JPS6112325B2 - - Google Patents
Info
- Publication number
- JPS6112325B2 JPS6112325B2 JP3822881A JP3822881A JPS6112325B2 JP S6112325 B2 JPS6112325 B2 JP S6112325B2 JP 3822881 A JP3822881 A JP 3822881A JP 3822881 A JP3822881 A JP 3822881A JP S6112325 B2 JPS6112325 B2 JP S6112325B2
- Authority
- JP
- Japan
- Prior art keywords
- wall
- cylindrical
- inner diameter
- hole
- cylindrical barrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004020 conductor Substances 0.000 claims description 21
- 239000012212 insulator Substances 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 description 50
- 229920001342 Bakelite® Polymers 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000004637 bakelite Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Insulators (AREA)
Description
【発明の詳細な説明】
本発明は高圧導体の絶縁装置に係り、特にアー
ス電位の壁の孔を遊貫する高圧導体を電気的に絶
縁する絶縁装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulating device for a high voltage conductor, and more particularly to an insulating device for electrically insulating a high voltage conductor passing loosely through a hole in a wall at ground potential.
従来、配電盤の隔壁を貫通する母線または開閉
装置の機枠から導出される接続導体の如く、電気
機器におけるアース電位の壁の孔を遊貫する高圧
導体を絶縁するには、高圧導体の壁の孔と対応す
る部分を絶縁性の熱収縮チユーブで被覆している
が、絶縁階級が大きくなるにつれて、高圧導体が
遊嵌される孔径を大きくせざるを得ず、電気機器
自体の大型化を招来している。 Conventionally, in order to insulate a high-voltage conductor that passes through a hole in the wall at earth potential in electrical equipment, such as a busbar penetrating the bulkhead of a switchboard or a connection conductor led out from the machine frame of a switchgear, it is necessary to The part corresponding to the hole is covered with an insulating heat-shrinkable tube, but as the insulation class increases, the diameter of the hole into which the high-voltage conductor is loosely fitted has to be increased, leading to an increase in the size of the electrical equipment itself. are doing.
かかる問題に対処すべくアース電位の壁を貫通
する高圧導体を、モールドブツシング、磁器ブツ
シングあるいはコンデンサブツシングに代えたも
のもあるが、このようなブツシングは高価である
ため、電気機器の価格を高騰せしめる問題があ
る。 To deal with this problem, the high-voltage conductor that penetrates the wall at earth potential has been replaced with molded bushings, porcelain bushings, or capacitor bushings, but such bushings are expensive, so they reduce the price of electrical equipment. There is a problem with rising prices.
本発明は上述した問題に鑑みてなされたもの
で、その目的とするところは、電気機器における
アース電位の壁の孔を遊貫する高圧導体を、その
壁の孔と対応する部分に位置せしめて嵌装した筒
状の絶縁物により囲繞するとともに、この絶縁物
の端部とアース電位の壁面との間隙を壁の孔径と
同等以上とすることによつて、絶縁階級に対応せ
しめてアース電位の壁の孔径の最適化を図り得る
とともに、構成簡単にしてかつ安価にし得るよう
にした絶縁装置を提供するにある。以下、図面を
参照してこの発明の実施例を詳細に説明する。 The present invention has been made in view of the above-mentioned problems, and its object is to position a high-voltage conductor that freely passes through a hole in a wall of an electrical device at an earth potential at a portion corresponding to the hole in the wall. By surrounding it with a fitted cylindrical insulator, and by making the gap between the end of this insulator and the wall at earth potential equal to or larger than the hole diameter of the wall, the earth potential can be adjusted according to the insulation class. It is an object of the present invention to provide an insulating device that can optimize the hole diameter of a wall, and has a simple structure and a low cost. Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図および第2図は本発明に係る絶縁装置の
