JPS6112465B2 - - Google Patents

Info

Publication number
JPS6112465B2
JPS6112465B2 JP15056677A JP15056677A JPS6112465B2 JP S6112465 B2 JPS6112465 B2 JP S6112465B2 JP 15056677 A JP15056677 A JP 15056677A JP 15056677 A JP15056677 A JP 15056677A JP S6112465 B2 JPS6112465 B2 JP S6112465B2
Authority
JP
Japan
Prior art keywords
gas
rotor
fan
cooling
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15056677A
Other languages
Japanese (ja)
Other versions
JPS5484202A (en
Inventor
Kazumasa Fujioka
Hisashi Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15056677A priority Critical patent/JPS5484202A/en
Publication of JPS5484202A publication Critical patent/JPS5484202A/en
Publication of JPS6112465B2 publication Critical patent/JPS6112465B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内部冷却装置を備えた回転電機、特に
固定子鉄心を冷却するのに半径方向流れを使用
し、同時に回転子を冷却するのにギヤツプピツク
アツプ方式を使用している回転電機に関するもの
である。この種回転電機における冷却装置の第1
の従来例は冷却器を通つたガスはケーシング端壁
に沿つて流れたのちフアンにより加圧されて回転
子端巻き部側に吐出され、一部は回転子端巻き部
を冷却し、また他は固定子鉄心、回転子本体を冷
却して再び冷却器にもどるよう構成されている。 また第2の従来例は、第1の従来例の冷却ガス
流を逆転させたものである。すなわち、冷却器を
出たガスは2つの流路に分割され、一方は固定子
鉄心、回転子本体を冷却したのち回転子端巻き部
付近に集められる。また他方の流路はケーシング
端壁に沿つて設けられ、回転子端巻き部を冷却す
るガスはここを通つて該端巻き部に流入し、冷却
したのち外部に放出されて固定子鉄心、回転子本
体を冷却してきたガスと合流してフアンに吸込ま
れて加圧されて再び冷却器にもどるよう構成され
ている。 しかし第1の従来例においては、回転子端巻き
部分の流通抵抗が著るしく大きい為、大部分のガ
スが固定子鉄心、回転子本体部分を冷却するのに
用いられ、回転子端巻き部に流入するガス流はご
くわずかである。従つて回転子端巻き部の温度上
昇が著るしく容量増大を妨げている。またフアン
によりガスは大きな空間中に吐出されるため、動
圧は回収されずに損失となるので高い圧力を得る
ことができない。 また第2の従来例においては、回転子端巻き部
分を冷却するガス流は冷却器を出たのち180゜方
向転換してケーシング端壁に沿つて設けられた流
路を流れたのち回転子端巻き部分に到達するた
め、その流動損失はきわめて大きい。従つて、第
1の従来技術の場合と同様に、回転子端巻き部を
流れるガス流は少なく、端巻き部の温度が著るし
く高くなる。 本発明はフアン前後の圧力を有効に利用し、ま
た流動損失の少いガス流路を設けることによつ
て、回転子端巻き部の冷却を向上させる改善され
た冷却装置を備えた回転電機を提供するものであ
る。 本発明の回転電機においては、冷却ガスの流れ
を2つの部分に分割して構成されている。一方の
流れ部分は、冷却器を出たのちフアンにより加圧
されて固定子鉄心,回転子本体部分を冷却するた
めに供給される。また他方の流れ部分は、フアン
により加圧されたのち直ちに回転子端巻き部に流
入してこれを冷却したのちフアン入口部分に放出
される。このフアン入口部分で冷却器を通り冷却
された一方の流れ部分と合流して冷却されたの
ち、再びフアンで加圧されて回転子端巻き部分を
循環し冷却作用を行なう。 以下本発明の回転電機の1実施例を図面によつ
て詳細に説明する。 図面は回転電機として水素ガス冷却形発電機の
上半分のその1端における構造を断面により示し
ている。発電機は水素冷却ガスを収納する気密ケ
ーシング1を有し、このケーシング1内に固定子
鉄心2と、ガスキヤツプ3により固定子鉄心2か
ら隔たる本体部分4を有する回転子と、冷却器
6が存在する。固定子鉄心2には半径方向冷却用
通路7,8が適当な間隔で設けられ、本発明とは
別個の液体冷却装置系統により冷却される主電機
子巻線9を収納する為の溝を備えている。また固
定子鉄心2には冷却用通路7,8に対向して交互
に取囲む周方向の入口室10と出口室11が設け
られている。回転子はそのいずれの端部におい
ても保持環12により所定位置に保持された端巻
13を含む端巻き部14を有し、回転子はま
た一組のフアン15を支持し、このフアン15に
は固定羽根16によつてガスが案内される。 回転子の本体部分4は半径方向冷却用通路
7,8に対向して軸方向に複数区域に離隔してお
り、この部分の冷却はギヤツプピツクアツプ方式
により、ガスをガスギヤツプ3から取り込み、回
転子巻線を通る内部斜行冷却通路を通してガスギ
ヤツプに沿う軸方向に離隔した区域に送ることに
より行われる。 端巻き部14には保持環12の端部に遠心送風
羽根17がその吐出側をフアン15の入口領域
8と連通するように配置され、この遠心送風羽根
17により端巻き線13の冷却が行われる。冷却
器6はケーシング1内の流れ案内壁19と流れ分
割壁20の間に設けられた通路21に配置され
る。この冷却器6の入口は電機子端部領域22
固定子鉄心2の周方向に設けられた出口室11
連通し、出口はフアン15の入口領域18と連通
している。フアン15の出口通路23はケーシン
グ端壁1a、流れ案内壁19、および流れ分割壁
24により形成されており、固定子鉄心2の周方
向に設けられた入口室10と連通している。また
流れ分割壁24は開口部24aを有しており、回
転子軸開口部25、軸長手方向通路26を介して
端巻き部14に連通する端部室27にガスを導
く。 図示例に従い、本発明の回転電機における冷却
ガスの流れを説明する。第1の流れはフアン15
により加圧されたのち、流れ分割壁24の開口部
24aを通つて端部壁27に流入し、回転子軸開
口部25より回転子軸長手方向通路26を通つ
て、端巻き部14に提供される。ここでガスは端
巻き線内部通路(図示せず)を流れて、端巻き部
14の冷却を行い遠心送風羽根17によりフアン
入口領域18に放出され、また、1部はガスギヤ
ツプ3から電機子端部領域22に流れて主電機子
巻線9の冷却を行い冷却器6の入口側に放出され
る。 第2のガス流は、フアン15により加圧された
のち通路23を通り、周方向に多数設けられた管
28によつて固定子鉄心2を交互に取囲む周方向
の入口室10に分配され、半径方向冷却用通路7
を通つてガスギヤツプ3に流れる。こゝでガス
は、回転子本体4の1区域内を通り回転子巻線の
内部斜行冷却通路を流れ、ガスギヤツプ3に沿う
軸方向に離隔した他の区域に送られ再びガスギヤ
ツプ3に流れ、半径方向冷却用通路8を通つて入
口室10と交互に固定子鉄心2を取囲む周方向の
出口室11に捕集され、固定子鉄心2と回転子
の冷却を行う。出口室11に捕集されたガスは、
周方向に多数設けられた管29によつて冷却器6
の入口側に流れ、電機子端部領域22から放出さ
れたガスと共に冷却器6により冷却され、通路
1を通つてフアン15の入口領域18に供給され
る。冷却器6により冷却された第2のガス流は、
フアン15の入口領域18において端巻き部14
から放出された第1のガス流と合流して第1のガ
ス流を冷却したのち再びフアン15により加圧さ
れて循環し、冷却作用が行われる。 本発明によれば、フアン出口より回転子端巻き
部へ通じるガス流路を短かくして流動損失を減少
し、また回転子端巻き部を流れるガスを直ちにフ
アン入口部分に放出してフアン前後の圧力を有効
に端巻き部冷却に利用するようにしたので、端巻
き部を流れるガス流量が著るしく増大し、端巻き
