JPS6112331B2 - - Google Patents
Info
- Publication number
- JPS6112331B2 JPS6112331B2 JP2710577A JP2710577A JPS6112331B2 JP S6112331 B2 JPS6112331 B2 JP S6112331B2 JP 2710577 A JP2710577 A JP 2710577A JP 2710577 A JP2710577 A JP 2710577A JP S6112331 B2 JPS6112331 B2 JP S6112331B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrodes
- electron gun
- gun assembly
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010894 electron beam technology Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 230000005684 electric field Effects 0.000 description 9
- 230000004075 alteration Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/50—Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
- H01J29/503—Three or more guns, the axes of which lay in a common plane
Description
【発明の詳細な説明】
本発明はカラー受像管に使用する電子銃構体に
関するものである。
一般にカラー受像管に使用する電子銃構体には
配列形態としては、デルタ形、インライン形等が
あり、主レンズ系としてはユニポテンシヤル形、
ハイポテンシヤル形がそれぞれの特徴に応じて、
使い分けされているのが実情である。
第1図は従来のカラー受像管用インライン形ハ
イポテンシヤル形電子銃構体を示す一部切欠立面
図であり、電極構成、(陰極を除く)は、第1制
御電極11、第2加速電極12、第3集束電極1
3,14、第4集束電極15より構成されてい
る。
陰極より射出された電子ビームは、各々電極に
形成された、電子ビーム通過孔を介し、図示しな
い螢光スクリーンに射突される。このビーム通過
孔は第1制御電極11乃至第3集束電極14迄
は、管軸線に沿つて、3本の電子ビーム通過孔
が、同軸上に整列構成されており、そして第4集
束電極15に於ては、両側の電子銃通過孔の軸線
がやゝ外側に位置するよう少し偏心させて設けら
れており、前記各電極はそれぞれ絶縁硝子杆16
によつて溶着支持され構成している。
前記偏心によつて、第3集束電極13,14と
第4集束電極15とにより主電子レンズを形成し
その作用により両側の電子ビームはシヤドウマス
ク(図示せず)の一孔点に集束する方式がとられ
ていることは周知の通りである。
然るに第1図に示したような第3集束電極1
3,14や第4集束電極15を一体電極とした場
合、この一体電極による3電子ビーム通過孔の配
置により、前記電子ビーム相互間に電界干渉を起
こし、電子ビームのスポツト形状を低下させ収差
を起しやすい為に最近第1図のごとく、各々の電
子ビーム通過孔(赤、緑、青螢光体刺激用)をも
つ、特に第3集束電極14と第4集束電極15の
突出部の外径に嵌合溶接したシリンダ14a,1
5aを介在せしめて相互間の電界干渉を防止し、
収差の発生を極力少なくし映像品位を向上させる
手段を用いる構造が開発されている。
第2図に示す従来の電子銃構体の例は、実公昭
51−49875号公報に示すごとく集束電極24の構
造は、それぞれ電子ビーム通過孔を有する金属平
板24a,24b,24c,24d,24e,2
4fと、第2加速電極23も同様、金属平板で形
成し、更にキヤツプ状の第1制御電極22、陰極
21を配設した電子銃構体を真空容器25内に内
蔵し、陰極21より射出する電子ビーム29が、
螢光スクリーン26に射突すように構成されてい
る。
前記金属平板24a,24b,24c,24
d,24e,24fからなる集束電極24は周期
電界形成の為に金属平板24a,24c,24e
及び24b,24d,24fとがそれぞれの母線
27,28に接続され、金属平板24a,24
c,24eは、E1電源に、前記金属平板24
b,24d,24fは、E2電源にそれぞれ接続
されている。そして前記E1電圧E2電圧を異なる
一定の電圧とすると、電子ビーム通過孔に近軸の
範囲内に波形の周期電界を得ることによつて収差
の少ない主電子レンズを形成することができる。
然るに、第1図のインライン形カラー受像管用
電子銃構体10では、次のような欠点がある。即
ち、第3集束電極13,14、第4集束電極15
は共に、一体の深絞り塑性加工の為に板状の素材
料の内部結晶粒度の分子構造が整列状態より塑性
加工後に於て結晶粒度分子が変化を起こし、不均
一となり、加工歪の残留、組織変化によつて、電
極構体のガス放出処理による熱処理温度(800℃
〜1200℃)、受像管製造工程に於ける排気中(温
度435℃〜440℃)に於ける温度による形状変化が
大きく、電極構体としての精度を低下させる要因
となつていた。
また、主レンズ形成部の対向電極即ち第3集束
電極14、第4集束電極15の電子ビーム通過孔
附近の電界による相互干渉を防止し収差を低減す
る為に、シリンダ14a,15aを嵌合溶接する
時の変形及び残留歪の発生と、第3集束電極1
