JPS61125076A - Image sensor and manufacture thereof - Google Patents

Image sensor and manufacture thereof

Info

Publication number
JPS61125076A
JPS61125076A JP59246501A JP24650184A JPS61125076A JP S61125076 A JPS61125076 A JP S61125076A JP 59246501 A JP59246501 A JP 59246501A JP 24650184 A JP24650184 A JP 24650184A JP S61125076 A JPS61125076 A JP S61125076A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conductors
elements
shaped conductors
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59246501A
Other languages
Japanese (ja)
Other versions
JPH0367349B2 (en
Inventor
Mitsuhiko Tashiro
田代 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59246501A priority Critical patent/JPS61125076A/en
Publication of JPS61125076A publication Critical patent/JPS61125076A/en
Publication of JPH0367349B2 publication Critical patent/JPH0367349B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To improve reliability and to enhance yield rate, by forming a matrix wiring part between photoelectric conversion elements and individual selecting circuits by a plurality of U-shaped conductors connecting the elements and wire shaped conductors, which connect the corresponding U-shaped conductors in the aligning direction of the elements. CONSTITUTION:On a glass substrate, a CdSe film is formed by evaporation. The film is activated by heat treatment. Patterning is performed by photoetching, and light conducting elements R11...Rmn are formed. Then, Ti and Au are sequentially evaporated on the entire surface of the substrate, and common electrodes C1...C2 and U shaped conductors l1...ln are formed. At the same time, a short-circuit conductor ls, which shorts the U shaped conductors l1 is formed. Au is plated on the matrix connecting part. Wire shaped conductors L1...Ln, which are formed on flexible lead tape, are bonded. Thus all the photoelectric conversion elements R11...Rmn are connected at the forming stage of the U shaped conductors. The breakdown of the elements due to static electricity can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ファクシミリなどの画像読取シ装置に用い
られるイメージセンサおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an image sensor used in an image reading device such as a facsimile and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、ファクシミリなどに用いられる画像読取り装置の
小形化を目的として、密着読取シ型イメージセンサの開
発が活発に進められている。
2. Description of the Related Art In recent years, close reading image sensors have been actively developed for the purpose of downsizing image reading devices used in facsimiles and the like.

これは原稿幅の中に光電変換素子を並べ、ロクドレンズ
アレイ等の導光系を用いて原稿に近接して画像情報を読
み取るイメージセンサである。
This is an image sensor in which photoelectric conversion elements are arranged within the width of the document and read image information close to the document using a light guiding system such as a Rokudo lens array.

従ってこのようなイメージセンサでは、大面積の基板上
での高密度配線技術が要求される。例えばA4サイズ、
8画素/WIの解像匿をもつ密着型イメージセンサでは
、216mm@に1728個の光電変換素子を一列に並
べ、各々の素子を駆動するための駆動回路に接続する配
線を形成しなければならない。
Therefore, such an image sensor requires high-density wiring technology on a large-area substrate. For example, A4 size,
In a contact image sensor with a resolution of 8 pixels/WI, 1728 photoelectric conversion elements must be arranged in a row at 216 mm and wiring connected to the drive circuit to drive each element must be formed. .

この様なイメージセンサを構成する上で、駆動回路数を
減らし、配線密度、実装密度を下げる方法としてマトリ
クス駆動方式が良く用いられる。
When configuring such an image sensor, a matrix drive method is often used as a method of reducing the number of drive circuits, wiring density, and packaging density.

第1図に、マトリクス駆動方式による密着型イメージセ
ンサの回路構成例を示す。ここでは光電変換素子として
光導電素子を用いた例を示している。すなわちR11”
 Rmnは光導電素子であり、入射光−jfLK応じて
その抵抗値が変化する。
FIG. 1 shows an example of a circuit configuration of a contact type image sensor using a matrix drive method. Here, an example is shown in which a photoconductive element is used as the photoelectric conversion element. That is, R11”
Rmn is a photoconductive element, and its resistance value changes depending on the incident light -jfLK.

