JPS61124823A - Detector of electromagnetic flowmeter - Google Patents

Detector of electromagnetic flowmeter

Info

Publication number
JPS61124823A
JPS61124823A JP24606684A JP24606684A JPS61124823A JP S61124823 A JPS61124823 A JP S61124823A JP 24606684 A JP24606684 A JP 24606684A JP 24606684 A JP24606684 A JP 24606684A JP S61124823 A JPS61124823 A JP S61124823A
Authority
JP
Japan
Prior art keywords
conduit
axial direction
fluid
outer cylinder
electromagnetic flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24606684A
Other languages
Japanese (ja)
Inventor
Ikuo Uematsu
植松 郁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24606684A priority Critical patent/JPS61124823A/en
Publication of JPS61124823A publication Critical patent/JPS61124823A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enhance not only the strength to the high temp. and high pressure of a measuring fluid or the load at the time of mounting but also accuracy, by making the length of a metal outer cylinder in the axial direction thereof shorter than that of a ceramic conduit in the axial direction thereof and largely chamfering the outer peripheral part of the conduit. CONSTITUTION:An exciting coil 5 is provided to the periphery of a ceramic conduit 1c to generate a magnetic field in a direction crossing the axial direction of the conduit 1c at right angles and a pair of electrodes 3 are arranged in opposed relation to each other to supply a current crossing both of the axial direction of the conduit 1c and the magnetic field at right angles. A metal outer cylinder 7c shorter than the length of the ceramic conduit 1c in the axial direction thereof is attached to the outer periphery of the exciting coil 5 to fix the same. Further, both sides of the ceramic conduit 1c in the axial direction thereof are largely chamfered at an angle theta to reduce the contact surface with piping as small as possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電磁流量計検出器に係シ、特に高温、高圧配管
ラインの流量計測に好適なセラミックス導管の7レア部
形状及び配管接合手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electromagnetic flowmeter detector, and more particularly to a seven-layer shape of a ceramic conduit and a pipe joining means suitable for measuring flow rates in high temperature, high pressure piping lines.

〔発明の背景〕[Background of the invention]

第1図は従来技術に係る電磁流量計検出器の構造図で、
第2図は第1図のA−A線断面図でおる。
Figure 1 is a structural diagram of a conventional electromagnetic flowmeter detector.
FIG. 2 is a sectional view taken along the line A--A in FIG. 1.

第1図及び第2図において、1は測定流体を通す導管、
2は導管内面を電気的に絶縁する絶縁性ライニング、3
・3a・3bは流量信号を検出する電極、4・4a・4
bは絶縁性スペーサ、5・5a・5bは磁界を作る励磁
コイル、6は鉄心、7は磁気回路を収納する外筒、8・
8a・8bは電極で検出した流量信号を外部へ伝送する
ための信号引出線、9は測定流体を接地するためのアー
スリング、10はアースリングと外筒を連結する短絡線
で、これらが一体となって流量を測定する電磁流量計検
出器を形成する。従来の電磁流量計検出器K>いて、測
定流体が例えば、 (1)連続して160℃以上の高温で運転されたシ、(
2)常温と160℃以上の高温のヒートサイクルが掛か
る状態で運転されると、一般に使用されている4ふつ化
エチレン樹脂のライニングでは、ライニング表面に泡状
の変形が発生し、実内径が変わって測定誤差が増加した
シ、まえは運転が継続できなくなるという欠点があった
In FIG. 1 and FIG. 2, 1 is a conduit through which the measurement fluid passes;
2 is an insulating lining that electrically insulates the inner surface of the conduit; 3
・3a and 3b are electrodes that detect the flow rate signal, 4, 4a, 4
b is an insulating spacer, 5, 5a, and 5b are excitation coils that create a magnetic field, 6 is an iron core, 7 is an outer cylinder that houses a magnetic circuit, and 8.
8a and 8b are signal lead wires for transmitting the flow rate signal detected by the electrodes to the outside, 9 is an earth ring for grounding the measured fluid, and 10 is a short circuit line that connects the earth ring and the outer cylinder, and these are integrated. This forms an electromagnetic flow meter detector that measures the flow rate. With conventional electromagnetic flowmeter detectors, the fluid to be measured is, for example, (1) continuously operated at a high temperature of 160°C or higher;
2) When operated under heat cycles between room temperature and high temperatures of 160°C or higher, the commonly used tetrafluoroethylene resin lining causes bubble-like deformation on the lining surface, causing a change in the actual inner diameter. However, there was a drawback that the measurement error increased and the operation could no longer be continued.

