JPS6112496A - Ship propeller unit - Google Patents
Ship propeller unitInfo
- Publication number
- JPS6112496A JPS6112496A JP13399184A JP13399184A JPS6112496A JP S6112496 A JPS6112496 A JP S6112496A JP 13399184 A JP13399184 A JP 13399184A JP 13399184 A JP13399184 A JP 13399184A JP S6112496 A JPS6112496 A JP S6112496A
- Authority
- JP
- Japan
- Prior art keywords
- propeller
- polyethylene resin
- molecular weight
- million
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は船舶用推進器に関するものであり、詳、シ(は
船舶用推進器の金属製プロペラの改良に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a marine propulsion device, and more particularly, to an improvement of a metal propeller for a marine propulsion device.
(従来の技術)
船舶用推進器は周知のように、従来その大半がマンガン
青銅、アルミ青銅を主体とする銅合金により製造されて
おり、稀に鋳鋼、鋳鉄等の鉄系材料も使用されているが
、近年船舶の大型化による船舶用推進器の大直径化ある
いは高速化に伴ってプロペラにキャビテーションエロー
ジョンが発生するという問題点が顕著になっている。キ
ャビテーションエロージョンが発生すると、プロペラ表
面の粗度が低下し、水の抵抗が増加してプロペラトルク
が増加することにより、推進効率が低下する。このキャ
ビテーションエロージョンは、本質的には設計上の問題
であるが、現在の設計技術ではこれを完全に無くすこと
は困難であり、したがってプロペラ効率を犠牲にしてキ
ャビテーションエロージョンの発生を抑制しているのが
実情である。(Prior Technology) As is well known, most marine propulsors have conventionally been manufactured from copper alloys mainly consisting of manganese bronze and aluminum bronze, and in rare cases ferrous materials such as cast steel and cast iron have also been used. However, in recent years, the problem of cavitation erosion occurring in propellers has become more prominent as ships have become larger and the diameters and speeds of marine propulsors have increased. When cavitation erosion occurs, the roughness of the propeller surface decreases, water resistance increases, propeller torque increases, and propulsion efficiency decreases. This cavitation erosion is essentially a design problem, but it is difficult to completely eliminate it with current design technology, so cavitation erosion is suppressed at the expense of propeller efficiency. is the reality.
このため船舶用推進器のプロペラ本体を高分子材料で被
覆しようとする試みがなされている(特開昭58−36
794号公報)。この公報には具体的な高分子材質につ
いての言及はないが、例えば天然ゴム、アクリロニトリ
ル−ブタジェン共重合体ゴム等のゴム系材料(特公昭5
0−385号公報)、又は無機補強材を含有したエポキ
シ樹脂をポリアミド系もしくはアミン系硬化剤で硬化し
たもの(特開昭50−154330号公報)などがある
。しかしこれらは各々下記のごとき短所を有している。For this reason, attempts have been made to coat the propeller body of a marine propulsion device with a polymer material (Japanese Patent Laid-Open No. 58-36
Publication No. 794). Although this publication does not mention specific polymer materials, for example, rubber-based materials such as natural rubber, acrylonitrile-butadiene copolymer rubber, etc.
0-385), or those obtained by curing an epoxy resin containing an inorganic reinforcing material with a polyamide-based or amine-based curing agent (JP-A-50-154330). However, each of these has the following disadvantages.
(発明が解決しようとする問題点)
即ち前者はある程度キャビテーションエロージョンを抑
制することはできるものの、水との摩擦係数が高く船舶
の推進効率が悪いという短所があるほか、キャビテーシ
ョン発生に伴う発熱により被覆材が劣化するという欠点
もある。また後者は各種工場から流出してくる工業廃水
で汚染された沿岸海域を航行する際にも船舶用推進器の
プロペラが腐食されにくいという長所はあるものの、キ
ャビテーションエロージョンを良好に抑制しえないとい
う短所がある。(Problem to be solved by the invention) In other words, although the former method can suppress cavitation erosion to some extent, it has the disadvantage of a high coefficient of friction with water and poor propulsion efficiency for ships, and the heat generated by the occurrence of cavitation causes damage to the coating. Another drawback is that the material deteriorates. In addition, although the latter has the advantage that the propellers of marine propulsion units are less likely to corrode when navigating through coastal waters contaminated with industrial wastewater flowing out from various factories, it is said that it does not effectively suppress cavitation erosion. There are disadvantages.