従って、画像を光導電素子も!〜Rmn上に結像させ、
その抵抗値の変化を検出することにより、画像情報を読
み取ることができる。光導電素子R11〜Rmnはni
lずつからなるm個のブロック”1−Brnに区分され
、ブロック毎に一端が共通電極01〜cmによつて共通
に接続される。
Therefore, the image can also be photoconductive! ~Image formed on Rmn,
Image information can be read by detecting changes in the resistance value. Photoconductive elements R11 to Rmn are ni
It is divided into m blocks "1-Brn" each consisting of "1-Brn", and one end of each block is commonly connected by common electrodes 01-cm.

一方、光導電素子R11””Rmnの他端側は各ブロッ
ク間で相対応する位置にあるものどうしマトリクス配線
Mを介して共通接続された後、個別電極D1〜Dnに接
続される。VBは駆動電源、p、””Pmは共通電極C
l−Cmを電源VBに選択的に接続するためのブロック
選択用スイッチ、Q!〜Qnは個別電極D1〜Dnを出
力の電流−電圧変換回路Sに選択的に接続するための個
別選択用スイッチである。
On the other hand, the other ends of the photoconductive elements R11""Rmn are commonly connected to the correspondingly located photoconductive elements in each block via the matrix wiring M, and then connected to the individual electrodes D1 to Dn. VB is the driving power supply, p, ""Pm is the common electrode C
Block selection switch for selectively connecting l-Cm to power supply VB, Q! -Qn are individual selection switches for selectively connecting the individual electrodes D1 to Dn to the output current-voltage conversion circuit S.

このような構成で、まずスイッチpt を介して共通電
極C1を電源vBK接続し、その状態でスイッチQ!〜
Qn t’介して個別電極DI〜Dnを順次電流−電圧
変換回路Sに接続する。
In this configuration, first, the common electrode C1 is connected to the power supply vBK via the switch pt, and in this state, the switch Q! ~
The individual electrodes DI to Dn are sequentially connected to the current-voltage conversion circuit S via Qnt'.

以下共通電極02〜cmを順次電極VBVC接続し同様
の走査を繰り返すことにより、光導電素子1’tit〜
Rmnの抵抗値をシリアルに検出することができる。す
なわち、光導電素子R11〜F’mnの入射光量に応じ
た電圧が画像読取り出力V。utとして取出される。こ
の時、光導電素子はスイッチP1〜Pm、QI−Qnに
よシ選択されて電源vR1亀流−電圧変換回路Sに接続
されているもの以外は全てアース側に接続される。この
様にすることKよ〕電流の回シ込み、すなわち出力のク
ロストークを防ぐことができる。
Thereafter, by sequentially connecting the common electrodes 02~cm to the electrodes VBVC and repeating the same scanning, the photoconductive element 1't~
The resistance value of Rmn can be detected serially. That is, the voltage corresponding to the amount of incident light on the photoconductive elements R11 to F'mn is the image reading output V. It is retrieved as ut. At this time, all of the photoconductive elements are connected to the ground side except for those selected by the switches P1 to Pm and QI to Qn and connected to the power supply vR1 and the current-to-voltage conversion circuit S. By doing this, it is possible to prevent current leakage, that is, output crosstalk.

この様に第1図の回路構成によれば、mXn個の光導電
素子R11〜Rmnf、駆動するのに(m+n)個の駆
動回路(スイッチ)があれば良く、駆動回路数の減少と
配線密度および実装密度の低下が可能で、低価格なイメ
ージセンサを得ることが可能である。しかしながら、マ
トリクス配線M部の接続点数が光導[素子R11〜Rr
nnの数mXnと同数存在するため、接続の信頼性、歩
留り向上の点で難点がある。
As described above, according to the circuit configuration shown in FIG. 1, it is only necessary to have (m+n) drive circuits (switches) to drive mXn photoconductive elements R11 to Rmnf, which reduces the number of drive circuits and the wiring density. In addition, it is possible to reduce the packaging density, and it is possible to obtain a low-cost image sensor. However, the number of connection points in the matrix wiring M section is
Since there are the same number of nn as the number mXn, there is a problem in terms of connection reliability and yield improvement.

