JPS61125126A - Electron beam exposure device - Google Patents

Electron beam exposure device

Info

Publication number
JPS61125126A
JPS61125126A JP24742584A JP24742584A JPS61125126A JP S61125126 A JPS61125126 A JP S61125126A JP 24742584 A JP24742584 A JP 24742584A JP 24742584 A JP24742584 A JP 24742584A JP S61125126 A JPS61125126 A JP S61125126A
Authority
JP
Japan
Prior art keywords
electron
deflector
pattern
electron beam
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24742584A
Other languages
Japanese (ja)
Inventor
Izumi Kasahara
笠原 泉
Yasunobu Kawachi
河内 康伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP24742584A priority Critical patent/JPS61125126A/en
Priority to EP85114709A priority patent/EP0182360B1/en
Priority to DE8585114709T priority patent/DE3571290D1/en
Publication of JPS61125126A publication Critical patent/JPS61125126A/en
Priority to US07/168,605 priority patent/US4868395A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31769Proximity effect correction
    • H01J2237/31771Proximity effect correction using multiple exposure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To prevent throughput from lowering by a method wherein additional exposure is performed at the same time of beam scanning with the exposure of pattern region when additional exposure is performed to non-pattern region. CONSTITUTION:The beam from the primary electron gun 11 is projected on a surface of a sample 16 by means of focusing change control by optical system lower than a polariscope 24 for switching beam. When prescribed deflection voltage is impressed to the polariscope 24, electron beam from the secondary electron gun 21 is selected and is projected on the surface of the sample 16 by means of focusing change control by optical system lower than a polariscope 24. At this time, the secondary beam is designated as defocusing and is used to expose non-pattern region.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ラスクスキャン方式の電子ビーム露光技術に
係わり、特に近接効果の低減をはかった電子ビーム露光
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rask scan type electron beam exposure technology, and particularly to an electron beam exposure apparatus that reduces the proximity effect.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、半導体ウェハやマスク基板等の試料上に微細パタ
ーンを形成するものとして、各種の電子ビーム露光装冒
が用いられている。そして、この装置では、パターンの
微細化に伴い、電子ビームのレジスト及び試料内での散
乱に起因する近接効果の補正が必要となりつつある。
In recent years, various types of electron beam exposure equipment have been used to form fine patterns on samples such as semiconductor wafers and mask substrates. In this apparatus, as patterns become finer, it is becoming necessary to correct the proximity effect caused by scattering of electron beams within the resist and sample.

近接効果の補正方法としては、 ■ ドーズ量を補正する ■ パターン形状を補正する ■ 多層レジストを用いる 等の3つの方法が知られている。第1の方法は補正量を
求めるのに膨大な計算量を必要とし、更にこの方法はラ
スクスキャン方式では適用が困難である。第2の方法は
、パターン寸法の極微細な調整が必要と云う欠点を持っ
ている。また、第3の方法はレジスト塗布、現像のプロ
セスが複雑化すると云う欠点を持っている。
There are three known methods for correcting the proximity effect: (1) Correcting the dose amount (2) Correcting the pattern shape (2) Using a multilayer resist. The first method requires a huge amount of calculation to obtain the correction amount, and furthermore, this method is difficult to apply in the rask scan method. The second method has the drawback of requiring extremely fine adjustment of pattern dimensions. Furthermore, the third method has the disadvantage that the resist coating and development processes become complicated.

そこで最近、第4の近接効果補正方法として、パターン
のない部分をビーム電流の小さいボケだビームで露光し
、試料からの後方散乱電子によるレジストの感光に相当
するドーズ量をパターンのない背景部分に与えることに
よって、試料からの後方散乱電子のパターン寸法への影
響を除く方法が提案されている。この方法を、以下に簡
単に説明する。
Recently, a fourth proximity effect correction method has been developed, in which the non-patterned area is exposed to a blurred beam with a small beam current, and a dose equivalent to the exposure of the resist by backscattered electrons from the sample is applied to the non-patterned background area. A method has been proposed to remove the influence of backscattered electrons from the sample on pattern dimensions by giving This method will be briefly explained below.