本発明は上記の短所をすべて解決しようとするものであ
り、即ちキャビテーションエロージョンを良好に抑制し
うると共に耐腐食性に優れ、なおかつ水との摩擦係数が
低いことにより船舶の推進効率を向上させようとするも
のである。The present invention aims to solve all of the above-mentioned disadvantages, that is, it can suppress cavitation erosion well, has excellent corrosion resistance, and has a low coefficient of friction with water, thereby improving the propulsion efficiency of ships. That is.
(問題点を解決するための手段)
即ち、本発明はプロペラ本体の前・後進面の全部又は一
部をポリエチレン樹脂で被覆した船舶用推進器であり、
更に望ましくは分子量100万以上の超高分子量ポリエ
チレン樹脂を用いてプロペラ本体を被覆した船舶用推進
器に関するものである。(Means for Solving the Problems) That is, the present invention is a marine propulsion device in which all or part of the forward and reverse moving surfaces of the propeller body are coated with polyethylene resin,
More preferably, the present invention relates to a marine propulsion device in which a propeller body is coated with an ultra-high molecular weight polyethylene resin having a molecular weight of 1 million or more.
本発明に用いるポリエチレン樹脂は、塩化ビニル樹脂と
並んで生産量の最も多い樹脂で、安価な汎用樹脂であり
、比重が0.91〜0.97と軽く、耐寒性、電気絶縁
性に優れ、吸水・透水せず耐油、耐酸、耐有機溶剤性に
優れ、さらに振動や音を吸収する性質がある。The polyethylene resin used in the present invention is the most produced resin along with vinyl chloride resin, is an inexpensive general-purpose resin, has a light specific gravity of 0.91 to 0.97, and has excellent cold resistance and electrical insulation. It does not absorb or permeate water, has excellent oil, acid, and organic solvent resistance, and also has the property of absorbing vibration and sound.
本発明者等は、このポリエチレン樹脂を用いて船舶用推
進器のプロペラ本体を被覆すると、キャビテーションエ
ロージョンを良好に抑制しうろことを見出すことにより
、本発明に到ったのである。The present inventors arrived at the present invention by discovering that when the propeller body of a marine propulsion device is coated with this polyethylene resin, cavitation erosion can be suppressed well.
このように本発明は従来より汎用樹脂として知られてい
るポリエチレン樹脂を特殊な部分に使用することにより
、従来知られてぃなかった効果を発揮させたものである
。As described above, the present invention utilizes polyethylene resin, which has been conventionally known as a general-purpose resin, in special parts, thereby achieving effects hitherto unknown.
特にポリエチレン樹脂として分子! 100万以上、好
ましくは300万〜600万程度の、いわゆる超高分子
量ポリエチレン樹脂を使用すると、従来の高密度ポリエ
チレン樹脂に比べて強度、剛性が増し、割れにくくなり
、更に耐候性や滑り性も良好となる。従って船舶用に用
いる材料としては、このいわゆる超高分子量ポリエチレ
ン樹脂を使用するのが好ましい。Molecules especially as polyethylene resin! When using a so-called ultra-high molecular weight polyethylene resin with a molecular weight of 1 million or more, preferably between 3 million and 6 million, it has increased strength and rigidity compared to conventional high-density polyethylene resin, is less likely to break, and also has better weather resistance and slipperiness. Becomes good. Therefore, it is preferable to use this so-called ultra-high molecular weight polyethylene resin as a material for ships.