また、第1図に示す構成では、製造後の評価でブロック
B、%Bmの両端部に位置する光導電素子R1+ + 
R1n+ Rzt r R2H−Rmt * Rmnの
破壊がしばしば発見される。波層の内容は明電流の低下
あるいは暗電流の増加のいずれかで現われる。このよう
な破壊の原因は製造工程中に発生する静電気によるもの
と推察されるが、このような現象を防ぐための簡単かつ
有効な対策は考えられていないのが実情である。
Furthermore, in the configuration shown in FIG. 1, the photoconductive elements R1+ + located at both ends of block B, %Bm, were evaluated after manufacturing.
Disruptions of R1n+ Rzt r R2H-Rmt * Rmn are often found. The content of the wave layer manifests itself as either a decrease in bright current or an increase in dark current. Although the cause of such destruction is presumed to be static electricity generated during the manufacturing process, the reality is that no simple and effective measures have been considered to prevent this phenomenon.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、マトリクス配線部の接続の信頼性に
すぐれ、歩留シの高いイメージセンサを提供することで
ある。
An object of the present invention is to provide an image sensor with excellent connection reliability of matrix wiring sections and high yield.

この発明の他の目的は、マトリクス配線部の接続の信頼
性にすぐれるとともに、光電変換素子の特異的な破壊が
なく、歩留りの向上を図ることができるイメージセンサ
の製造方法を提供することである。
Another object of the present invention is to provide a method for manufacturing an image sensor that has excellent connection reliability of matrix wiring parts, eliminates specific destruction of photoelectric conversion elements, and can improve yield. be.

〔発明の概要〕[Summary of the invention]

この発明は、光電変換素子とその個別選択回路との間の
マ) IJクス配線部を、光電変換素子の各他端と隣り
合うブロック間でブロックの間の境界線に対し線対体位
11にある素子どうし接続する複数のU字溝体と、これ
らのU字溝体を光電変換素子の配列方向において相対応
するものどうし接続する線状導体とで形成することを特
徴とする。
This invention provides an arrangement in which an IJ wiring section between a photoelectric conversion element and its individual selection circuit is arranged in a line-to-line position 11 between each other end of the photoelectric conversion element and the adjacent block with respect to the boundary line between the blocks. It is characterized in that it is formed by a plurality of U-shaped groove bodies that connect certain elements to each other, and linear conductors that connect the U-shaped groove bodies that correspond to each other in the arrangement direction of the photoelectric conversion elements.

また、このようなマトリクス配線部の形成に当り、U字
溝体を形成するとともに、U字溝体の最も外側にある導
体を相互に短絡する短絡導体を形成した後、線状導体を
形成することを特徴としている。
In addition, in forming such a matrix wiring part, a U-shaped groove body is formed, a short-circuiting conductor is formed to mutually short-circuit the outermost conductors of the U-shaped groove body, and then a linear conductor is formed. It is characterized by

〔発明の効果〕〔Effect of the invention〕

この発明によれば、マトリクス配線部の接続点の数は、
光電変換素子のブロック数をml 1ブロツク内の素子
数をnとして、n=r+1/2となり、半減する6また
、接続点の面積も広くとることができる。従って、短絡
事故などが少なくなって接続の信頼性が増し、歩留シも
向上する。
According to this invention, the number of connection points of the matrix wiring section is
Assuming that the number of blocks of photoelectric conversion elements is ml and the number of elements in one block is n, n=r+1/2, which is halved.6 Also, the area of the connection point can be increased. Therefore, short-circuit accidents and the like are reduced, connection reliability is increased, and yield is also improved.