そのため、耐熱性・絶縁性及び耐食性で優れた非金属の
無機原料を熱加工したセラミックス(ガラス・耐火煉瓦
・陶磁器なども含む)で、導管とライニングを一体に成
形した第3図または第4図の構造が採用された。しかし
、前者では外筒7とセラミックス導管1aの接合部の応
力を緩和するようOリング11t−介しているため、測
定流体が0リングlitで上がってくるので、検出器の
耐食性及び測定流体の温度は0リング材質で制限される
という欠点があった。また後者では、測定流体全外筒に
接触せぬよう極力外側で焼きばめし、外筒7とセラミッ
クス導管1bの気密を取るコンパウンドを入れて連結し
ているため、この連結部分には、 (1)配管へ取付け、測定流体の液洩れを防止するに必
要な締付は荷重による応力集中、 (2)測定流体が高温なために導管と外筒の管軸方向に
熱膨張係数差で生ずる応力集中などが発生し、亀裂等の
破損が生じるという欠点があった。  □〔発明の目的
〕 ても十分な強度を有し、高精度な電磁流量計検出器を提
供することにある。
For this reason, the conduit and lining are integrally molded using ceramics (including glass, refractory bricks, ceramics, etc.) that are heat-processed from non-metallic inorganic raw materials that have excellent heat resistance, insulation properties, and corrosion resistance. structure was adopted. However, in the former case, since the O-ring 11t is used to relieve the stress at the joint between the outer cylinder 7 and the ceramic conduit 1a, the measured fluid rises at the O-ring lit, which reduces the corrosion resistance of the detector and the temperature of the measured fluid. had the disadvantage of being limited by the O-ring material. In addition, in the latter case, the outer cylinder 7 and the ceramic conduit 1b are connected by shrink-fitting as much as possible so as not to come into contact with the entire outer cylinder, and a compound is applied to make the connection between the outer cylinder 7 and the ceramic conduit 1b. ) The tightening necessary to prevent leakage of the measured fluid when attached to the piping is stress concentration due to the load. (2) Stress caused by the difference in thermal expansion coefficient in the pipe axis direction of the conduit and outer cylinder due to the high temperature of the measured fluid. There was a drawback that concentration etc. occurred and damage such as cracks occurred. □ [Object of the Invention] It is an object of the invention to provide a highly accurate electromagnetic flowmeter detector that has sufficient strength even under the conditions.

〔発明の概要〕[Summary of the invention]