第1実施例の正面図および側断面図である。図に
おいて1は閉鎖配電盤の隔壁を貫通する母線また
は開閉装置の機枠から導出される接続導体の如
く、電気機器におけるアース電位の壁2の孔3を
遊貫する平角銅棒からなる高圧導体で、その外周
には、本発明に係る絶縁装置の一部を構成する所
定厚さのエチレンプロピレンからなる絶縁性の熱
収縮チユーブ4が被覆されているとともに、絶縁
物であるベークライトにより壁2の孔3の径(孔
径)Φより適宜小径の円筒状に形成された円筒バ
リヤ5が壁2の孔3を挿通するが如くして嵌装さ
れている。そして、円筒バリヤ5の突出長さ、す
なわちその端部と壁2の側面(壁面)2aとの間
隙は、少なくとも孔径Φと同等またそれ以上に
設けられており、また、熱収縮チユーブ4の突出
長さ、すなわちその端部と壁面2aとの間隔Lも
円筒バリヤ5と同程度に設けられている。 1 and 2 are a front view and a side sectional view of a first embodiment of an insulating device according to the present invention. In the figure, 1 is a high-voltage conductor made of a rectangular copper rod that passes freely through a hole 3 in a wall 2 at earth potential in electrical equipment, such as a bus bar passing through a partition wall of a closed switchboard or a connecting conductor led out from a machine frame of a switchgear. , its outer periphery is covered with an insulating heat-shrinkable tube 4 made of ethylene propylene having a predetermined thickness, which constitutes a part of the insulating device according to the present invention, and the holes in the wall 2 are covered with Bakelite, which is an insulating material. A cylindrical barrier 5 formed in a cylindrical shape having a diameter suitably smaller than the diameter (hole diameter) Φ of wall 2 is fitted so as to be inserted through the hole 3 of the wall 2. The protruding length of the cylindrical barrier 5, that is, the gap between its end and the side surface (wall surface) 2a of the wall 2, is at least equal to or greater than the hole diameter Φ. The length, ie, the distance L between the end and the wall surface 2a, is also approximately the same as that of the cylindrical barrier 5.
ここで、高圧導体1として平角(5×50m/
m)銅棒を用い、アース電位の壁2として孔径Φ
170m/mの孔3を有する接地した矩形状(300×
300m/m)鉄板を用い、熱収縮チユーブ4とし
て2〜3m/mの厚さを有するエチレンプロピレ
ンからなるチユーブを用い、かつ円筒バリヤ5と
して内径100m/m、厚さ5m/mのベークライト
からなる円筒を用い、熱収縮チユーブ4の突出長
さLを変化させるとともに、円筒バリヤ5の突出
長さを60m/m、120m/mおよび180m/mと
した場合における閃絡値特性の実験結果は、横軸
に熱収縮チユーブ4の突出長さL、縦軸に50%イ
ンパルスフラツシユオーバ電圧50%F.O.Vをとつ
た第3図において曲線A,BおよびCで示すよう
になつた。 Here, the high voltage conductor 1 is a flat rectangle (5 x 50 m/
m) Using a copper rod, hole diameter Φ as wall 2 of earth potential
Grounded rectangular shape (300×
300 m/m) using an iron plate, a tube made of ethylene propylene having a thickness of 2 to 3 m/m as the heat shrink tube 4, and a tube made of Bakelite with an inner diameter of 100 m/m and a thickness of 5 m/m as the cylindrical barrier 5. The experimental results of the flashover value characteristics when using a cylinder and changing the protrusion length L of the heat shrinkable tube 4 and setting the protrusion lengths of the cylindrical barrier 5 to 60 m/m, 120 m/m and 180 m/m are as follows. The curves A, B, and C are shown in FIG. 3, in which the horizontal axis represents the protruding length L of the heat shrink tube 4, and the vertical axis represents the 50% impulse flashover voltage 50% FOV.
したがつて、円筒バリヤ5の突出長さ=
60m/mの場合においては、熱収縮チユーブ4が
絶縁効果を奏することが判るとともに、その突出
長さが孔径Φ=170m/mを過ぎると耐圧が飽
和して来ることが判る。 Therefore, the protruding length of the cylindrical barrier 5 =
In the case of 60 m/m, it can be seen that the heat-shrinkable tube 4 has an insulating effect, and it can also be seen that the withstand pressure becomes saturated when the protruding length exceeds the hole diameter Φ = 170 m/m.