さらに、この発明においては光電変換素子のブロック間
が短絡導体を介して電気的に短絡されるため、製造工程
中に静電気が発生しても、その静電気は速やかに放電さ
れる。従って静電気によるブロック端部の光電変換素子
の特異的な破壊現象はなくなシ、この点からも歩留υの
向上が図られる。
Further, in the present invention, since the blocks of photoelectric conversion elements are electrically short-circuited via the short-circuit conductor, even if static electricity is generated during the manufacturing process, the static electricity is quickly discharged. Therefore, there is no specific destruction of the photoelectric conversion elements at the end of the block due to static electricity, and from this point of view as well, the yield υ can be improved.

〔発明の実施例〕[Embodiments of the invention]

@2図はこの発明の一実施例に係るイメージセ/すの回
路構成図である。図において、1は光電変4?!素子列
で、この例では光導電素子R11RI2・・・Rrnn
t−列に配列したものとなっている。
Figure 2 is a circuit diagram of an image sensor according to an embodiment of the present invention. In the diagram, 1 is photoelectric change 4? ! In the element array, in this example, photoconductive elements R11RI2...Rrnn
They are arranged in a t-column.

なお、光導電素子の代りにフォトダイオードのような光
起電力効果を有する接合型の光電変換素子を用いてもよ
い。光導電素子R11l R1!・・・amnはR11
〜a、nl Rzt ′F’に2n ”’ ”rfll
 ”” RmnのようKn個ずつからなるm個の!ロッ
クB1+B2+・・・Bnlに区分されておシ、その各
一端はブロック毎に共通電極c11 C2+・・・Cm
によシ共通に接続されている。これらの共通電極C【、
C。
Note that a junction type photoelectric conversion element having a photovoltaic effect such as a photodiode may be used instead of the photoconductive element. Photoconductive element R11l R1! ...amn is R11
~a, nl Rzt 'F' to 2n ``'''rflll
``'' m pieces each consisting of Kn pieces like Rmn! The locks are divided into blocks B1+B2+...Bnl, and one end of each block has a common electrode c11 C2+...Cm
They are commonly connected. These common electrodes C[,
C.

・・・Cmはブロック選択回路2を構成するスイッチp
m + Pm +・・・Pm をそれぞれ介して駆動電
源VBに選択的に接続されるようになっている。
...Cm is a switch p constituting the block selection circuit 2
m + Pm + . . . Pm are selectively connected to the drive power supply VB through the respective terminals.

一方、光導電素子R11r Rtz l・・・Rmlm
の各他端は、隣り合うブロック間、つまシBI  B2
間、B3−84間、Bm−、−Bm間でそのブロック間
の・境界線に対して線対称位置にあるものどうし、U字
溝体LIHt2 +・・・tnによって接続されている
。すなわち、ブロックBl−B2間を例にとれば、光導
電素子の各他端けR11−R211、R12R2n−1
+ ”・R11−R21の組合せでU字溝体t1゜t2
.・・・tnによって接続されている。これらのU字溝
体L1. t2 r =・L n は光導電素子R11
゜R12e・”amnの配列方向(図で横方向)におい
て相対応するものどうし、つまF)Lsは1.どうし、
L2はtsどうし、tnはLnどうしというように線状
導体Ll l Ll、 l・・・Lnによって接続され
る。
On the other hand, the photoconductive element R11r Rtz l...Rmlm
Each other end of the block is connected between adjacent blocks.
, between B3-84, between Bm- and -Bm, those located at axisymmetric positions with respect to the boundaries between the blocks are connected by U-shaped groove bodies LIHt2 +...tn. That is, taking the block Bl-B2 as an example, each other end of the photoconductive element R11-R211, R12R2n-1
+ ”・U-shaped groove body t1゜t2 by combination of R11-R21
.. ...connected by tn. These U-shaped groove bodies L1. t2 r =・L n is photoconductive element R11
゜R12e・”amn that correspond to each other in the arrangement direction (horizontal direction in the figure), F) Ls is 1.
L2 is connected to ts, tn is connected to Ln, and so on by linear conductors Ll l Ll, l...Ln.