点状ビームが試料上に塗布されたレジストに入射した場
合、レジストのエネルギー吸収量の分布は2つの成分に
分けられる。第1の成分は、入射電子そのもの及びレジ
スト内でのみ散乱された電子によるもので、前方散乱成
分と称される。第2の成分は、試料内で散乱された電子
によるもので、後方散乱成分と称される。電子ビームの
加速エネルギーにも依存するが、前方散乱成分は0.1
〜○、2[μTrL]程度の広がりを持つのに対し、後
方散乱成分は1〜10[μ77L]程度の広がりを持つ
。この後方散乱成分の大きな広がりのために、パターン
を描画した時、ある点でのレジストのエネルギー吸収量
は、その点から後方散乱成分の広がり程度の範囲内のパ
ターン密度に依存する。このため、パターン密度の高い
領域と低い領域とで、現像後のパターン寸法が違ってし
まう。
When a point beam is incident on a resist coated on a sample, the distribution of the amount of energy absorbed by the resist is divided into two components. The first component is due to the incident electrons themselves and electrons scattered only within the resist, and is called the forward scattered component. The second component is due to electrons scattered within the sample and is referred to as the backscattered component. Although it depends on the acceleration energy of the electron beam, the forward scattering component is 0.1
~◯, it has a spread of about 2 [μTrL], whereas the backscattered component has a spread of about 1 to 10 [μ77L]. Because of this large spread of the backscattered component, when a pattern is drawn, the amount of energy absorbed by the resist at a certain point depends on the pattern density within the range of the spread of the backscattered component from that point. For this reason, the pattern dimensions after development differ between areas with high pattern density and areas with low pattern density.

そこで、近似的に後方散乱成分と同じエネルギー吸収量
分布を与える電子ビームで、パターンのない背景部分を
追加露光すれば、パターン部を露光した電子ビームの後
方散乱成分によるエネルギー吸収量と、背景露光による
エネルギー吸収量との和は、面内均一となり、後方散乱
成分のパターン寸法への影響を除くことができる。前方
散乱成分の広がりは加速電圧を増加する等によって十分
小さく(0,1μm以下)できるので、この方法により
近接効果補正、をされた精度の高いパターンを得ること
が可能となる。
Therefore, if the background part without a pattern is additionally exposed with an electron beam that gives approximately the same energy absorption distribution as the backscattered component, the amount of energy absorbed by the backscattered component of the electron beam that exposed the patterned part and the background exposure The sum of the amount of energy absorbed by . Since the spread of the forward scattered component can be made sufficiently small (0.1 μm or less) by increasing the accelerating voltage, etc., it is possible to obtain a highly accurate pattern corrected for the proximity effect by this method.

しかしながら、上記の方法を従来の電子ビーム露光装置
で実行するには、まず最初通常のパターン描画を行い、
次にビーム条件を変えて背景部の描画を行わなければな
らない。このため、全体としての露光スルーブツトが1
/2以下に低下することになる。
However, in order to carry out the above method using a conventional electron beam exposure system, first a normal pattern is drawn,
Next, the background must be drawn by changing the beam conditions. Therefore, the overall exposure throughput is 1
/2 or less.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、スルーブツトの低下を招くことなく、
ラスクスキャン方式で近接効果の補正を行うことができ
、露光精度の向上をはかり得る電子ビーム露光方法を提
供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to
An object of the present invention is to provide an electron beam exposure method that can correct the proximity effect using a rusk scan method and can improve exposure accuracy.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、非パターン領域(パターンのない背景
部)をパターン領域の露光の際よりもビーム電流が小さ
くビーム径若しくはビームエツジ分解能の大きい電子ビ
ームで追加露光する際に、この追加露光をパターン領域
の露光と同じビーム走査時に行うことにある。
The gist of the present invention is that when a non-pattern area (background area without a pattern) is additionally exposed with an electron beam having a smaller beam current and a larger beam diameter or beam edge resolution than when exposing the pattern area, this additional exposure is applied to the pattern. This is done during the same beam scanning as the area exposure.