部の有効なる冷却を行うことができる。 また、ガス流を逆転させたことによつて、これ
まで損失となつていた動圧をかなりの程度静圧と
して回収するようにしたので、大きな圧力を得る
ことができ、有効なる冷却を行うことができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating electric machine with an internal cooling system, especially a radial flow is used to cool the stator core, and a gear pick-up method is used to cool the rotor at the same time. This is related to rotating electric machines. The first cooling device for this type of rotating electric machine
In the conventional example, the gas that passes through the cooler flows along the casing end wall, is pressurized by a fan, and is discharged toward the rotor end winding.Some of the gas cools the rotor end winding, and the other gas cools the rotor end winding. is designed to cool the stator core and rotor body and return to the cooler. Further, in the second conventional example, the cooling gas flow of the first conventional example is reversed. That is, the gas exiting the cooler is divided into two flow paths, one of which cools the stator core and the rotor body, and then is collected near the rotor end turns. The other flow path is provided along the casing end wall, through which the gas that cools the rotor end winding flows into the end winding, is cooled, and is then discharged to the outside, causing the stator core to rotate. It is configured so that it merges with the gas that has cooled the main body, is sucked into the fan, is pressurized, and returns to the cooler. However, in the first conventional example, since the flow resistance at the end windings of the rotor is extremely large, most of the gas is used to cool the stator core and the rotor body. The gas flow entering is negligible. Therefore, the temperature increase at the end windings of the rotor significantly impedes capacity increase. Furthermore, since the gas is discharged into a large space by the fan, the dynamic pressure is not recovered and is lost, making it impossible to obtain high pressure. In the second conventional example, the gas flow that cools the rotor end winding exits the cooler, changes its direction by 180 degrees, flows through a flow path provided along the casing end wall, and then cools the rotor end. Since it reaches the wound portion, the flow loss is extremely large. Therefore, as in the case of the first prior art, the gas flow flowing through the rotor end turns is small and the temperature of the end turns becomes significantly high. The present invention provides a rotating electric machine equipped with an improved cooling device that effectively utilizes the pressure before and after the fan and improves cooling of the rotor end winding by providing a gas flow path with less flow loss. This is what we provide. In the rotating electrical machine of the present invention, the flow of cooling gas is divided into two parts. One flow portion is pressurized by a fan after leaving the cooler and is supplied to cool the stator core and rotor body. The other flow portion, after being pressurized by the fan, immediately flows into the end winding of the rotor, cools it, and then is discharged to the fan inlet. At the inlet of the fan, the flow joins with the other flow that has passed through the cooler and is cooled, and then is again pressurized by the fan and circulated through the end windings of the rotor to perform a cooling effect. DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a rotating electric machine according to the present invention will be described in detail below with reference to the drawings. The drawing shows, in cross section, the structure of one end of the upper half of a hydrogen gas-cooled generator as a rotating electric machine. The generator has an airtight casing 1 containing a hydrogen cooling gas, in which a