そして、これらの線状導体Ll * L21・・・Ln
は個別選択回路3t−構成するスイッチQB + Q2
+・−”Qntそれぞれ介して電流−電圧変換回路Sに
選択的に接続される。
And these linear conductors Ll*L21...Ln
is the individual selection circuit 3t-constituting switch QB + Q2
+ and -"Qnt are selectively connected to the current-voltage conversion circuit S through the respective terminals.

このような構成で画像を読取る際には、光導電素子R1
1* R1□、・・・Rflln上に読取るべき原稿面
上の画像を結像させ、スイッチP1 + Pm e・・
・Pnを順次選択的に電源VB側に倒し、ブロックB1
. B、 、・・・Bmを順次選択する。そして各ブロ
ックを選択する都度、スイッチQt + Qx +・・
・Qnを順次電流−電圧変換回路S側に倒し、各ブロッ
ク内の光導電素子を順次個別に選択する。但し、スイッ
チQt T Qz t・・・Qnは奇数番目のブロック
B1. B3.・・・Bnが選択されたときはQl−+
Q2→・・・Q n−1→Qnの順で動作し、昔だ偶数
番目のブロックn2 + B4  、・・・が選択され
たときはQ n−+Q n−1→・・・Q2→Q+ の
順で動作するものとする。
When reading an image with such a configuration, the photoconductive element R1
1* R1□,... Form the image on the document surface to be read on Rflln, and switch P1 + Pm e...
・Pn is sequentially and selectively turned to the power supply VB side, and block B1
.. B, , . . . Bm are sequentially selected. And each time you select each block, switch Qt + Qx +...
- Sequentially move Qn to the current-voltage conversion circuit S side and select the photoconductive elements in each block sequentially and individually. However, the switches Qt T Qz t...Qn are connected to odd-numbered blocks B1 . B3. ...When Bn is selected, Ql-+
It operates in the order of Q2→...Q n-1→Qn, and in the past, when even-numbered block n2 + B4,... was selected, Q n-+Q n-1 →... Q2 → Q+ It shall operate in the following order.

このような動作によシ、光導電素子RIllI’l□・
・・Rmnは図で左から1個ずつ選択されて電源Vnよ
り通電される。このとき流れる?l!流は、入射光量に
対応する。従って、これら光導電素子R11iRI□、
・・・Rmnに順次流れる電流を電流−電圧変換回路S
で電圧に変換することKよシ、画像読取り出力V。ut
f:得ることができる。
Due to such an operation, the photoconductive element RIllI'l□・
...Rmn are selected one by one from the left in the figure and energized from the power supply Vn. Does it flow at this time? l! The flow corresponds to the amount of incident light. Therefore, these photoconductive elements R11iRI□,
...The current flowing sequentially through Rmn is converted into a current-voltage conversion circuit S.
The image reading output is converted to a voltage by K and the image reading output is V. ut
f: Can be obtained.

第3図はこのイメージセンサのマトリクス配線部の構造
を示す平面図で、第2図と相対応する部分に同一符号を
示しである。図において、11は前記光導電素子R11
l RI21・・・Rmnが配列形成された絶縁基板で
あり、前記共通電極CI  t C2+ ”’ CQS
U字導字溝−I +72+・−1nおよび短絡導体t8
はこの基板11上に形成される。そしてU字導体11 
+ tz  +・・・tnに、絶縁体12上に被着され
た線状導体L1  r L2  *・・・Lnが、絶縁
体12に形成された開口部13全通して接続される。こ
の場合、U字溝体tl。
FIG. 3 is a plan view showing the structure of the matrix wiring section of this image sensor, in which parts corresponding to those in FIG. 2 are designated by the same reference numerals. In the figure, 11 is the photoconductive element R11.
l RI21...Rmn is an insulating substrate on which an array is formed, and the common electrode CI t C2+ "' CQS
U-shaped conductor groove-I +72+・-1n and short circuit conductor t8
is formed on this substrate 11. and U-shaped conductor 11
A linear conductor L1 r L2 *...Ln deposited on the insulator 12 is connected to + tz +...tn through the entire opening 13 formed in the insulator 12. In this case, the U-shaped groove body tl.

tz、・・・tnと線状導体Ll + L2 +・・・
Lnとの接続点数はn−+v’2と、第1図のものに比
べ約半分である。
tz,...tn and linear conductor Ll + L2 +...
The number of connection points with Ln is n-+v'2, which is about half that of the one shown in FIG.

