion is measured in advance before cutting, and the amount of distortion is stored in correspondence with the rotation angle. During cutting, based on the above stored data, the amount of movement of the cutting edge is sent as a pulse signal to the pulse acquisition section of the NC cutter in response to changes in the rotation angle of the workpiece.
Machining non-circular deformed parts. At this time, the NC controller can be thought of as a first-order delay system, and the output value has a phase difference with respect to the input pulse, and the command arrival rate may not be 100% due to the position gain of the system and the angular velocity of the movement amount. First, automatic correction processing is required, but the processing method of the present invention makes this possible as will be described later.

上述の原理に着づいて前記の目的(適正で滑らかな形状
に自動的に切削加工すること)を達成するため、本発明
のタービンダイヤ72ム加工方法は、浴接構成されて歪
を生じているダイヤフラムの半製品をターニング手段(
よって支承し、回転させながら計測して、予めその歪量
を回転角度と対応させて検出し、メモリ装置に貯えて2
く。
In order to achieve the above purpose (to automatically cut into a proper and smooth shape) based on the above-mentioned principle, the turbine diamond 72mm processing method of the present invention has a bath welding configuration to avoid distortion. Turning means (
Therefore, the amount of strain is measured while being supported and rotated, and the amount of strain is detected in advance in correspondence with the rotation angle, and stored in a memory device.
Ku.

そして削旋加工の瞳、その回転角度及び回転速度を検出
し、検出値に応じて前記のメモリ装置内のデータを一時
遅れ系としてのNC制御機の特定数を考慮して位相ズレ
分を先読みし、指令到達率を補正した上で今加減算パル
スとして前記NC制御機に入力せしめ、この値を基本形
加工用NO指令値と重畳させることを特徴とする。第1
0図は本発明方法による切削加工の状態を説明する為に
示した加工状態の斜視図で、従来技術における第8図に
対応する。1は外輪、2はノズル、6はシールパツキン
を示す、2点鎖線は参考の為に示した真円、実線で示し
たCutは切削面である。本発明によれば、以下に説明
するようKしてノズル2の取付部と外輪1の側面とを滑
らかKJぎ、かつ、ノズル出口の通路面積を設計値に一
致せしめることができる。
Then, the pupil of the machining process, its rotation angle, and rotation speed are detected, and according to the detected values, the data in the memory device is read in advance by the amount of phase shift, taking into consideration the specific number of NC controllers as a temporary delay system. The present invention is characterized in that the command arrival rate is corrected and then input to the NC controller as an addition/subtraction pulse, and this value is superimposed on the NO command value for basic shape machining. 1st
FIG. 0 is a perspective view of the machining state shown for explaining the state of cutting by the method of the present invention, and corresponds to FIG. 8 in the prior art. 1 is an outer ring, 2 is a nozzle, and 6 is a seal packing.The two-dot chain line is a perfect circle shown for reference, and the solid line Cut is a cutting surface. According to the present invention, as described below, it is possible to smoothly connect the mounting portion of the nozzle 2 and the side surface of the outer ring 1, and to make the passage area of the nozzle outlet match the design value.

第11図は第1O図に示した部分の展開図で、従来技術
における第9図に対応している。た疋し、本第11図に
おいて平行斜線を付して示した個所は自動的制御によっ
て機械的に切削加工された後における蒸気通路(ノズル
とノズルとの間の空間の断面)を表わしている。
FIG. 11 is a developed view of the portion shown in FIG. 1O, and corresponds to FIG. 9 in the prior art. However, in Fig. 11, the parts shown with parallel hatching represent the steam passage (cross section of the space between the nozzles) after being mechanically cut by automatic control. .