stator core 2, a rotor 5 having a body portion 4 separated from the stator core 2 by a gas cap 3, and a cooler 6 are installed. exists. The stator core 2 is provided with radial cooling passages 7 and 8 at appropriate intervals, and has a groove for housing the main armature winding 9 which is cooled by a liquid cooling system separate from the present invention. ing. Further, the stator core 2 is provided with circumferential inlet chambers 10 and outlet chambers 11 that face and alternately surround the cooling passages 7 and 8. The rotor 5 has at either end an end turn 14 including an end turn 13 held in place by a retaining ring 12, and the rotor 5 also supports a set of fans 15, which Gas is guided to 15 by fixed vanes 16 . The main body portion 4 of the rotor 5 faces the radial cooling passages 7 and 8 and is spaced apart in the axial direction into a plurality of zones, and this portion is cooled by taking gas from the gas gap 3 using a gap pickup method. This is accomplished by passing internal diagonal cooling passages through the rotor windings to axially spaced areas along the gas gap. The end winding part 14 has a centrifugal blower blade 17 at the end of the retaining ring 12 whose discharge side is connected to the inlet area 1 of the fan 15.
The end winding 13 is cooled by the centrifugal blower blade 17 . The cooler 6 is arranged in a passage 21 provided in the casing 1 between the flow guide wall 19 and the flow dividing wall 20 . The inlet of this cooler 6 communicates with the armature end region 22 and the outlet chamber 11 provided in the circumferential direction of the stator core 2, and the outlet communicates with the inlet region 18 of the fan 15. The outlet passage 23 of the fan 15 is formed by the casing end wall 1a, the flow guide wall 19, and the flow dividing wall 24, and communicates with the inlet chamber 10 provided in the circumferential direction of the stator core 2. The flow dividing wall 24 also has an opening 24a, which leads the gas to an end chamber 27 that communicates with the end turn 14 via a rotor shaft opening 25 and a shaft longitudinal passage 26. The flow of cooling gas in the rotating electric machine of the present invention will be explained according to the illustrated example. The first flow is Juan 15
After being pressurized by the flow, it flows into the end wall 27 through the opening 24a of the flow dividing wall 24, passes through the rotor shaft longitudinal passage 26 from the rotor shaft opening 25, and is provided to the end turn 14 . be done. Here, the gas flows through the end-turn internal passage (not shown) and the end-turn
14 is discharged into the fan inlet area 18 by the centrifugal blower blades 17, and a part flows from the gas gap 3 to the armature end area 22 to cool the main armature winding 9 and is discharged to the inlet of the cooler 6. released to the side. After being pressurized by the fan 15, the second gas flow passes through the passage 23 and is distributed to the circumferential inlet chambers 10 that alternately surround the stator core 2 by a plurality of circumferentially provided pipes 28. , radial cooling passage 7
through which it flows into gas gap 3. The gas now flows through one section of the rotor body 4 through internal diagonal cooling passages of the rotor windings, into other axially spaced sections along the gas gap 3 and back into the gas gap 3; Collected through the radial cooling passages 8 into the inlet chamber 10 and the circumferential outlet chamber 11 surrounding the stator core 2 alternately, the stator core 2 and the rotor 5 are collected.
cooling. The gas collected in the outlet chamber 11 is
The cooler 6 is connected by a large number of pipes 29 provided in the circumferential direction.