このイメー・ゾセンサの製造工程の一例を説明する。ま
ずガラス基板上に光導電材料として、CdS@を約1μ
m蒸着にょシ形成する。このCdSe膜を熱処理によシ
活性化し、フォトエツチングによってバター二/グして
光導電素子R1! l RI2・・・Rrrlnを形成
する。Cd’sのエツチング液としては例えば硝酸と燐
酸の混合液を用いればよい。
An example of the manufacturing process of this image sensor will be explained. First, approximately 1μ of CdS@ was placed on a glass substrate as a photoconductive material.
Form the vapor deposition layer. This CdSe film is activated by heat treatment and butter-printed by photoetching to form a photoconductive element R1! l RI2... forms Rrrln. As the Cd's etching solution, for example, a mixed solution of nitric acid and phosphoric acid may be used.

次に基板全[ICT12000X、Au 3000Xt
lllJ次蒸着し、フォトエツチングによシ共通電極C
I  * 02  r ””Cn及びU字溝体Z l 
 r tz  r・・・tnを形成し、同時に最も外側
のU字導体1゜どうしを短絡する短絡導体t、を形成す
る。さらに、マトリクス接続部ICAuメッキ3〜5μ
mを行い、その後フレキシブルリードテープに形成され
た線状導体L1  r L2  T・・・Llを所定の
位置にボンディングする。線状導体Ll  + L2 
 +・・・Lnは銅線に錫メッキが施されたものとし、
ダンディングは金−錫共晶で形成する。
Next, the whole board [ICT12000X, Au 3000Xt
Common electrode C is deposited by subsequent deposition and photoetching.
I * 02 r ””Cn and U-shaped groove body Z l
r tz r...tn, and at the same time, a shorting conductor t is formed to short-circuit the outermost U-shaped conductors 1°. Furthermore, matrix connection part ICAu plating 3~5μ
Then, the linear conductors L1 r L2 T...Ll formed on the flexible lead tape are bonded to predetermined positions. Linear conductor Ll + L2
+...Ln is copper wire plated with tin,
The dangling is formed from a gold-tin eutectic.

上記工程において、短絡導体tsはU字導体41  +
 12 +・・・tnに対応したi4ターンに短絡導体
tsに対応したパターンを組合せた一つのマスクツ4タ
ーンを用意してエツチングを行なうことで容易に形成で
きる。この場合、U字溝体t1はいずれ線状導体L1に
よシ短絡されるものであるからU字溝本t、l 121
・・・Lnを形成する段階で短絡導体tsにより相互に
短絡されても一向にさしつかえない。
In the above process, the short circuit conductor ts is the U-shaped conductor 41 +
It can be easily formed by preparing one mask with four turns, which is a combination of i4 turns corresponding to 12 + . . . tn and a pattern corresponding to the shorting conductor ts, and performing etching. In this case, since the U-shaped groove body t1 will eventually be short-circuited by the linear conductor L1, the U-shaped groove body t, l 121
...There is no problem even if they are mutually short-circuited by the short-circuit conductor ts at the stage of forming Ln.

この様な製造工程をとることによシ光導電素子R1□、
R1□、・・・RmnはU字導体の形成段階から全てが
相互に接続されている形状となる。従って静電気による
素子の破壊を防止することができる。なお、ここで示し
た静電気による破壊防止方法は第1図に示す通常のマト
リクス構成のものは適応できず、U字配導体によるマト
リクス配線を採用することにより初めて達成できるもの
である。
By adopting such a manufacturing process, photoconductive elements R1□,
R1□, . . . Rmn are all connected to each other from the stage of forming the U-shaped conductor. Therefore, destruction of the element due to static electricity can be prevented. Note that the method for preventing damage caused by static electricity shown here cannot be applied to the normal matrix configuration shown in FIG. 1, and can only be achieved by employing matrix wiring using U-shaped conductors.