即ち本発明は、電子銃から放射された電子ビームを集束
偏向制御し、この電子ビームを試料上で走査して該試料
上に所望パターンを露光する電子ビーム露光装置におい
て、2つの電子銃及びビーム切換え用偏向器を用い、上
記電子銃からの各ビームを上記ビーム切換え用園向器の
偏向中心で交差させ、該偏向器で露光すべきパターンの
有無に応じてビームを切換え、この切換えられたビーム
を上記ビーム切換え用偏向器より後段の光学系により集
束偏向制御して試料上に照射するようにしたものである
That is, the present invention provides an electron beam exposure apparatus that controls the focusing and deflection of an electron beam emitted from an electron gun and scans the electron beam on a sample to expose a desired pattern on the sample. Using a switching deflector, each beam from the electron gun is made to intersect at the center of deflection of the beam switching deflector, and the beams are switched depending on the presence or absence of a pattern to be exposed using the deflector. The beam is controlled to be focused and deflected by an optical system located after the beam switching deflector, and is irradiated onto the sample.

そして、このビームの切換えにより、パターン領域に対
してはビーム電流が大でビーム径若しくはビーム分解能
が小のビームで露光し、非パターン領域に対してはビー
ム電流が小でビーム径若しくはビーム分解能が大のビー
ムで露光するようにしたものである。
By switching the beam, the pattern area is exposed with a beam that has a large beam current and a small beam diameter or beam resolution, and the non-pattern area is exposed with a beam that has a small beam current and a small beam diameter or beam resolution. It is designed to expose with a large beam.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非パターン領域を露光するのに新たに
ビーム走査する必要がなく、通常のビーム走査時に該領
域を露光することができる。このため、スルーブツトの
低下を招くことなく、近接効果の補正を行うことができ
る。ざらに、各種レンズ条件等を予め設定しておけば、
ビーム切換え用偏向器の偏向電圧を切換えるのみで、パ
ターン領黛の露光に用いるビームと非パターン領域の露
光に用いるビームとをビーム走査中に容易に切換えるこ
とができる。
According to the present invention, there is no need to perform new beam scanning to expose a non-patterned area, and the area can be exposed during normal beam scanning. Therefore, the proximity effect can be corrected without reducing throughput. Roughly, if you set various lens conditions etc. in advance,
By simply switching the deflection voltage of the beam switching deflector, the beam used for exposing the pattern area and the beam used for exposing the non-pattern area can be easily switched during beam scanning.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

図は本発明の一実施例に係わる電子ビーム露光装置の光
学系を示す概略構成図である。図中11は第1の電子銃
であり、この電子銃11から放出された電子ビームはレ
ンズ12.13.14゜15を介して試料面16上に照
射される。即ち、電子銃11の作るクロスオーバPIが
コンデンサレンズ12,13.14により縮小され、さ
らに対物レンズ15により縮小されて試料面16上に結
像されるものとなっている。レンズ13.14間のクロ
スオーバ像P3の位置には、ビームを0N−OFFする
ためのブランキング電極17が配置されている。また、
レンズ14,151i1には、ビームを試料面16上で
X方向(紙面左右方向)及びY方向(紙面表裏方向)に
走査するビーム走査用偏向器18が配置されている。
The figure is a schematic configuration diagram showing an optical system of an electron beam exposure apparatus according to an embodiment of the present invention. In the figure, 11 is a first electron gun, and an electron beam emitted from this electron gun 11 is irradiated onto a sample surface 16 through lenses 12, 13, 14, and 15. That is, the crossover PI produced by the electron gun 11 is reduced by the condenser lenses 12, 13, and 14, further reduced by the objective lens 15, and then imaged onto the sample surface 16. A blanking electrode 17 for turning the beam ON-OFF is arranged at the position of the crossover image P3 between the lenses 13 and 14. Also,
A beam scanning deflector 18 that scans the beam on the sample surface 16 in the X direction (left-right direction in the paper) and Y direction (front and back direction in the paper) is arranged in the lenses 14 and 151i1.

ここまでの基本構成は従来と同様であり、本装置がこれ
と異なる点は、第2の電子銃21.電子レンズ22.偏
向コイル23及びビーム切換え用偏向器24を設けたこ
とにある。即ち、前記レンズ12゜13間のクロスオー
バ@Pzの位置付近には、高速静電偏向器等からなるビ
ーム切換え用偏向器24が配置されている。そして、電
子銃21からの電子ビームはレンズ22及びコイル23
を介してビーム切換え用偏向器24の偏向中心を通り、
前記第1の電子銃11からの電子ビームと交差するもの
となっている。
The basic configuration up to this point is the same as the conventional one, and the difference between this device and this device is that the second electron gun 21. Electronic lens 22. This is because a deflection coil 23 and a beam switching deflector 24 are provided. That is, near the position of the crossover @Pz between the lenses 12 and 13, a beam switching deflector 24 made of a high-speed electrostatic deflector or the like is arranged. The electron beam from the electron gun 21 passes through a lens 22 and a coil 23.
passes through the deflection center of the beam switching deflector 24 through
It intersects the electron beam from the first electron gun 11.