〔発明の実施例〕[Embodiments of the invention]

ダイヤプラムを自動加工するKはNCターニングが用い
られるが、NC制御系は一次遅れ系で近似出来る。入力
指令値をAa、出力値をAc、糸のポジションゲインを
1/T1移動軸の指令角速度をω(rud/5ec)と
すると、指令値(渡−1ンの到達率は Ac/A、=1/  1+(alT)”位相遅れは p =tan −’ (J)’I’ (deg)で表わ
される。ここでωはワークの変形量の周期とテーブルの
回転速度の関数になっている。
K, which automatically processes the diaphragm, uses NC turning, but the NC control system can be approximated by a first-order lag system. If the input command value is Aa, the output value is Ac, and the yarn position gain is 1/T1, and the command angular velocity of the moving axis is ω (rud/5ec), the arrival rate of the command value (crossing -1 is Ac/A, = 1/1+(alT)'' phase delay is expressed as p = tan -'(J)'I' (deg). Here, ω is a function of the period of deformation of the workpiece and the rotational speed of the table.

これらの関係をグラフにしたものが第12図でろるポジ
7ヨンゲインが大きくなるほど艮好な加工が出来ること
が分るが現状のター二/グ制御では、6QSeO−’付
近が限界であるが、本発明方法においては欠配のようK
してこの技術的間趙点を解消し、前記の到達率と位相遅
れとの影響を排除して製作公差を維持する。
A graph of these relationships is shown in Figure 12. It can be seen that the larger the positive gain, the better the machining can be done, but with the current turning control, the limit is around 6QSeO-'. In the method of the present invention, K
This technique solves this technical problem, eliminates the effects of the above-mentioned arrival rate and phase delay, and maintains manufacturing tolerances.

第1図は本実施例における蒸気ターピノダイヤフラムの
加ニブロック図である。
FIG. 1 is a block diagram of the steam terpino diaphragm in this embodiment.

加工に先立ち、ダイヤプラム変形量を測定器110で測
定し、テーブルへ取付けられた角度検出器108の値に
より補正データメモリ116へ取り込む。非円形刃ロエ
を実施する際はターンテーブルの回転により、角度検出
器108の値と回転速度検出器109の値とを取り込み
、回転速度と計測データとによるワークの変形周波数に
より回転速度に対応した位相遅れを補正データメモリア
ドレス演算回路112で逐時算出し、データの先読みを
行なう。又、到達率補正も同上取込みデータにより補正
データ演算編集回路114により行ないメモリ116に
より位相遅れ分先読みしたデータに到達率の逆数を乗じ
、常に正規な非円形加工が行なえるパルスを加減算パル
ス回路115で作り出す。
Prior to machining, the amount of diaphragm deformation is measured with a measuring device 110, and the value of the angle detector 108 attached to the table is taken into the correction data memory 116. When performing non-circular blade loe, the value of the angle detector 108 and the value of the rotational speed detector 109 are taken in by rotating the turntable, and the rotational speed is matched by the deformation frequency of the workpiece based on the rotational speed and measurement data. The phase delay is calculated one by one by the correction data memory address arithmetic circuit 112, and data is read in advance. Further, the arrival rate correction is also performed by the correction data arithmetic and editing circuit 114 using the same captured data, and the data pre-read by the phase delay in the memory 116 is multiplied by the reciprocal of the arrival rate, and the pulse circuit 115 adds and subtracts a pulse that allows regular non-circular machining to be performed at all times. Create with.

このパルスをIqC制御装置のXfll補正・くルス取
込み回路に送出し、NC制御装置ではNCテープ指令に
よる真円加工データに加減算パルスを重畳し位相遅れの
ない、到達率toosの非円形加工を行なうことができ
る。101はZ軸サーボモータ、102FiX軸サーボ
モータ、103はツールバー、104はツール、107
はNC制御装置である3111は非円形加工制御装置で
ある。
This pulse is sent to the Xflll correction/curse capture circuit of the IqC control device, and the NC control device superimposes addition/subtraction pulses on the perfect circular machining data based on the NC tape command to perform non-circular machining with no phase delay and an arrival rate of too. be able to. 101 is a Z-axis servo motor, 102 is a FiX-axis servo motor, 103 is a tool bar, 104 is a tool, 107
is an NC control device, and 3111 is a non-circular machining control device.