is cooled by the cooler 6 together with the gas discharged from the armature end region 22 , and the passage 2
1 to the inlet area 18 of the fan 15. The second gas stream cooled by the cooler 6 is
End turn 14 at inlet area 18 of fan 15
After cooling the first gas flow by combining with the first gas flow discharged from the first gas flow, the first gas flow is again pressurized by the fan 15 and circulated, thereby performing a cooling effect. According to the present invention, the gas flow path leading from the fan outlet to the rotor end winding is shortened to reduce flow loss, and the gas flowing through the rotor end winding is immediately discharged to the fan inlet, thereby reducing the pressure before and after the fan. Since the gas flow rate is effectively utilized for cooling the end winding, the flow rate of gas flowing through the end winding is significantly increased, and the end winding can be effectively cooled. In addition, by reversing the gas flow, a considerable amount of the dynamic pressure that was previously lost is recovered as static pressure, making it possible to obtain large pressure and perform effective cooling. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の回転電機の1例として水素ガス冷
却形発電機の上半分のその一端を断面により示す
ものである。 1……気密ケーシング、2……固定子鉄心、
……回転子、6……冷却器、7,8……半径方向
冷却通路、14……端巻き部、15……フアン、
18……フアンの入口領域、21……通路、23
……出口通路。
The figure shows, in cross section, one end of the upper half of a hydrogen gas cooled generator as an example of the rotating electric machine of the present invention. 1...Airtight casing, 2...Stator core, 5
... rotor, 6 ... cooler, 7, 8 ... radial cooling passage, 14 ... end winding section, 15 ... fan,
18 ... Entrance area of the fan, 21 ... Passage, 23
...exit passage.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却用ガスで充満された気密ケーシングと、
半径方向の冷却用通路を有する固定子鉄心と、外
周面上に設けた冷却用ガスの給排気孔のフアン作
用により冷却される本体部分及び端巻き部分を持
つ回転子とを有し、前記回転子には冷却用ガスを
循環させるためのフアンを備えている形式の回転
電機において、前記ケーシング内のフアン入口領
域に直接連通する通路に配置され前記フアン入口
領域に導かれるガスを冷却するための冷却器と、
前記フアン出口近傍の回転子軸に設けられた開口
部およびこの開口部と連通し前記回転子軸に設け
られた軸長手方向通路を通つて回転子端巻き部に
冷却されたガスを導く第1冷却ガス流路と、前記
フアン出口から前記固定子鉄心冷却用通路に冷却
されたガスを導く第2冷却ガス流路とを有し、前
記冷却器を通り冷却されたガス流と、前記回転子
端巻き部から放出されたガス流とを前記フアン入
口で合流するように構成したことを特徴とする回
転電機。
1 An airtight casing filled with cooling gas,
It has a stator core having a cooling passage in the radial direction, and a rotor having a main body portion and an end winding portion that are cooled by the fan action of cooling gas supply and exhaust holes provided on the outer circumferential surface, In a rotating electric machine of the type in which a fan is provided for circulating cooling gas, the rotary electric machine is arranged in a passage that directly communicates with the fan inlet area in the casing, and is used to cool the gas guided to the fan inlet area. cooler and
an opening provided in the rotor shaft near the fan outlet; and a first channel for directing cooled gas to the rotor end winding through a shaft longitudinal passage provided in the rotor shaft that communicates with the opening. a cooling gas flow path, and a second cooling gas flow path that guides the cooled gas from the fan outlet to the stator core cooling passage, and the gas flow cooled through the cooler and the rotor. A rotating electric machine characterized in that the rotating electric machine is configured such that the gas flow discharged from the end winding portion merges at the fan inlet.
JP15056677A 1977-12-16 1977-12-16 Revolving electric machine Granted JPS5484202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15056677A JPS5484202A (en) 1977-12-16 1977-12-16 Revolving electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15056677A JPS5484202A (en) 1977-12-16 1977-12-16 Revolving electric machine