本発明の概要は一般に非金属の無機質で知られるセラミ
ックスと構造材のスチールでは、熱膨張係数が[x 1
01/ C]と異なシ、後者の方が変形が大きいという
ことに着目し、セラミックス製導管の管軸方向長さと、
スチール製外筒の管軸方向長さにおいて、予め外筒の方
を短かくシ、更に測定流体の液洩れを防止するに必要な
締付は荷重を最小限にすべく導管外周部を大きく面取シ
し、配管との接触面を極小とすることによシ、導管と外
筒連結部分に生ずる熱的及び機械的応力集中を高温・高
圧下のラインで使用するに極小で無視できる構造の電磁
流量計検出器を実現するものである。
The outline of the present invention is that ceramics, which are generally known as non-metallic inorganic materials, and steel, which is a structural material, have a coefficient of thermal expansion of [x 1
01/C], focusing on the fact that the latter has larger deformation, the length of the ceramic conduit in the axial direction,
In terms of the axial length of the steel outer tube, the outer tube is made shorter in advance, and the outer circumference of the conduit is made larger to minimize the load required for tightening to prevent leakage of the measured fluid. By minimizing the contact surface with the pipe and the pipe, the thermal and mechanical stress concentration that occurs at the joint between the pipe and the outer cylinder can be minimized and ignored when used in lines under high temperature and high pressure. This realizes an electromagnetic flowmeter detector.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5図から第7図に゛□二電
電5図おいて、ICは従来のライニングと導管を一体に
成形したセラミックス導管で、外周部を角度θで大きな
面取シをしである。4′は断熱作用のある絶縁スペーサ
で、導管ICと励磁コイル5の取付は寸法を決め、更に
測定流体からの直接的な伝熱を遮断している。7Cは、
本発明の外筒で、導管ICの管軸方向長さに比べて、外
筒の管軸方向長さを極力短かくしている。このセラミッ
クス導管ICと外筒7Cとの連結部は、一般に焼きはめ
し、ギャップに磁気回路収納部を防水するためのコンパ
ウンドが埋め込まれている。ここで、導管ICと外筒7
Cの連結部に発生する応力に&:l:、次のものがある
An embodiment of the present invention is shown in FIGS. 5 to 7 below. In FIG. Torishi is the best. Reference numeral 4' denotes an insulating spacer having a heat-insulating effect, which determines the mounting dimensions of the conduit IC and the excitation coil 5, and also blocks direct heat transfer from the fluid to be measured. 7C is
In the outer cylinder of the present invention, the length of the outer cylinder in the tube axis direction is made as short as possible compared to the length of the conduit IC in the tube axis direction. The connecting portion between the ceramic conduit IC and the outer cylinder 7C is generally heat-fitted, and a compound for waterproofing the magnetic circuit storage portion is embedded in the gap. Here, conduit IC and outer cylinder 7
The following stresses occur at the joints of C: &:l:.

(1)導管が高温な測定流体よシ加熱される温度と、大
気中にある外筒の温度差によシ生ずる熱的な発生応力、 (2)配管へ取シ付け、測定流体の液洩れを防止するに
必要な管軸方向の締付は荷重による機械的な発生応力が
ある。
(1) Thermal stress caused by the temperature difference between the temperature at which the conduit is heated by the high temperature fluid to be measured and the temperature of the outer cylinder in the atmosphere, (2) Leakage of the fluid to be measured when attached to the piping. The axial tightening required to prevent this is due to the mechanical stress generated by the load.

ここで、セラミックスとスチールの代表的な特性を次表
に示す。
Here, the typical properties of ceramics and steel are shown in the table below.

(1)項の応力は、異なる材質の熱膨張係数の差によっ
て生ずるもので、一般に熱による棒の伸びは、(1)式
で示される。
The stress in term (1) is caused by the difference in thermal expansion coefficients of different materials, and the elongation of a rod due to heat is generally expressed by equation (1).

L * = (αt+1)to  ・・−・・・・・(
1)ここで、α:熱膨張係数 t:初濃度と最終温度の差 4=初温度における元の長さ tt:最終温度における変形後の長さ 上記(1)式をセラミックス導管とする。次に外筒のス
チールについて、ダッシュを付けると、外筒の伸びは、
(2)式となる。
L * = (αt+1)to ・・・−・・・・・・(
1) Here, α: Coefficient of thermal expansion t: Difference between initial concentration and final temperature 4 = Original length at initial temperature tt: Length after deformation at final temperature The above equation (1) is used for a ceramic conduit. Next, when adding a dash to the steel of the outer cylinder, the elongation of the outer cylinder is
The formula (2) is obtained.

tt=(α’ t +1 )to   ・・・・・・・
・・(2)これらの変形量の比を取って、両者の連結部
での歪みを求め、簡略式ではあるが(8)式に代入する
と応力を求めることができる。
tt=(α' t +1)to ・・・・・・・・・
(2) By taking the ratio of these amounts of deformation to find the strain at the joint between the two, and substituting it into equation (8), although it is a simplified formula, the stress can be found.