ポリエチレン樹脂を船舶用推進器のプロペラ本体へ被覆
する方法として、例えば、溶剤に熔解させた液状のポリ
エチレン樹脂をプロペラ本体にスプレー法や刷毛塗り法
等により塗布する方法、高温度にて溶融させたポリエチ
レン樹脂を刷毛塗り法等により塗布する方法、ポリエチ
レン樹脂シートとプロペラ本体とを接着剤により貼着す
る方法、ポリエチレン樹脂シートとプロペラ本体の間に
接着用介在物を挟んで接着剤により貼着する方法等適宜
の方法が採用される。Methods for coating the propeller body of a marine propulsion device with polyethylene resin include, for example, a method in which liquid polyethylene resin dissolved in a solvent is applied to the propeller body by spraying or brush coating, and a method in which polyethylene resin is melted at high temperature is applied. A method of applying polyethylene resin using a brush coating method, a method of pasting a polyethylene resin sheet and a propeller body with an adhesive, a method of sandwiching an adhesive inclusion between a polyethylene resin sheet and a propeller body, and pasting it with an adhesive. An appropriate method is adopted.
(作用及び発明の効果)
本発明によれば、船舶用推進器のプロペラ本体にポリエ
チレン樹脂が被覆されているので、以下のごとき作用効
果を奏する。(Functions and Effects of the Invention) According to the present invention, since the propeller body of the marine propulsion device is coated with polyethylene resin, the following effects can be achieved.
(a)耐キャビテーションエロージヨン性が優れたもの
となり、キャビテーションエロージョンの発生を抑制す
るため、プロペラ効率を犠牲にすることなく、プロペラ
を設計する事ができ、従って船舶の推進効率を高めるこ
とができる。また分子量が100万以上、好ましくは3
00万〜600万の超高分子量ポリエチレン樹脂を用い
れば、更に耐キャビテーションエロージヨン性を向上さ
せることができる。(a) Since the cavitation erosion resistance is excellent and the occurrence of cavitation erosion is suppressed, propellers can be designed without sacrificing propeller efficiency, thus increasing the propulsion efficiency of ships. . Also, the molecular weight is 1 million or more, preferably 3
If an ultra-high molecular weight polyethylene resin having a molecular weight of 1,000,000 to 6,000,000 is used, the cavitation erosion resistance can be further improved.
山)ポリエチレン樹脂の表面は、従来の金属プロペラの
研磨仕上げ面よりも滑らかにすることができ、また海洋
生物が付着しにくいため、プロペラと水との摩擦抵抗が
小さくなる。依ってプロペラトルクが減少し推進効率を
高めることができる。The surface of polyethylene resin can be made smoother than the polished surface of conventional metal propellers, and because marine organisms are less likely to adhere to it, the frictional resistance between the propeller and water is reduced. Therefore, propeller torque can be reduced and propulsion efficiency can be increased.
また分子量100万以上の超高分子量ポリエチレン樹脂
を用いた場合には、この樹脂が硬く、損傷しにくいため
に、当初の表面状態を維持することができるので、推進
効率の低下を防止することができる。Furthermore, when ultra-high molecular weight polyethylene resin with a molecular weight of 1 million or more is used, this resin is hard and difficult to damage, making it possible to maintain the original surface condition and preventing a decrease in propulsion efficiency. can.
fclポリエチレン樹脂表面は金属表面に比べ、耐腐食
性において優れている。従って工場廃水で汚染された海
域を航行する際にもプロペラの腐食を抑制することがで
きる。また分子量が100万以上、好ましくは300万
〜600万の超高分子量ポリエチレン樹脂を用いれば、
更に耐腐食性を向上させることができる。The fcl polyethylene resin surface has superior corrosion resistance compared to metal surfaces. Therefore, corrosion of the propeller can be suppressed even when navigating in sea areas contaminated with industrial wastewater. Moreover, if an ultra-high molecular weight polyethylene resin with a molecular weight of 1 million or more, preferably 3 million to 6 million is used,
Furthermore, corrosion resistance can be improved.
fdlポリエチレン樹脂表面は金属表面に比べ、滑らか
であるため、航行中に海洋生物が付着しにくい。このた
めトンキング毎に行っているプロペラの清掃・研磨作業
量を減らすことができる。また分子量が100万以−し
、好ましくは300万〜600万の超高分子量ポリエチ
レン樹脂を用いれば、上記のことと傷つきにくいことと
から、更にプロペラの清掃・研磨量を減少させうる。Since the FDL polyethylene resin surface is smoother than a metal surface, marine organisms are less likely to adhere to it during navigation. Therefore, it is possible to reduce the amount of propeller cleaning and polishing work that is performed every time the propeller is tonked. Furthermore, if an ultra-high molecular weight polyethylene resin having a molecular weight of 1 million or more, preferably 3 million to 6 million, is used, the amount of cleaning and polishing of the propeller can be further reduced due to the above-mentioned factors and resistance to damage.