Publications (2)

Publication Number Publication Date
JPS5484202A JPS5484202A (en) 1979-07-05
JPS6112465B2 true JPS6112465B2 (en) 1986-04-08

Family

ID=15499675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15056677A Granted JPS5484202A (en) 1977-12-16 1977-12-16 Revolving electric machine

Country Status (1)

Country Link
JP (1) JPS5484202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033961U (en) * 1989-05-31 1991-01-16
JPH0395859U (en) * 1990-01-17 1991-09-30
JPH0421356U (en) * 1990-06-08 1992-02-24
JPH0456457U (en) * 1990-09-14 1992-05-14
JPH08532U (en) * 1992-07-23 1996-03-26 山崎産業株式会社 Floor processing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518728B (en) * 2019-08-29 2020-09-08 东方电气集团东方电机有限公司 Wind driven generator with rotor wind path

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033961U (en) * 1989-05-31 1991-01-16
JPH0395859U (en) * 1990-01-17 1991-09-30
JPH0421356U (en) * 1990-06-08 1992-02-24
JPH0456457U (en) * 1990-09-14 1992-05-14
JPH08532U (en) * 1992-07-23 1996-03-26 山崎産業株式会社 Floor processing equipment

Also Published As

Publication number Publication date
JPS5484202A (en) 1979-07-05

Similar Documents

Publication Publication Date Title
JPS6111064B2 (en)
US3739208A (en) Reverse flow cooling system for a dynamoelectric machine
US3809934A (en) Gas-cooled electrical generator
JP4180700B2 (en) Turbo generator
US2494200A (en) Electric machine
US4051400A (en) End gas gap baffle structure for reverse flow cooled dynamoelectric machine
US2653255A (en) Separate end-turn rotorventilation
JPS5952622B2 (en) gas cooled electric machine
US3521094A (en) Cooling device for electrical machine rotors
US4546279A (en) Dynamoelectric machine with rotor ventilation system including exhaust coolant gas diffuser and noise baffle
GB1149876A (en) Improvements relating to dynamoelectric machines
GB708905A (en) Improvements in dynamo electric machines
JP4576309B2 (en) Rotating electric machine
GB729231A (en) Improvements in or relating to gas cooled dynamoelectric machine
US2663808A (en) Dynamoelectric machine having a ventilation shield in the air gap
GB1306711A (en) Dynamo-electric machines having salient pole rotors and low loss ventilation
US2970233A (en) Ventilating system for a dynamo-electric machine
JPS6112465B2 (en)
US4163163A (en) Non-salient pole synchronous electric generator
US2282283A (en) Dynamoelectric machine
JPS596135B2 (en) Salient pole rotating electric machine
US3237032A (en) Dynamo-electric machines
US2324297A (en) Dynamoelectric machine
RU2101836C1 (en) Electrical machine
RU2084069C1 (en) Electrical machine