σ= g E     ・・・・・・・・・O・・・・
・−・・・(8)ここで、σ:熱応力 馨:歪み E:弾性係数 したがって、熱膨張係数αまたはαIのようK1桁異次
る異種材質にて連結部を設ける場合味、係数の大きい方
の元の長さあるいは、体積を小さくすれば、熱的応力の
発生を極小にすることができる。そのため、第5図のよ
うに管軸方向の長さで比較すると、導管〉外筒のように
すればよいことがわかる。
σ= g E ・・・・・・・・・O・・・・
...(8) Here, σ: Thermal stress value: Strain: E: Elastic coefficient. Therefore, when connecting parts are made of different materials with thermal expansion coefficients α or αI that differ by K1 order of magnitude, the coefficient of By reducing the original length or volume of the larger one, the generation of thermal stress can be minimized. Therefore, when comparing the lengths in the axial direction of the tubes as shown in FIG. 5, it can be seen that the structure should be such that the conduit > the outer cylinder.

(2)項の応力は、重器を配管に取υ付け、測定流体の
液洩れを防止するに必要な管軸方向の締付は荷重によシ
生ずる機械的応力である。
The stress in item (2) is the mechanical stress caused by the load on the pipe when heavy equipment is attached to the pipe, and the tightening in the pipe axis direction required to prevent leakage of the measured fluid.

使用状態での導管フレア部に掛かる締付は荷重は、JI
8B8243圧力容器の構造付属書2フラ/ジの応力計
算方法にある(4式で示される。
The tightening load applied to the conduit flare part in use is JI.
8B8243 Structural Annex 2 of Pressure Vessel Stress Calculation Method (shown in equation 4).

W−t=   G”P+−’−gbGmP  ””(4
)ζこで、W、、 :運転状態での必要な最小ボルト荷
重 G :ガスケットQ反力のかかる位 置の直径 P :使用最高圧力 b =ガスケットの有効幅 m :ガスケット係数 ■弐において、右辺第1項は最小限必要な荷重であるが
、第2項のガスケット120半径方向の有効幅すは、第
5図のように導管の外周部を角度θで大きく面取シする
ことによシ、従来の1/2にすることができ、締付は荷
重鴇、を極小にすることができ、発生応力自体も小さく
することができる。
W-t=G"P+-'-gbGmP""(4
)ζWhere, W,, : Required minimum bolt load in operating condition G : Diameter of gasket Q at the position where reaction force is applied P : Maximum operating pressure b = Effective width of gasket m : Gasket coefficient The first term is the minimum required load, but the second term, the effective width of the gasket 120 in the radial direction, can be achieved by greatly chamfering the outer circumference of the conduit at an angle θ as shown in FIG. The tightening load can be reduced to 1/2 of that of the conventional method, the tightening load can be minimized, and the generated stress itself can be reduced.

以上述べた(1)と(2)の発生応力を従来に比べて、
同時に極小とできる形状を有した電磁流量計検出器が第
5図である。
Compared to the conventional stress generated in (1) and (2) mentioned above,
FIG. 5 shows an electromagnetic flowmeter detector having a shape that can be minimized at the same time.