【図面の簡単な説明】[Brief explanation of the drawing]

81図は従来のマトリクス配線を用いたイメージセンサ
の回路構成図、第2図はこの発明の一実施例に係るイメ
ージセンサの回路構成図、K3図は同実施例のマトリク
ス配線部の平面図である。 1・・・光電変換素子列、R11〜Rmn・・・光導電
素子、81〜8m・・・ブロック、01〜0m・・・共
通電極、Pl−Pffl・・・スイッチ、2・・・ブロ
ック選択回路、VB・・・駆動電源、t1〜tn・・・
U字導体、t8・・・短絡導体、L1〜Lfl・・・線
状導体、3・・・個別選択回路、S・・・電流−電圧変
換回路、11・・・絶縁基板、12・・・絶縁体、13
・・・開口部。
Figure 81 is a circuit diagram of an image sensor using conventional matrix wiring, Figure 2 is a circuit diagram of an image sensor according to an embodiment of the present invention, and Figure K3 is a plan view of the matrix wiring section of the same embodiment. be. 1... Photoelectric conversion element row, R11-Rmn... Photoconductive element, 81-8m... Block, 01-0m... Common electrode, Pl-Pffl... Switch, 2... Block selection Circuit, VB... Drive power supply, t1-tn...
U-shaped conductor, t8... Short circuit conductor, L1-Lfl... Linear conductor, 3... Individual selection circuit, S... Current-voltage conversion circuit, 11... Insulating substrate, 12... Insulator, 13
···Aperture.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板上に配列された複数の光電変換素子を同
数ずつの素子からなる複数のブロックに区分し、その各
ブロックを順次選択するとともに、各ブロック内の光電
変換素子を順次個別に選択して、光電変換素子上に結像
される画像を読取るイメージセンサにおいて、光電変換
素子の各一端をブロック毎に共通接続して光電変換素子
のブロック選択回路に接続し、各他端を隣り合うブロッ
ク間でブロック間の境界線に対し線対称位置にある素子
どうし複数のU字導体で接続し、これらのU字導体の最
も外側にある導体を相互に短絡導体で接続し、さらに全
てのU字導体を光電変換素子の配列方向において相対応
するものどうし線状導体で接続して、これらの線状導体
を光電変換素子の個別選択回路に接続したことを特徴と
するイメージセンサ。
(1) Divide multiple photoelectric conversion elements arranged on an insulating substrate into multiple blocks each consisting of the same number of elements, select each block sequentially, and select individual photoelectric conversion elements within each block sequentially. In an image sensor that reads an image formed on a photoelectric conversion element, one end of each photoelectric conversion element is commonly connected for each block and connected to a block selection circuit of the photoelectric conversion element, and each other end is connected to the block selection circuit of the photoelectric conversion element. Between blocks, elements located in line-symmetrical positions with respect to the boundary line between blocks are connected by multiple U-shaped conductors, and the outermost conductors of these U-shaped conductors are connected to each other with short-circuit conductors, and all U-shaped conductors are connected to each other by short-circuit conductors. What is claimed is: 1. An image sensor comprising: linear conductors connecting corresponding conductors in the arrangement direction of photoelectric conversion elements, and connecting these linear conductors to individual selection circuits for the photoelectric conversion elements.
(2)絶縁基板上に配列された複数の光電変換素子を同
数ずつの素子からなる複数のブロックに区分し、その各
ブロックを順次選択するとともに、各ブロック内の光電
変換素子を順次個別に選択して、光電変換素子上に結像
される画像を読取るイメージセンサの製造に際し、光電
変換素子の各一端をブロック毎に共通接続して光電変換
素子のブロック選択回路に接続する一方、各他端を隣り
合うブロック間でブロック間の境界線に対し線対称位置
にある素子どうし接続する複数のU字導体を形成すると
ともに、これらのU字導体の最も外側にある導体を相互
に短絡する短絡導体を形成した後、全てのU字導体を光
電変換素子の配列方向において相対応するものどうし接
続する線状導体を形成して、これらの線状導体を光電変
換素子の個別選択回路に接続することを特徴とするイメ
ージセンサの製造方法。
(2) Divide the multiple photoelectric conversion elements arranged on the insulating substrate into multiple blocks each consisting of the same number of elements, and sequentially select each block and individually select the photoelectric conversion elements within each block. When manufacturing an image sensor that reads an image formed on a photoelectric conversion element, one end of each photoelectric conversion element is commonly connected for each block and connected to the block selection circuit of the photoelectric conversion element, while each other end is connected to the block selection circuit of the photoelectric conversion element. A short-circuiting conductor that forms a plurality of U-shaped conductors that connect elements that are line-symmetrically located between adjacent blocks with respect to the boundary line between the blocks, and shorts the outermost conductors of these U-shaped conductors to each other. After forming the U-shaped conductors, form linear conductors that connect all U-shaped conductors that correspond to each other in the arrangement direction of the photoelectric conversion elements, and connect these linear conductors to individual selection circuits of the photoelectric conversion elements. A method for manufacturing an image sensor characterized by:
(3)線状導体は絶縁体上に被着形成され、この絶縁体
に形成された開口部を通してU字導体と接続されること
を特徴とする特許請求の範囲第2項記載のイメージセン
サの製造方法。
(3) The image sensor according to claim 2, wherein the linear conductor is formed on an insulator and is connected to the U-shaped conductor through an opening formed in the insulator. Production method.
JP59246501A 1984-11-21 1984-11-21 Image sensor and manufacture thereof Granted JPS61125076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246501A JPS61125076A (en) 1984-11-21 1984-11-21 Image sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246501A JPS61125076A (en) 1984-11-21 1984-11-21 Image sensor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61125076A true JPS61125076A (en) 1986-06-12
JPH0367349B2 JPH0367349B2 (en) 1991-10-22