次に、上記構成された実施例装置の作用について説明す
る。
Next, the operation of the embodiment apparatus configured as described above will be explained.

まず、ビーム切換え用偏向器24に偏向電圧を印加しな
い状態にすると、図中実線に示す如く第1の電子銃11
からのビームが選択され、このビームがビーム切換え用
偏向器24より下方の光学系により集束偏向制御されて
試料面16上に照射される。ここで、第1の電子銃11
側の電子レンズ12及びレンズ13.14.15を調節
して、試料面16上に結像されるクロスオーバ像の大き
さくビーム径)及びビーム電流を所定の値に設定する。
First, when no deflection voltage is applied to the beam switching deflector 24, the first electron gun 11
This beam is focused and deflected by an optical system below the beam switching deflector 24 and is irradiated onto the sample surface 16. Here, the first electron gun 11
The side electron lens 12 and lenses 13, 14, and 15 are adjusted to increase the size of the crossover image formed on the sample surface 16 (beam diameter) and set the beam current to predetermined values.

つまり、クロスオーバ像P2が試料面16上に結像され
る条件に設定する。このときのビーム(第1のビーム)
は、従来の電子ビーム露光装置で用いるビームと同様で
あり、パターン領域の露光に用いる。
In other words, conditions are set such that the crossover image P2 is formed on the sample surface 16. Beam at this time (first beam)
The beam is similar to the beam used in a conventional electron beam exposure apparatus, and is used to expose a pattern area.

一方、ビーム切換え用偏向器24に所定の偏向電圧を印
加すると、図中破線で示す如く第2の電子銃21からの
電子ビームが選択され、このビームがビーム切換え用偏
向器24より下方の光学系により集束偏向制御されて試
料面16上に照射される。ここで、第2の電子銃21側
の電子レンズ22を調節して、クロスオーバ像P2’ 
が前記クロスオーバ像P2より下方に形成されるように
し、試料面16上に照射されるビームのビーム電流及び
ビーム径が別に定めた所定の値になるようにする。この
ときのビーム(第2のビーム)は、ビーム切換え用偏向
器24より下方の光学系がクロスオーバ像P2を試料面
16上に結像する条件となっているので、ぼけたものと
なる。従って、前記パターン領域を露光する第1のビー
ムに比してビーム径が大きく且つビーム電流が小さいも
ので、この第2のビームを非パターン領域の露光に用い
る。
On the other hand, when a predetermined deflection voltage is applied to the beam switching deflector 24, the electron beam from the second electron gun 21 is selected as shown by the broken line in the figure. The beam is focused and deflected by the system and irradiated onto the sample surface 16. Here, the electron lens 22 on the second electron gun 21 side is adjusted to create a crossover image P2'
is formed below the crossover image P2, and the beam current and beam diameter of the beam irradiated onto the sample surface 16 are set to predetermined values determined separately. The beam at this time (second beam) is blurred because the optical system below the beam switching deflector 24 forms the crossover image P2 on the sample surface 16. Therefore, this second beam, which has a larger beam diameter and a smaller beam current than the first beam that exposes the pattern area, is used to expose the non-pattern area.

このようにビーム切換え用偏向器24に印加する偏向電
圧を切換えることにより、2種類のビームを取出すこと
ができる。従って、ビーム走査用偏向器18によって、
電子ビームを試料面16上を一定速度で走査しながら、
パターン領域を第1のビームで描画し、パターンのない
部分(背景部)を第2のビームで描画することができる
。これにより、近接効果の補正を行うことができ、描画
精度の向上をはかり得る。
By switching the deflection voltage applied to the beam switching deflector 24 in this manner, two types of beams can be extracted. Therefore, by the beam scanning deflector 18,
While scanning the electron beam over the sample surface 16 at a constant speed,
A pattern area can be written with the first beam, and a part without a pattern (background part) can be written with the second beam. Thereby, the proximity effect can be corrected, and drawing accuracy can be improved.