次に第6図は、更に上記(4)式の右辺第2項を小さく
するもので、セラミックス導管1dのフレア部に凹形状
の溝を少なくとも1本以上設け、アースリング9と導管
16間及びアースリング9と配管フランジフレア部間の
液洩れ防止に1セル7シーリングガスケツトつまシ耐食
性に優れた0リングを用いるものである。このセルフシ
ーリングガスケットを使用すると、(4)式右辺第2項
のガスケット係数mは0とな)、Wユは、右辺第1項の
締付は荷重となシ、更に連結部に生ずる発生応力を極小
にできる。
Next, in FIG. 6, the second term on the right side of the above equation (4) is further reduced, and at least one concave groove is provided in the flare part of the ceramic conduit 1d, and the gap between the earth ring 9 and the conduit 16 is To prevent liquid leakage between the earth ring 9 and the piping flange flare part, an O-ring with excellent corrosion resistance is used for the sealing gasket tab of the 1 cell 7. When this self-sealing gasket is used, the gasket coefficient m in the second term on the right-hand side of equation (4) becomes 0), W is the tightening load in the first term on the right-hand side, and the stress generated in the connection part. can be minimized.

第7図は、第6図に示したアースリング9を導管に直接
蒸着したものである。この場合、アースリング9の接液
表面積sIを蒸着によるアースリングにするには、導管
内周部を角度θで面取シしてS!なる接液表面積(St
”St)を確保する。
In FIG. 7, the ground ring 9 shown in FIG. 6 is deposited directly on the conduit. In this case, in order to make the surface area sI of the ground ring 9 in contact with the liquid by vapor deposition, the inner circumference of the conduit is chamfered at an angle θ to S! The wetted surface area (St
``St).

また、アースリングを蒸着した導管1eから、液体の接
地電位を取プ出す端子は、埋め込みねじ端子13t−導
管に直接埋設し、蒸着にて成形したアースリングに一体
で蒸着するか、わるいは圧入固定とする。この結果、高
価な耐食材料の体積を極小とし、安価で且つ、構造が簡
潔な電磁流量計検出器を得ることができる。
In addition, the terminal for extracting the ground potential of the liquid from the conduit 1e on which the earth ring is vapor-deposited is directly buried in the conduit through the embedded screw terminal 13t, and is integrally vapor-deposited with the earth ring formed by vapor deposition, or alternatively, is press-fitted. Fixed. As a result, the volume of the expensive corrosion-resistant material can be minimized, and an inexpensive electromagnetic flowmeter detector with a simple structure can be obtained.

本発明の他の実施例は、第5図から第7図に示したセラ
ミックス導管外周部の角度θなる面取シを平担に図示し
たが、半径方向の外側に凸となっ九曲面としても、また
内側に凹の曲面としても同等の効果が得られる。
In other embodiments of the present invention, the chamfer at the angle θ on the outer periphery of the ceramic conduit shown in FIGS. , the same effect can also be obtained by using a curved surface that is concave on the inside.

また、導管の内周部に設けた流体接地用蒸着アメ 一スリングの角度θ なる面取シを平担に図示したが、
半径方向の内側に凸となった曲面としても同等の効果が
得られる。
In addition, although the chamfered angle θ of the vapor-deposited ame sling for fluid grounding provided on the inner circumference of the conduit is shown flat,
A similar effect can be obtained by using a curved surface that is convex inward in the radial direction.

〔発明の効果〕〔Effect of the invention〕

本発明によ五ば、測定流体が高温・高圧で流れる配管の
流量測定に使用する電磁流量計で、且ついかなる配管取
付時の締付は荷重に対しても、熱的・機械的発生応力を
極小にして無視できる構造の電磁流量計検出器ができる
ので、高温・高圧ラインで使用してもセラミックスの耐
食性を十分に発揮しつつ、十分ガ強度を持ち且つ、導管
内径の寸法変化の極小な安価で高精度な電磁流量計を得
る効果がある。
According to the present invention, an electromagnetic flowmeter is used to measure the flow rate of piping in which the fluid to be measured flows at high temperature and high pressure, and the tightening at the time of any piping installation reduces thermal and mechanical stress even under load. Since we can create an electromagnetic flowmeter detector with an extremely small and negligible structure, it can fully demonstrate the corrosion resistance of ceramics even when used in high-temperature and high-pressure lines, has sufficient mechanical strength, and has minimal dimensional changes in the inner diameter of the pipe. This has the effect of obtaining an inexpensive and highly accurate electromagnetic flowmeter.