Family

ID=17149332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246501A Granted JPS61125076A (en) 1984-11-21 1984-11-21 Image sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61125076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135222U (en) * 1987-02-27 1988-09-05
JPH10126571A (en) * 1996-06-20 1998-05-15 Xerox Corp Sensor array to reduce crosstalk at reading sensor array data line and its operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135222U (en) * 1987-02-27 1988-09-05
JPH0413622Y2 (en) * 1987-02-27 1992-03-30
JPH10126571A (en) * 1996-06-20 1998-05-15 Xerox Corp Sensor array to reduce crosstalk at reading sensor array data line and its operation method

Also Published As

Publication number Publication date
JPH0367349B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
US5371351A (en) Imaging device with electrostatic discharge protection
US5696391A (en) Overload protection circuit
JPS6351681A (en) Semiconductor device
US4775895A (en) Modular image sensor structure
US3562418A (en) Solid state image converter system
US3562425A (en) Image signal generating system
KR100502057B1 (en) Photoelectric conversion integrated circuit device
JPS639358A (en) Original reader
US4236831A (en) Semiconductor apparatus
EP0444696B1 (en) Solid state image sensor
US4247874A (en) Photoconductor device for imaging a linear object
EP0183525B1 (en) Image sensor
US4163239A (en) Second level phase lines for CCD line imager
US5710463A (en) High-voltage breakover diode
JPS61125076A (en) Image sensor and manufacture thereof
US5191202A (en) Photoelectric conversion device
US5115293A (en) Solid-state imaging device
JP4977310B2 (en) Storage capacitor array for solid-state radiation imager
US5391904A (en) Semiconductor delay circuit device
GB2103049A (en) Image sensor
US5572255A (en) Image reading apparatus and method for driving appropriate photoelectric energy converting elements when first and second driving voltages are applied simultaneously
JPS617767A (en) Original reader
US3609375A (en) Solid state linear photosensor
JP3270874B2 (en) Linear sensor
JPH022676A (en) Image sensor