また、高圧導体1として平角(5×50m/m)
銅棒を用い、アース電位の壁2として孔径Φ
102m/mの孔3を有する接地した矩形状(470×
470m/m)鉄板を用い、熱収縮チユーブ4とし
て2〜3m/mの厚さを有するエチレンプロピレ
ンチユーブを用い、かつ円筒バリヤ5としてベー
クライト円筒を用い、熱収縮チユーブ4の突出長
さLを変化させるとともに、円筒バリヤ5の突出
長さを60m/m、100m/mおよび120m/mと
し、かつ突出長さ=60m/mのものの内径を
60m/m(o印)、80m/m(△印)および
90m/m(×印)と変化させ、、突出長さ=
100m/mのものの内径を80m/mおよび突出長
さ=120m/mのものの内径を80m/mとした
場合における閃絡値特性の実験結果は、横軸に熱
収縮チユーブ4の突出長さL、縦軸50%インパル
スフラツシユオーバ電圧50%F.O.Vをとつた第4
図において曲線A,BおよびCで示すようになつ
た。 In addition, as the high voltage conductor 1, a rectangular (5 x 50 m/m)
Using a copper rod, the hole diameter Φ is used as the ground potential wall 2.
Grounded rectangular shape (470×
470 m/m) using an iron plate, using an ethylene propylene tube with a thickness of 2 to 3 m/m as the heat shrink tube 4, and using a Bakelite cylinder as the cylindrical barrier 5, changing the protrusion length L of the heat shrink tube 4. In addition, the protruding length of the cylindrical barrier 5 is 60 m/m, 100 m/m, and 120 m/m, and the inner diameter of the protruding length = 60 m/m is
60m/m (o mark), 80m/m (△ mark) and
Change it to 90m/m (x mark), protrusion length =
The experimental results of the flashover value characteristics when the inner diameter of a tube of 100 m/m is 80 m/m and the inner diameter of a tube with a protrusion length of 120 m/m are 80 m/m. The horizontal axis shows the protrusion length L of the heat shrink tube 4. , the fourth with 50% impulse flashover voltage and 50% FOV on the vertical axis.
The curves are now shown as curves A, B and C in the figure.
したがつて、絶縁耐圧は、円筒バリヤ5の外径
には殆んど影響がなく、熱収縮チユーブ4の場合
と同様に、円筒バリヤ5の突出長さがアース電
位の壁2の孔径Φになると飽和して来ることが判
る。 Therefore, the dielectric strength has almost no effect on the outer diameter of the cylindrical barrier 5, and as in the case of the heat-shrinkable tube 4, the protruding length of the cylindrical barrier 5 depends on the hole diameter Φ of the wall 2 at ground potential. It turns out that it becomes saturated.
さらに、第3図の場合とほぼ同様に、高圧導体
1として平角(5×50m/m)銅棒を用い、アー
ス電位の壁2として孔径Φ170m/mの孔3を有
する接地した矩形状(300×300m/m)鉄板を用
い、熱収縮チユーブ4として2〜3m/mの厚さ
を有するエチレンプロピレンチユーブを用い、か
つ円筒バリヤ5としてベークライト円筒を用い、
熱収縮チユーブ4の突出長さLと円筒バリヤ5の
突出長さとを、両者同一の突出長さに保持しな
がら変化させるとともに、円筒バリヤ5の内径を
変化させ、かつ正極性および負極性のインパルス
を印加した場合における閃絡値特性の実験結果
は、横軸に熱収縮チユーブ4および円筒バリヤ5
の突出長さL,、縦軸に50%インパルスフラツ
シユオーバ電圧50%F.O.Vをとつた第5図におい
て、曲線A(正極性インパルス印加(以下「正極
性」という)、円筒バリヤ内径(以下「内径」と
いう)60m/m)、B(正極性、内径100m/
m)、C(正極性,内径140m/m)、D(負極性
インパルス印加(以下「負極性」という)、内径
60m/m)、E(負極性、内径80m/m)、F(負
極性、内径100m/m)、G(負極性、内径
120m/m)およびH(負極性、内径140m/m)
で示すようになつた。 Furthermore, as in the case of Fig. 3, a rectangular (5 x 50 m/m) copper rod is used as the high voltage conductor 1, and a grounded rectangular (300 m/m) hole 3 with a hole diameter of 170 m/m is used as the earth potential wall 2. x 300 m/m) using an iron plate, using an ethylene propylene tube having a thickness of 2 to 3 m/m as the heat shrink tube 4, and using a Bakelite cylinder as the cylindrical barrier 5,
The protrusion length L of the heat-shrinkable tube 4 and the protrusion length of the cylindrical barrier 5 are changed while keeping them both at the same protrusion length, and the inner diameter of the cylindrical barrier 5 is changed, and positive and negative impulses are generated. The experimental results of the flashover value characteristics when .