さらに、埋め込み式流体接地電位取出端子と、接地に必
要な接液表面積は確保しそれ以外は極小とした蒸着タイ
プのアースリングを併用するととくよシ、竪牢で且つ、
安価な効果が得られる。
Furthermore, if you use an embedded fluid grounding potential extraction terminal with a vapor-deposited grounding ring that secures the liquid contact surface area necessary for grounding, but the rest is extremely small, it will be very clear, vertical, and
A low cost effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に係る電磁流量計の構造図、第2図は
第1図のA−A線断面図、第3図・第4図は従来技術の
構造図、第5図、・第6図・第7図は本発明の実施例を
示す構造図である。 1・・・導管、2・・・絶縁性ライニング、3・3a・
−3b・・・電極、4・4a・4b・・・絶縁スペーサ
、5・5m・5b・・・励磁コイル、6・・・鉄心、7
・・・外筒、8・8a・8b・・・信号引出線、9・・
・アースリング、10・・・短絡線、11・・・0リン
グ、12・・・ガスケット、IC・1d・1e・・・本
発明のセラミックス導管、4′・・・耐熱性絶縁スペー
サ、7c・・・本発明の外筒、9′・・・蒸着アースリ
ング、13・・・埋込式流体接地電位取出端子、14・
・・スプリング作用のあ第30        第4図 第5回       第65a 鳩7f21
Figure 1 is a structural diagram of an electromagnetic flowmeter according to the prior art, Figure 2 is a sectional view taken along line A-A in Figure 1, Figures 3 and 4 are structural diagrams of the prior art, Figure 5, 6 and 7 are structural diagrams showing embodiments of the present invention. 1... Conduit, 2... Insulating lining, 3.3a.
-3b... Electrode, 4, 4a, 4b... Insulating spacer, 5, 5m, 5b... Excitation coil, 6... Iron core, 7
...Outer cylinder, 8, 8a, 8b...Signal leader line, 9...
- Earth ring, 10... Short circuit wire, 11... 0 ring, 12... Gasket, IC, 1d, 1e... Ceramic conduit of the present invention, 4'... Heat resistant insulating spacer, 7c. ...Outer cylinder of the present invention, 9'... Vapor deposited earth ring, 13... Embedded fluid grounding potential extraction terminal, 14.
...Spring action No. 30 Fig. 4 No. 5 No. 65a Pigeon 7f21

Claims (1)

【特許請求の範囲】 1、測定流体を通す導管と導管の径方向に磁界を加える
励磁コイルを有し磁界の方向と導管の軸方向に直角をな
す導管面に設けられた一対の電極そして全体を固定する
外筒流体の接地を行うアースリングからなる電磁流量計
検出器において、セラミックスからなる導管と金属製の
外筒の管軸方向の長さが導管に比べて外筒を極力短かく
するとともに導管のフレア部中、外周端部を大きく面取
りし外筒の管軸方向の端部が配管接合面に接触しない構
造を有することを特徴とする電磁流量計検出器。 2、特許請求の第1項において、上記フレア面中に少な
くとも1本以上の凹部を設けてセレフシールガスケツト
を介し測定流体の液洩れを防止する構造を有することを
特徴とする電磁流量計検出器。 3、特許請求の第1項において、導管フレア部の外周斜
面部に流体接地電位取出し用端子を埋め込み内外周斜面
部及び側面部を一体にアースリングと等価な耐食性金属
膜を蒸着して形成したことを特徴とする電磁流量計検出
器。
[Claims] 1. A conduit through which a fluid to be measured is passed, an excitation coil that applies a magnetic field in the radial direction of the conduit, a pair of electrodes provided on the conduit surface perpendicular to the direction of the magnetic field and the axial direction of the conduit, and the whole. In an electromagnetic flow meter detector consisting of an earth ring that grounds the fluid in the outer cylinder, the length of the ceramic conduit and the metal outer cylinder in the axial direction of the pipe is as short as possible compared to the conduit. An electromagnetic flowmeter detector characterized in that the outer peripheral end of the flared portion of the conduit is largely chamfered so that the end of the outer tube in the tube axis direction does not come into contact with the pipe joint surface. 2. The electromagnetic flowmeter detection according to claim 1, characterized in that it has a structure in which at least one recess is provided in the flared surface to prevent leakage of the measured fluid through a self-seal gasket. vessel. 3. In claim 1, a fluid ground potential extraction terminal is embedded in the outer peripheral slope of the conduit flare part and the inner and outer peripheral slope parts and the side surfaces are integrally formed by vapor-depositing a corrosion-resistant metal film equivalent to an earth ring. An electromagnetic flowmeter detector characterized by:
JP24606684A 1984-11-22 1984-11-22 Detector of electromagnetic flowmeter Pending JPS61124823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24606684A JPS61124823A (en) 1984-11-22 1984-11-22 Detector of electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24606684A JPS61124823A (en) 1984-11-22 1984-11-22 Detector of electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JPS61124823A true JPS61124823A (en) 1986-06-12