(81ポリエチレン樹脂は振動や音を吸収する性質があ
るため、それを船舶用推進器のプロペラ本体に被覆する
と、船舶の振動や騒音を軽減することができる。(81 Polyethylene resin has the property of absorbing vibration and sound, so if it is coated on the propeller body of a marine propulsion device, the vibration and noise of the vessel can be reduced.
(試験例)
アルミ青銅及びエポキシ、ナイロン11.テフロン、塩
化ビニル、従来の高密度ポリエチレン、分子量300万
〜600万程度の超高分子量ポリエチレンなどの樹脂の
板状試験片を準備し、この試料を磁歪振動式キャビテー
ションエロージョン試験機を用いて、対向法で試験し、
損傷重量を測定した。(Test example) Aluminum bronze, epoxy, nylon 11. Prepare plate-shaped specimens of resins such as Teflon, vinyl chloride, conventional high-density polyethylene, and ultra-high molecular weight polyethylene with a molecular weight of approximately 3 million to 6 million. tested by law,
The damage weight was measured.
この結果を第1図に示す。これにより明らかなとおりポ
リエチレン樹脂は他の材料に比べて損傷重量が極めて少
なく、キャビテーションエロージョンの抑制に有効であ
る。The results are shown in FIG. As is clear from this, polyethylene resin has extremely low damage weight compared to other materials, and is effective in suppressing cavitation erosion.
(実施例)
分子量300万〜600万程度の超高分子量ポリエチレ
ン樹脂を500mX 500mの大きさに切断して、タ
イル状とし、脱脂後、その被接着面に感熱接着性ポリオ
レフィン樹脂フィルム(ここでは出光石油化学側製、出
光ポリタンクを用いた)を、温度160℃、圧力10k
gf /cnl 、時間約1分の条件で圧着した。次ぎ
に、その面をアルミニウム青銅製プロペラの表面に、温
度140〜170℃、圧力2〜10kgf /cJ 、
時間約1分の条件で接合し、加圧下で冷却した。接合に
先立って、プロペラ接着面はサンダーあるいはブラスト
機等により粗面化(表面粗さ10〜50μm)した後、
脱脂した。(Example) An ultra-high molecular weight polyethylene resin with a molecular weight of about 3 million to 6 million is cut into a tile shape of 500 m x 500 m, and after degreasing, a heat-sensitive adhesive polyolefin resin film (here, Idemitsu) is applied to the surface to be adhered. manufactured by the petrochemical company, using an Idemitsu poly tank) at a temperature of 160°C and a pressure of 10k.
The pressure bonding was carried out under conditions of gf /cnl and a time of about 1 minute. Next, that surface was placed on the surface of an aluminum bronze propeller at a temperature of 140 to 170°C and a pressure of 2 to 10 kgf/cJ.
They were bonded for about 1 minute and cooled under pressure. Prior to joining, the propeller adhesion surface is roughened (surface roughness 10 to 50 μm) using a sander or blasting machine, and then
Degreased.
加圧に当っては、プロペラ本体が曲面であるので、弾性
を有する材料を介して圧力を加えることにより、全面に
均一な圧力が加えられるようにし、またタイルの配列に
ついては目地が目違いとなるように接着した。When applying pressure, since the propeller body has a curved surface, pressure is applied through an elastic material so that pressure is applied uniformly to the entire surface, and when arranging tiles, it is necessary to make sure that there are no gaps between the joints. I glued it in place.
以上の実施例で得られたプロペラの超高分子量ポリエチ
レン樹脂の剥離強度(JIS K 6854 : 18
0剥離試験)は約2Qkgf /25’mと、良好なも
のであった。Peel strength of the ultra-high molecular weight polyethylene resin of the propeller obtained in the above examples (JIS K 6854: 18
0 peel test) was approximately 2Qkgf/25'm, which was good.