3,14、第4集束電極15の側壁部に設けた、
支持子18の溶接時の変形及び残留歪等をそのま
まにして絶縁硝子杆16に溶着固定する為の前記
支持子18の溶接や、第3集束電極13,14の
フランジ部の溶接によつて、各電極の品位の低
下、関係位置寸法の低下即ち電極間の偏心、平行
度誤差、同心度、曲じ、捻れ、傾斜を発生する欠
点があり、この様な電子銃構体を使用したカラー
受像管の映像品位を低下させていた。
本発明は、それらの諸欠点を除去し、高精度、
高性能なカラー受像管用電子銃装置を提供するも
のである。
次に第3図及び第4図により本発明のカラー受
像管の電子銃構体の一実施例を説明する。
即ち電子銃構体30を構成する第4集束電極
G4即ち35は35a,35b,35c、第3集
束電極G3は即ち34は34a,34b,34
c、第2加速電極G233、第1制御電極G132
第1制御電極31とから構成されており、前記電
極はいずれも板状又は、浅キヤツプ形状で構成し
てある。いずれも特徴としては集合群毎に同電位
電極を形成することにある。図に於て36は絶縁
硝子杆である。
前述のように各電極部品構成は、平板及び浅キ
ヤツプ状の電極の集合群で、単数又は複数個以上
によつて、同一電極を構成することにより塑性加
工時に於いて、素材の整列された結晶粒子をもつ
分子構造状態で、電極部品を形成し、加工歪を残
さず熱処理工程などの高温に於ける変形を防止す
る。
実験では、Cr16%―Ni14%、主成分ステンレ
ス鋼0.40tmmによる浅キヤツプの高さ寸法は1.20
〜2.0mm範囲が加工歪を残さず結晶粒度分子構造
ほ変化しなかつた。
従つて、第4図に示す電極外縁部41,42の
基準面が保障され、機械的、熱処理的精度の向上
化が計られた。
各電極間の基準の取り方として、第4図A,B
に代表例の斜視図を示したので、これについて詳
細説明すると、基準は、平板及び浅キヤツプ4
0,50共に、中心孔43a,53aの中心点よ
り振り分けた、a―a′線、b―b′線平行に形成す
る外縁部41が片側に2点形成される。また前記
a―a′線、b―b′線と直角に配置される中心孔4
3a,53aの中心点より等分に振り分けたc―
c′線、d―d′線も平行に形成した中点の外縁部4
2が基準点となる。
電子銃構体(第3図)30の電極配列は、即
ち、a―a′線基準の外縁部41の2点と、c―
c′線又はd―d′線の外縁部42の1点、又はb―
b′線基準の外縁部41の2点と、c―c′線又はd
―d′線の外縁部42の1点の直角配置による合計
3点を以つて構成する。
主レンズ形成電極は、第4図B斜視図に示す浅
キヤツプ式第3集束電極34c第4集束電極35
cにより対向配置にする。この場合プレス等によ
つて生じる屈曲部は全て機械的歪が生じないよう
に彎曲して形成することが望ましく、且つ支持子
44部は、対向部より離れて絶縁硝子杆36に溶
着されるので、この絶縁硝子杆36の表面の異物
付着等による両電極間34c,35cの距離が考
慮されている。
主レンズ及び3極管部のクロスオーバー部を形
成する電極34c,35cの対向配列の電子ビー
ム通過孔に合せて、平板電極34b,35bがそ
れぞれ電極34c,34a及び電極35c,35
a間に規則正しく配例し更に浅キヤツプ電極3
2,33と共に電子銃構体30が形成されるがこ
の場合間挿電極35b及び34bどうしの間隔寸
法は約0.5mm以下に配置することが望ましいこと
が実験によつて確認された。即ちこの程度の間隔
寸法にすることにより外部よりの浮遊電界を防止
することが可能である。
この様にすることにより各電子ビーム通過孔部
は、実質的にはシリンダを介在した浮遊電界防止
の状態となり、各電子ビーム(赤、緑、青)の電
界の相互干渉をなくし、収差の発生を起さなくな
つた。
前述したような平板電極及び浅キヤツプ状の各
同電位電極にて構成する特徴として、両端部の浅
キヤツプ状電極即ち第3図に示す第4集束電極3
5では、35cと35a、第3集束電極34で
は、34aと34cの如く間挿する平板電極35
b,34bを狭止する形状に配置し、各々の電極
(同電位電極外を言う)間の絶縁硝子杆36に於
ける距離を長くとり、電極間リーク、及び耐電圧
特性の向上化を計ることが出来る。
以上、板状電極及び浅キヤツプ構成の電子銃構
体の特徴及び効果について述べたが、第3図に於
いて各電子銃軸のピツチP寸法を広げ、電子ビー
ム通過孔を大にすることが、絞り加工部品と較べ
てスペースがとれるので、更に収差の少ない性能
の良い大口径の主電子レンズを形成しカラー受像
管の映像品位との向上を計ることが可能となつ
た。
前述した実施例に於ては第3集束電極34及び
第4集束電極35の間に介在する電極34b,3
5bを平板としたが、これに限定されるものでは
なく板状の素材料の結晶粒度分布及び分子配列構
造を変化させない範囲で例えば第4図bの如き浅
キヤツプ状電極または電子ビーム通過孔縁部にの
み凸部を設けた電極(本発明に於てはこれらを含
めて間挿電極と言う)とすることも可能であり、
更に基準のための(a―a′)線乃至(d―d′)
線)の取り方、支持子44の形状などは特に限定
されるものではないこは勿論であり、また第3集
束電極、第4集束電極など少なくとも1個の同電
位の間挿電極を有する所では各電極間に間隔を設
けることもなく例えば所望位置にて互に接触する
よう配設することも可能であることは言うまでも