〔発明の効果〕〔Effect of the invention〕

以上詳述したよ51C,本発明の加工方法によれば、手
作業を用いないで、グイヤフラムノズル醇接部と内、外
輪の真内部とを滑らかに繋ぎ、しかも各蒸気流路の断面
積を設計値と等しからしめるように自動的に制御して切
削加工することができるという優れた実用的効果を奏し
、蒸気タービ/の性能向上、並びにコスト低減に貢献す
るところ多大である。
As described in detail above, according to the processing method of the present invention, it is possible to smoothly connect the Guyafram nozzle welding part and the true interior of the inner and outer rings without using manual labor, and to disconnect each steam flow path. It has an excellent practical effect in that cutting can be performed under automatic control so that the area is equal to the design value, and it greatly contributes to improving the performance of steam turbines and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例罠おける加工制御ブロック図
である、第2図は蒸気タービ/の断面図、第3図はダイ
ヤフラムの鳥諏図、第4図はダイヤフラム弓接過程の説
明図、第5図はダイヤフラム溶接状況を示す斜視図、第
6図は内、外輪の溶接変形を示す説明図、第7図はター
二/グ加工状況を示す斜視図である。第8図は従来技術
における切削を説明するための部分的斜視図、第9図は
同じく部分的展開図である。第10図は本発F3Aを適
用した場合の切削状況を説明するための部分的斜視図の
1例、第11図は同じく部分的展開図の1例である。第
12図は刃物台の動きと加工形状の関係を示す図表であ
る。 1・・・ダイヤフラム外輪、2・・・ノズル、3・・・
ダイヤフラム内輪、4・・・タービンロータ、5・・・
動JK、6・・・シールパツキン、7・・・スペーサリ
ング、8・・・溶接部、9・・・溶接変形部、10・・
・ダイヤフラム、11・・・ターンテーブル、12・・
・ツールバー、13・・・グライダ加工部、101・・
・Z軸サーボモータ、102・・・X軸サーボモータ、
103・・・ツールバー、104・・・ツール、107
・・・NC制御装置、108・・・ターンテーブル回転
角検出器、109・・・ターンテーブル回転速度検出器
、110・・・ワーク変形測定器、111・・・非円形
加工制御装置。
Fig. 1 is a processing control block diagram of an embodiment of the present invention, Fig. 2 is a cross-sectional view of the steam turbine, Fig. 3 is a cross-section diagram of the diaphragm, and Fig. 4 is an explanation of the diaphragm bowing process. 5 is a perspective view showing the diaphragm welding situation, FIG. 6 is an explanatory view showing the welding deformation of the inner and outer rings, and FIG. 7 is a perspective view showing the turning process. FIG. 8 is a partial perspective view for explaining cutting in the prior art, and FIG. 9 is a partial exploded view. FIG. 10 is an example of a partial perspective view for explaining the cutting situation when the present F3A is applied, and FIG. 11 is an example of a partial exploded view. FIG. 12 is a chart showing the relationship between the movement of the tool post and the machining shape. 1...Diaphragm outer ring, 2...Nozzle, 3...
Diaphragm inner ring, 4...Turbine rotor, 5...
Dynamic JK, 6... Seal packing, 7... Spacer ring, 8... Welded part, 9... Welded deformed part, 10...
・Diaphragm, 11... Turntable, 12...
・Tool bar, 13...Glider processing section, 101...
・Z-axis servo motor, 102...X-axis servo motor,
103... Toolbar, 104... Tool, 107
... NC control device, 108 ... Turntable rotation angle detector, 109 ... Turntable rotation speed detector, 110 ... Workpiece deformation measuring device, 111 ... Non-circular processing control device.