第1図は各種材料を磁歪振動式キャビテーション試験機
を用いてそれらの損傷重量を測定した結果を図にしたも
のであり、横軸は材料の種類、縦軸は損傷重量を示して
いる。FIG. 1 is a graph showing the results of measuring the damaged weight of various materials using a magnetostrictive vibration type cavitation tester, where the horizontal axis shows the type of material and the vertical axis shows the damaged weight.
Claims (1)
チレン樹脂で被覆したことを特徴とする船舶用推進器。 2、ポリエチレン樹脂として分子量100万以上の超高
分子量ポリエチレン樹脂を用いたことを特徴とする特許
請求の範囲第1項記載の船舶用推進器。[Scope of Claims] 1. A marine propulsion device characterized in that all or part of the forward and reverse moving surfaces of the propeller body are coated with polyethylene resin. 2. The marine propulsion device according to claim 1, wherein an ultra-high molecular weight polyethylene resin having a molecular weight of 1 million or more is used as the polyethylene resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13399184A JPS6112496A (en) | 1984-06-27 | 1984-06-27 | Ship propeller unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13399184A JPS6112496A (en) | 1984-06-27 | 1984-06-27 | Ship propeller unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6112496A true JPS6112496A (en) | 1986-01-20 |
Family
ID=15117828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13399184A Pending JPS6112496A (en) | 1984-06-27 | 1984-06-27 | Ship propeller unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6112496A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015112993A (en) * | 2013-12-11 | 2015-06-22 | 三菱重工業株式会社 | Marine propeller, and repair method of marine propeller |
KR20180001217U (en) | 2016-10-21 | 2018-05-02 | 대우조선해양 주식회사 | Coating structure for propeller and ship having the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836794A (en) * | 1981-08-26 | 1983-03-03 | Ishikawajima Harima Heavy Ind Co Ltd | Propeller for ship |
-
1984
- 1984-06-27 JP JP13399184A patent/JPS6112496A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836794A (en) * | 1981-08-26 | 1983-03-03 | Ishikawajima Harima Heavy Ind Co Ltd | Propeller for ship |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015112993A (en) * | 2013-12-11 | 2015-06-22 | 三菱重工業株式会社 | Marine propeller, and repair method of marine propeller |
KR20180001217U (en) | 2016-10-21 | 2018-05-02 | 대우조선해양 주식회사 | Coating structure for propeller and ship having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jennings | Surface roughness and bond strength of adhesives | |
KR20000075571A (en) | Metal tubing coated with multiple layers of polymeric materials | |
US5750252A (en) | Protective coating for metal surfaces | |
US5814172A (en) | Thermoplastics sheets for protecting sub-marine structures | |
US4082588A (en) | Metal protecting lead/plastic laminate | |
JPS6112496A (en) | Ship propeller unit | |
US5769019A (en) | Protective covering for outdoor structures | |
US6048580A (en) | Fouling release coating for marine vessels and method of application | |
Oldfield et al. | Bonding of vulcanized elastomers for underwater use | |
JPS5836794A (en) | Propeller for ship | |
JPS5839446A (en) | Copper or copper alloy sheet panel and method of pasting said panel to steel structure | |
JPH0715030B2 (en) | Coating material made of ultra-high molecular weight polyethylene resin containing copper powder | |
JP2007205012A (en) | Repair method for corrosion-proof coating of steel structure, and underwater repair sheet | |
USRE30771E (en) | Method of protecting the hulls of marine vessels from fouling | |
JPH01212692A (en) | Structure in water prevented from adhesion of marine organisms | |
JPS5829916A (en) | Corrosion resistance processing method for ocean structure | |
CN213138077U (en) | Long service life's film | |
JP3985334B2 (en) | Coated steel with excellent anticorrosion performance | |
Lichtman | Cavitation Damage Resistance and Adhesion of Polymeric Overlay Materials51 | |
JP3166909B2 (en) | Heavy-duty coated steel sheet pile | |
JPS5826695A (en) | Outside plate with high anti-contaminating property for water contact structure | |
JPS58132549A (en) | Antipollution panel and antipollution method | |
JPS60246930A (en) | Repairing method of corrosion protection of offshore steel structure | |
JP3385607B2 (en) | Heavy-duty coated steel sheet pile | |
JPS59156893A (en) | Method of preventing corrosion and contamination of outside plating of ship body or the like |