ない。 DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron gun assembly used in a color picture tube. In general, the electron gun structures used in color picture tubes are arranged in delta type, in-line type, etc., and the main lens system is unipotential type,
Depending on the characteristics of each high-potential type,
The reality is that they are used differently. FIG. 1 is a partially cutaway elevational view showing a conventional in-line high-potential electron gun assembly for a color picture tube, and the electrode configuration (excluding the cathode) is a first control electrode 11, a second accelerating electrode 12, Third focusing electrode 1
3, 14, and a fourth focusing electrode 15. The electron beams emitted from the cathodes impinge on a fluorescent screen (not shown) through electron beam passage holes formed in each electrode. From the first control electrode 11 to the third focusing electrode 14, three electron beam passing holes are coaxially aligned along the tube axis, and at the fourth focusing electrode 15. In this case, the axes of the electron gun passage holes on both sides are slightly eccentrically located to the outside, and each of the electrodes is connected to an insulating glass rod 16.
It is welded and supported by. Due to the eccentricity, the third focusing electrodes 13 and 14 and the fourth focusing electrode 15 form a main electron lens, and the electron beams on both sides are focused on one hole point of a shadow mask (not shown). It is well known that this is being done. However, the third focusing electrode 1 as shown in FIG.
3 and 14 and the fourth focusing electrode 15 are integrated electrodes, the arrangement of the three electron beam passing holes by the integrated electrode causes electric field interference between the electron beams, reducing the spot shape of the electron beams and causing aberrations. Recently, as shown in Fig. 1, the outer protrusions of the third focusing electrode 14 and the fourth focusing electrode 15, which have respective electron beam passing holes (for red, green, and blue phosphor stimulation), have been developed. Cylinder 14a, 1 fitted and welded to the diameter
5a to prevent mutual electric field interference,
Structures have been developed that use means to minimize the occurrence of aberrations and improve image quality. The example of the conventional electron gun structure shown in Fig. 2 is
As shown in Japanese Patent No. 51-49875, the structure of the focusing electrode 24 includes metal flat plates 24a, 24b, 24c, 24d, 24e, and 24b, each having an electron beam passing hole.