このように本実施例装置によれば、ビーム切換え用偏向
器24の偏向電圧をパターンデータに従って切換えるこ
とにより、ビーム径が小さくビーム電流が大きい第1の
ビームと、ビーム径が大きくビーム電流が小さい第2の
ビームに切換えることができる。そしてこの場合、ビー
ムの一走査中に上記切換えを行い得るので、非パターン
領域の描画をパターン領域の描画時のビーム走査で同時
に行うことができる。このため、近接効果補正のために
同一ラインで2回のビーム走査を行う必要がなく、換言
すれば描画スルーブツトを低下させることなく、近接効
果の補正を行うことができる。
In this way, according to the present embodiment, by switching the deflection voltage of the beam switching deflector 24 according to the pattern data, the first beam has a small beam diameter and a large beam current, and the first beam has a large beam diameter and a small beam current. It is possible to switch to the second beam. In this case, since the above switching can be performed during one scan of the beam, writing of the non-pattern area can be performed simultaneously with the beam scanning during writing of the pattern area. Therefore, it is not necessary to perform beam scanning twice on the same line for proximity effect correction. In other words, proximity effect correction can be performed without reducing writing throughput.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記第2の電子銃側に設けた偏向コイルは
、第1及び第2の電子銃からの各ビームの光軸の交差角
を小さくするものであり、必ずしもなくてもよい。また
、第2の電子銃側のビームが作るクロスオーバP2’ 
のクロスオーバP2とのずれ量は、第2のビームとして
必要なビーム電流及びビーム径等の条件に応じて適宜窓
めればよい。さらに、ビーム切換え用偏向器より後段の
光学系の構造は前記図面に同等限定されるものではなく
、仕様に応じて適宜変更可能である。
Note that the present invention is not limited to the embodiments described above. For example, the deflection coil provided on the second electron gun side is used to reduce the intersection angle of the optical axes of the respective beams from the first and second electron guns, and does not necessarily need to be provided. In addition, a crossover P2' created by the beam on the second electron gun side
The amount of deviation from the crossover P2 may be adjusted as appropriate depending on the conditions such as the beam current and beam diameter required for the second beam. Furthermore, the structure of the optical system downstream of the beam switching deflector is not limited to the same as shown in the drawings, but can be modified as appropriate according to specifications.

その他、本発賦・の要旨を逸脱しない範囲で、種々変形
して寅施することができる。
In addition, various modifications can be made without departing from the gist of this publication.

【図面の簡単な説明】 図は本発明の一実施例に係わる電子ビーム露光装置の光
学系を示す概略構成図である。 11・・・第1の電子銃、12.13.14.15゜2
2・・・レンズ、16・・・試料面、17・・・ブラン
キング電極、18・・・ビーム走査用偏向器、21・・
・第2の電子銃、23・・・偏向コイル、24・・・ビ
ーム切換え用偏向器。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a schematic configuration diagram showing an optical system of an electron beam exposure apparatus according to an embodiment of the present invention. 11...first electron gun, 12.13.14.15°2
2... Lens, 16... Sample surface, 17... Blanking electrode, 18... Beam scanning deflector, 21...
- Second electron gun, 23... Deflection coil, 24... Beam switching deflector.

Claims (3)