Family

ID=17142955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24606684A Pending JPS61124823A (en) 1984-11-22 1984-11-22 Detector of electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS61124823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835972A1 (en) * 1987-10-23 1989-05-03 Hitachi Ltd CERAMIC PIPING DEVICE WITH A METAL OUTER PIPE
JPH01140129U (en) * 1988-03-17 1989-09-26
JP2022093693A (en) * 2017-10-25 2022-06-23 三菱ケミカル株式会社 Separation membrane module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835972A1 (en) * 1987-10-23 1989-05-03 Hitachi Ltd CERAMIC PIPING DEVICE WITH A METAL OUTER PIPE
US4914950A (en) * 1987-10-23 1990-04-10 Hitachi, Ltd. Ceramic conduit assembly with metal outer tube
JPH01140129U (en) * 1988-03-17 1989-09-26
JPH0738820Y2 (en) * 1988-03-17 1995-09-06 山武ハネウエル株式会社 Electromagnetic flow meter
JP2022093693A (en) * 2017-10-25 2022-06-23 三菱ケミカル株式会社 Separation membrane module

Similar Documents

Publication Publication Date Title
JPH03175320A (en) Electromagnet flowmeter and flowrate/correcting apparatus
US20020023499A1 (en) Pressure-measurment device
JPH0612275B2 (en) Electromagnetic flow meter electrode structure
US5113690A (en) Electromagnetic flowmeter
JPS6118822A (en) Electromagnetic type flowmeter
CN113701852A (en) High temperature resistant type radar level gauge
JP2931931B2 (en) Electromagnetic flow meter
JPS61124823A (en) Detector of electromagnetic flowmeter
JP2928679B2 (en) Electromagnetic flow meter
JP2850610B2 (en) Electromagnetic flow meter
JP4594887B2 (en) Lined damage detection method and corrosive fluid container
CN216012402U (en) High temperature resistant type radar level gauge
JPH0738820Y2 (en) Electromagnetic flow meter
JPS62137521A (en) Manufacture of electromagnetic flowmeter electrode section
CN216645467U (en) Coriolis mass flow sensor and mass flow meter
JP2597863Y2 (en) Electromagnetic flow meter
JP2590920Y2 (en) Electromagnetic flow meter
JPH085421A (en) Flange type ceramic electromagnetic flow meter
JPH0544971B2 (en)
RU1805263C (en) Bimetal bellows compensator
CN2161916Y (en) Contact and contactless compound temp. mesauring sensor
JPH08136307A (en) Electrostatic capacity type electromagnetic flowmeter
JPH01291118A (en) Electromagnetic flow meter
JPH0552617A (en) Electromagnetic flow meter
JPH047934B2 (en)