4f and the second accelerating electrode 23 are similarly formed of metal flat plates, and an electron gun assembly including a cap-shaped first control electrode 22 and a cathode 21 is housed in the vacuum container 25, and is emitted from the cathode 21. The electron beam 29
It is configured to strike a fluorescent screen 26. The metal flat plates 24a, 24b, 24c, 24
A focusing electrode 24 consisting of metal plates 24a, 24c, 24f is used to form a periodic electric field.
and 24b, 24d, 24f are connected to the respective busbars 27, 28, and the metal flat plates 24a, 24
c, 24e connects the metal flat plate 24 to the E1 power source.
b, 24d, and 24f are connected to the E2 power source, respectively. If the E 1 voltage and the E 2 voltage are set to different constant voltages, a main electron lens with less aberration can be formed by obtaining a waveform periodic electric field within a range paraxial to the electron beam passage hole. However, the in-line color picture tube electron gun assembly 10 shown in FIG. 1 has the following drawbacks. That is, the third focusing electrodes 13 and 14 and the fourth focusing electrode 15
In both cases, due to deep drawing plastic working, the molecular structure of the internal crystal grain size of the plate-shaped material is not aligned, but after plastic working, the crystal grain size molecules change and become non-uniform, resulting in residual processing strain, Due to the structure change, the heat treatment temperature (800℃) due to the gas release treatment of the electrode structure
-1200°C), and during exhaust during the picture tube manufacturing process (temperature 435°C to 440°C), the shape changes significantly due to temperature, which is a factor that reduces the accuracy of the electrode structure. In addition, in order to prevent mutual interference due to electric fields near the electron beam passage holes of the opposing electrodes of the main lens forming part, that is, the third focusing electrode 14 and the fourth focusing electrode 15, and to reduce aberrations, the cylinders 14a and 15a are fitted and welded. Generation of deformation and residual strain when the third focusing electrode 1
3, 14, provided on the side wall of the fourth focusing electrode 15,
By welding the supporter 18 and welding the flange portions of the third focusing electrodes 13 and 14 to fix the supporter 18 by welding to the insulating glass rod 16 while leaving the deformation and residual strain of the supporter 18 intact during welding, Color picture tubes using such electron gun structures have the disadvantages of deterioration of the quality of each electrode, deterioration of related positional dimensions, that is, eccentricity between electrodes, parallelism errors, concentricity, bends, twists, and inclinations. The video quality was degraded. The present invention eliminates these drawbacks and achieves high precision and
The present invention provides a high-performance electron gun device for color picture tubes. Next, an embodiment of an electron gun assembly for a color picture tube according to the present invention will be described with reference to FIGS. 3 and 4. FIG. That is, the fourth focusing electrode that constitutes the electron gun structure 30
G 4 ie 35 is 35a, 35b, 35c, third focusing electrode G 3 is 34 is 34a, 34b, 34
c, second accelerating electrode G 2 33, first control electrode G 1 32
A first control electrode 31 is formed, and each of the electrodes is formed into a plate shape or a shallow cap shape. The feature of both is that electrodes with the same potential are formed for each set group. In the figure, 36 is an insulating glass rod. As mentioned above, each electrode part structure is a group of flat plate and shallow cap-shaped electrodes, and by configuring the same electrode by one or more electrodes, it is possible to improve the alignment of crystals of the material during plastic processing. Electrode parts are formed in a molecular structure state with particles, and do not leave any processing strain and prevent deformation at high temperatures such as heat treatment processes. In the experiment, the height of the shallow cap with 16% Cr-14% Ni and 0.40 tmm of stainless steel as the main component was 1.20.
In the range of ~2.0 mm, no machining strain was left and the crystal grain size and molecular structure did not change. Therefore, the reference planes of the electrode outer edge portions 41 and 42 shown in FIG. 4 are ensured, and mechanical and heat treatment precision is improved. As a reference between each electrode, see Figure 4 A and B.
A perspective view of a typical example is shown in Figure 2. To explain this in detail, the standard is a flat plate and a shallow cap 4 .