Claims (1)

【特許請求の範囲】[Claims] 1、溶接構成されたダイヤフラムの半製品をターニング
手段によつて支承し、回転させながら計測して、予めそ
の歪量を回転角度に対応せしめて検出し、メモリ装置に
記憶させておき、該ダイヤフラムを旋削加工する際、そ
の回転角度および回転速度を検出し、検出値に応じて前
記のメモリ装置内のデータを、一時遅れ系としてのNC
制御機の特定数を考虜して位相ズレ分を先読みし、指令
到達率を補正した上で加減算パルスとして前記NC制御
機に入力せしめ、この値を基本形加工用NC指令値と重
畳させることを特徴とする蒸気タービンダイヤフラムの
加工方法。
1. Support the semi-finished product of the welded diaphragm by a turning means, measure it while rotating, detect the amount of distortion in advance in correspondence with the rotation angle, and store it in a memory device. When turning, the rotation angle and rotation speed are detected, and the data in the memory device is transferred to the NC as a temporary delay system according to the detected values.
Taking into consideration the specific number of controllers, the phase shift can be read in advance, the command arrival rate can be corrected, and then input to the NC controller as addition/subtraction pulses, and this value can be superimposed on the NC command value for basic shape machining. Characteristic steam turbine diaphragm processing method.
JP24794984A 1984-11-26 1984-11-26 Method for machining steam turbine diaphgram Pending JPS61125702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24794984A JPS61125702A (en) 1984-11-26 1984-11-26 Method for machining steam turbine diaphgram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24794984A JPS61125702A (en) 1984-11-26 1984-11-26 Method for machining steam turbine diaphgram

Publications (1)

Publication Number Publication Date
JPS61125702A true JPS61125702A (en) 1986-06-13

Family

ID=17170941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24794984A Pending JPS61125702A (en) 1984-11-26 1984-11-26 Method for machining steam turbine diaphgram

Country Status (1)

Country Link
JP (1) JPS61125702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067284A (en) * 1988-09-12 1991-11-26 Ex-Cell-O Gmbh Machine tool
JP2010236851A (en) * 2009-03-30 2010-10-21 Ge-Hitachi Nuclear Energy Americas Llc Steam flow vortex straightener

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067284A (en) * 1988-09-12 1991-11-26 Ex-Cell-O Gmbh Machine tool
JP2010236851A (en) * 2009-03-30 2010-10-21 Ge-Hitachi Nuclear Energy Americas Llc Steam flow vortex straightener

Similar Documents

Publication Publication Date Title
Torfs et al. Comparison of two feedforward design methods aiming at accurate trajectory tracking of the end point of a flexible robot arm
EP2093641B1 (en) Performing a process on a workpiece
EP3053677A1 (en) Hybrid additive manufacturing method for rotor
CN103056625A (en) Integral impeller 5-axis machining method based on UG NX system platform
CN105750844B (en) Compressor hollow spindle processing method
CN103153533A (en) Equipment comprising a rotatable cradle and intended for coating the airfoil of a turbine blade in order to machine the root
CN113814673A (en) Geometric self-adaptive machining method for titanium alloy blisk welding part of large fan
CN108229019B (en) Closed blisk blade finish machining method
CN109570591A (en) Centrifugal impeller cutting working method and device and centrifugal impeller process equipment
US4893971A (en) NC machining apparatus
CN104259604B (en) Complex profile numerical control efficient electrolytic machine tool
CN110177919B (en) Adaptive machining of cooled turbine airfoils
WO1982001426A1 (en) Numerical control system
JPS61125702A (en) Method for machining steam turbine diaphgram
US2565925A (en) Method of manufacturing guide vanes for axial flow turbines and compressors
CN108098455A (en) A kind of workpiece centering method
US4741210A (en) Method and apparatus for bringing rotating body to standstill
US10239151B2 (en) Linear friction welding method
EP0121310A1 (en) Apparatus for forming diverse shapes
CN115673874B (en) Method and device for detecting maneuvering balance of numerical control machine turntable
CN112757307A (en) Equipment and method for machining three-dimensional impeller blade welding groove by robot
JPH087626B2 (en) Tracking control method between two servo systems
CN111580390A (en) Multi-axis linkage error tracing method for five-axis machine tool
JP2561908B2 (en) Numerical control device and numerical control method
CN110899782A (en) Machining method for self-adaptive milling of external surface of split case