【特許請求の範囲】[Claims] (1)電子銃から放射された電子ビームを集束偏向制御
し、この電子ビームを試料上で走査して該試料上に所望
パターンを露光する電子ビーム露光装置において、2つ
の電子銃及びビーム切換え用偏向器を用い、上記電子銃
からの各ビームを上記ビーム切換え用偏向器の偏向中心
で交差させ、該偏向器により露光すべきパターンの有無
に応じてビームを切換えることを特徴とする電子ビーム
露光装置。
(1) In an electron beam exposure apparatus that controls the focusing and deflection of an electron beam emitted from an electron gun and scans the electron beam on a sample to expose a desired pattern on the sample, two electron guns and a beam switching device are used. Electron beam exposure characterized by using a deflector, each beam from the electron gun intersects at the deflection center of the beam switching deflector, and the deflector switches the beams depending on the presence or absence of a pattern to be exposed. Device.
(2)前記ビーム切換え用偏向器として、高速静電偏向
器を用いたことを特徴とする特許請求の範囲第1項記載
の電子ビーム露光装置。
(2) The electron beam exposure apparatus according to claim 1, wherein a high-speed electrostatic deflector is used as the beam switching deflector.
(3)前記ビーム切換え用偏向器により、パターン領域
に対してはビーム電流が大でビーム径若しくはビーム分
解能が小さいビームに切換え、非パターン領域に対して
はビーム電流が小でビーム径若しくはビーム分解能が大
のビームに切換えることを特徴とする特許請求の範囲第
1項記載の電子ビーム露光装置。
(3) The beam switching deflector switches to a beam with a large beam current and a small beam diameter or beam resolution for the pattern area, and a beam with a small beam current and a small beam diameter or beam resolution for the non-pattern area. 2. The electron beam exposure apparatus according to claim 1, wherein the electron beam exposure apparatus switches to a beam with a larger value.
JP24742584A 1984-11-22 1984-11-22 Electron beam exposure device Pending JPS61125126A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24742584A JPS61125126A (en) 1984-11-22 1984-11-22 Electron beam exposure device
EP85114709A EP0182360B1 (en) 1984-11-22 1985-11-19 A system for continuously exposing desired patterns and their backgrounds on a target surface
DE8585114709T DE3571290D1 (en) 1984-11-22 1985-11-19 A system for continuously exposing desired patterns and their backgrounds on a target surface
US07/168,605 US4868395A (en) 1984-11-22 1988-03-04 Electron beam lithography system for delineating a desired pattern on a target by means of electron beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24742584A JPS61125126A (en) 1984-11-22 1984-11-22 Electron beam exposure device

Publications (1)

Publication Number Publication Date
JPS61125126A true JPS61125126A (en) 1986-06-12

Family

ID=17163243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24742584A Pending JPS61125126A (en) 1984-11-22 1984-11-22 Electron beam exposure device

Country Status (1)

Country Link
JP (1) JPS61125126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168848A (en) * 2009-05-20 2017-09-21 マッパー・リソグラフィー・アイピー・ビー.ブイ. Dual path scanning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201240A (en) * 1982-05-10 1983-11-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Electronic beam potential switching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201240A (en) * 1982-05-10 1983-11-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Electronic beam potential switching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168848A (en) * 2009-05-20 2017-09-21 マッパー・リソグラフィー・アイピー・ビー.ブイ. Dual path scanning

Similar Documents

Publication Publication Date Title
US5831272A (en) Low energy electron beam lithography
US4243866A (en) Method and apparatus for forming a variable size electron beam
US8816276B2 (en) Electron beam writing apparatus and electron beam writing method
US6284415B1 (en) Charged-particle-beam transfer masks and methods of making
JPS58190028A (en) Charged particle beam exposure device using variable line scanning
JPH0831724A (en) Electron-beam lithography device and electron-beam lithography
US20020033458A1 (en) Charged particle beam exposure system
JP2001185477A (en) Method and equipment for charged particle beam exposure, and semiconductor device manufacturing method
JPH02125609A (en) Semiconductor manufacturing equipment
US6087669A (en) Charged-particle-beam projection-microlithography apparatus and transfer methods
US4924104A (en) Ion beam apparatus and method of modifying substrate
EP0182360B1 (en) A system for continuously exposing desired patterns and their backgrounds on a target surface
US4263514A (en) Electron beam system
JP2002289517A (en) Electron beam proximity exposure system and method
JPH08236428A (en) Method for exposing charged particle beam and mask used therefor
JPS61125126A (en) Electron beam exposure device
JPH11176720A (en) Electron ream exposure device
JP3247700B2 (en) Scanning projection electron beam drawing apparatus and method
JPH0414490B2 (en)
JPS61125127A (en) Electron beam exposure device
JP2898726B2 (en) Charged particle beam exposure method
JP3325695B2 (en) Charged particle beam exposure method
JPH1079346A (en) Charged particle beam transfer apparatus
JPS62115715A (en) Electron-beam exposure device
JPH0750249A (en) Electron beam lithography device