For both 0 and 50 , two outer edge portions 41 are formed on one side, which are parallel to the aa' line and the bb' line, which are distributed from the center points of the center holes 43a and 53a. In addition, the center hole 4 is arranged perpendicular to the a-a' line and the b-b' line.
c- distributed equally from the center point of 3a and 53a
Outer edge 4 of the midpoint where c' line and d-d' line are also parallel
2 is the reference point. The electrode arrangement of the electron gun structure (Fig. 3) 30 consists of two points on the outer edge 41 based on the a-a' line and one on the c-
One point on the outer edge 42 of line c' or line d-d', or b-
Two points on the outer edge 41 based on line b' and line c-c' or d
- It is composed of a total of three points arranged at right angles to one point on the outer edge 42 of the line d'. The main lens forming electrodes are a shallow cap type third focusing electrode 34c and a fourth focusing electrode 35 shown in the perspective view of FIG. 4B.
c to face each other. In this case, it is desirable that all the bent parts created by pressing etc. be curved so as not to cause mechanical strain, and since the supporter 44 part is welded to the insulating glass rod 36 at a distance from the opposing part, The distance between the two electrodes 34c and 35c due to foreign matter adhering to the surface of the insulating glass rod 36 is taken into consideration. The flat plate electrodes 34b, 35b are aligned with the electron beam passage holes of the electrodes 34c, 35c which form the crossover part of the main lens and the triode part, respectively.
A shallow cap electrode 3 is arranged regularly between a.
The electron gun assembly 30 is formed together with the electrodes 2 and 33, and it has been confirmed through experiments that in this case, it is desirable that the spacing between the interposed electrodes 35b and 34b be approximately 0.5 mm or less. That is, by setting the spacing to this level, it is possible to prevent stray electric fields from outside. By doing this, each electron beam passage hole becomes in a state where a stray electric field is virtually prevented through the cylinder, eliminating mutual interference of the electric fields of each electron beam (red, green, blue) and causing aberrations. I stopped waking up. As a feature of the configuration of the flat plate electrode and the shallow cap-shaped electrodes having the same potential as described above, the shallow cap-shaped electrodes at both ends, that is, the fourth focusing electrode 3 shown in FIG.
5, the flat plate electrodes 35 are interposed as shown in 35c and 35a, and the third focusing electrode 34 is shown as 34a and 34c.
b, 34b are arranged in a narrow shape, and the distance in the insulating glass rod 36 between each electrode (referring to the outside of the same potential electrode) is increased to prevent leakage between the electrodes and improve the withstand voltage characteristics. I can do it. The features and effects of the electron gun structure with the plate-shaped electrode and shallow cap configuration have been described above, but in FIG. Since it takes up more space than a diaphragm-processed part, it has become possible to form a large-diameter main electron lens with even fewer aberrations and better performance, thereby improving the image quality of a color picture tube. In the embodiment described above, the electrodes 34b, 3 interposed between the third focusing electrode 34 and the fourth focusing electrode 35
5b is a flat plate, but the present invention is not limited to this. For example, a shallow cap-shaped electrode or the edge of an electron beam passage hole as shown in FIG. It is also possible to make an electrode with a convex part only in the part (in the present invention, these are collectively referred to as an interpolated electrode),
Furthermore, lines (a-a') to (d-d') for reference
Of course, there are no particular limitations on the way the wires are taken, the shape of the supporter 44, etc.; Needless to say, it is also possible to arrange the electrodes so that they are in contact with each other at a desired position, for example, without providing a space between the electrodes.
第1図は従来のカラー受像管用インライン形電
子銃構体の一部切欠立面図、第2図は従来の周期
電界を形成して集束レンズ系を複数電子レンズと
した時の収差減少の原理を示す一部切欠立面図、
第3図は本発明のカラー受像管の電子銃構体の一
実施例を示す縦断面図、第4図a,bは第3図の
平板又は、浅キヤツプ状の電極を示す斜視図であ
る。
10,30…電子銃構体、15,35…第4集
束電極、14,13,34…第3集束電極、1
2,33…第2加速電極、11,32…第1制限
電極、34b,35b…間挿電極。
Figure 1 is a partially cutaway elevational view of a conventional in-line electron gun assembly for color picture tubes, and Figure 2 shows the principle of aberration reduction when a conventional periodic electric field is formed and the focusing lens system is used as a plurality of electron lenses. Partially cut away elevation showing;
FIG. 3 is a longitudinal sectional view showing one embodiment of the electron gun assembly of the color picture tube of the present invention, and FIGS. 4a and 4b are perspective views showing the flat plate or shallow cap-shaped electrodes of FIG. 3. 10 , 30 ... Electron gun structure, 15, 35... Fourth focusing electrode, 14, 13, 34... Third focusing electrode, 1
2, 33... Second accelerating electrode, 11, 32... First limiting electrode, 34b, 35b... Interpolated electrode.
Claims (1)
し、異なつた電位を供給することにより電子レン
ズを形成する少くとも2つの対向配置された複数
個の電極を少くとも具備してなる電子銃構体にお
いて、前記複数個の電極のうち少くとも1つの電
極は浅キヤツプ状電極と間挿電極よりなり、これ
らの電極は同電位であることを特徴とする電子銃
構体。 2 間挿電極が平板状電極よりなることを特徴と
する特許請求の範囲第1項記載の電子銃構体。 3 間挿電極が板状の素材料時の結晶粒度分布及
び分子配列構造を変化させない程度に加工した浅
キヤツプ状からなることを特徴とする特許請求の
範囲第1項記載の電子銃構体。 4 間挿電極が互いに所望間隔をもつて配設され
ていることを特徴とする特許請求の範囲第1項乃
至第3項記載の電子銃構体。 5 間挿電極が所望位置にて互いに接触するよう
に配設されていることを特徴とする特許請求の範
囲第1項乃至第3項記載の電子銃構体。[Claims] 1. At least two electrodes arranged opposite each other, each having a plurality of electron beam passage holes and forming an electron lens by supplying different potentials. An electron gun assembly characterized in that at least one of the plurality of electrodes is composed of a shallow cap-shaped electrode and an interposed electrode, and these electrodes are at the same potential. 2. The electron gun assembly according to claim 1, wherein the interposed electrode is a flat electrode. 3. The electron gun assembly according to claim 1, wherein the interposed electrode is made of a shallow cap shape processed to an extent that does not change the crystal grain size distribution and molecular arrangement structure of a plate-shaped material. 4. The electron gun assembly according to claims 1 to 3, wherein the interposed electrodes are arranged with a desired spacing from each other. 5. The electron gun assembly according to claims 1 to 3, wherein the interposed electrodes are arranged so as to be in contact with each other at desired positions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2710577A JPS53112657A (en) | 1977-03-14 | 1977-03-14 | Constituent of electron gun |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2710577A JPS53112657A (en) | 1977-03-14 | 1977-03-14 | Constituent of electron gun |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53112657A JPS53112657A (en) | 1978-10-02 |
JPS6112331B2 true JPS6112331B2 (en) | 1986-04-08 |
Family
ID=12211795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2710577A Granted JPS53112657A (en) | 1977-03-14 | 1977-03-14 | Constituent of electron gun |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS53112657A (en) |
-
1977
- 1977-03-14 JP JP2710577A patent/JPS53112657A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS53112657A (en) | 1978-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890003825B1 (en) | Electron gun for crt | |
GB1514235A (en) | Cathode ray tube distortion correction | |
JPH04218245A (en) | Color cathode-ray tube | |
JPH0640471B2 (en) | Color display tube | |
US6172450B1 (en) | Election gun having specific focusing structure | |
JPS5868848A (en) | Structure of electron gun | |
JPS6112331B2 (en) | ||
JPH03171534A (en) | Color picture tube | |
JP3742122B2 (en) | In-line electron gun for color picture tubes | |
JP2690930B2 (en) | Electron gun for color cathode ray tube | |
US6342758B1 (en) | Inline type color picture tube | |
JPH03163728A (en) | Manufacture of inline electron gun in color image tube | |
KR910001870B1 (en) | Electron gun of color cathode ray tube | |
JP2685485B2 (en) | Color picture tube | |
KR890001140B1 (en) | Electron-gun for a color t.v. | |
JP2661059B2 (en) | Cathode ray tube | |
JP2921878B2 (en) | In-line type electron gun for color picture tube | |
JPH06196108A (en) | Cathode-ray tube | |
JPH09245666A (en) | Electron gun for cathode-ray tube | |
JPH01187744A (en) | Color image receiving tube | |
JPS5937638A (en) | Electron gun for color picture tube | |
JPH11185658A (en) | Electron gun for color cathode-ray tube | |
JPH0472344B2 (en) | ||
JP2804052B2 (en) | Color picture tube equipment | |
JPS62237642A (en) | Electron gun |