In Fig. 5, in which the vertical axis shows the protrusion length L, and the 50% impulse flashover voltage 50% FOV, curve A (positive polarity impulse application (hereinafter referred to as "positive polarity"), cylindrical barrier inner diameter (hereinafter referred to as "positive polarity"), B (positive polarity, inner diameter 100m/m), B (positive polarity, inner diameter 100m/m)
m), C (positive polarity, inner diameter 140 m/m), D (negative polarity impulse application (hereinafter referred to as "negative polarity"), inner diameter
60m/m), E (negative polarity, inner diameter 80m/m), F (negative polarity, inner diameter 100m/m), G (negative polarity, inner diameter
120m/m) and H (negative polarity, inner diameter 140m/m)
It became as shown in .
したがつて、円筒バリヤ5の内径の変化によつ
て絶縁耐性がバラつくか熱収縮チユーブ4および
円筒バリヤ5の突出長さL,が壁2の孔径Φ=
170m/mと等しくなることにより、正極性およ
び負極性のインパルスに対して飽和することが判
る。なお、両者の突出長さL,が孔径Φより大
になると多少耐圧が低下しているものも見受けら
れるが、飽和するものと考えるべきであり、また
インパルスの正極性および負極性の影響もないと
考えられる。 Therefore, whether the insulation resistance varies due to a change in the inner diameter of the cylindrical barrier 5 or the protruding length L of the heat-shrinkable tube 4 and the cylindrical barrier 5 depends on the hole diameter Φ of the wall 2
It can be seen that by being equal to 170 m/m, saturation is achieved for positive and negative polarity impulses. Note that when the protrusion length L of both becomes larger than the hole diameter Φ, the withstand pressure is seen to decrease somewhat, but it should be considered that it is saturated, and there is no effect of the positive or negative polarity of the impulse. it is conceivable that.
第6図および第7図は本発明に係る絶縁装置の
第2実施例の正面図および側断面図である。この
実施例のものは、前述した第1実施例のものにお
いて円筒バリヤ5の外周に、更らにベークライト
により円筒状に形成された第2の円筒バリヤ6を
同心状に嵌装し円筒バリヤを2重にしたものであ
り、他の構成は第1実施例のものと同様であるの
で、同一機能を奏する構成部材には同一符号を付
しその説明を省略する。 6 and 7 are a front view and a side sectional view of a second embodiment of the insulating device according to the present invention. In this embodiment, a second cylindrical barrier 6 made of Bakelite and formed into a cylindrical shape is fitted concentrically on the outer periphery of the cylindrical barrier 5 in the first embodiment described above. Since this is a double structure and the other configurations are the same as those of the first embodiment, the same reference numerals are given to the constituent members that perform the same functions, and the explanation thereof will be omitted.
この第2実施例のものの閃絡値特性の実験結果
は、高圧導体1、孔3を有する壁2、熱収縮チユ
ーブ4および第1の円筒バリヤ5等を第3図の場
合とほぼ同様に設定し、熱収縮チユーブ4および
第1、第2の円筒バリヤ5,6を、三者同一の突
出長さに保持しながら、突出長さL,を変化さ
せるとともに、第1、第2の円筒バリヤ5,6の
内径を変化させ、かつ正極性および負極性のイン
パルスを印加させた場合、横軸に熱収縮チユーブ
4および第1、第2の円筒バリヤ5,6の突出長
さL,、縦軸に50%インパルスフラツシユオー
バ電圧50%F.O.Vをとつた第8図において、曲線
A(正極性インパルス印加(以下「正極性」とい
う)、第1および第2の円筒バリヤの内径(以下
「各内径」という)80,100m/m)、B(正極
性、各内径90,110m/m)、C(正極性、各内径
100,120m/m)、D(負極性インパルス印加
(以下「負極性」という)、各内径60,80m/
m)、E(負極性、各内径90,110m/m)および
F(負極性、各内径120,140m/m)で示すよう
につた。 The experimental results of the flashover value characteristics of this second embodiment show that the high voltage conductor 1, the wall 2 having the hole 3, the heat shrink tube 4, the first cylindrical barrier 5, etc. are set almost the same as in the case of FIG. While keeping the heat shrink tube 4 and the first and second cylindrical barriers 5 and 6 at the same protrusion length, the protrusion length L is changed, and the first and second cylindrical barriers are When the inner diameters of the tubes 5 and 6 are changed and impulses of positive and negative polarity are applied, the horizontal axis represents the protrusion length L of the heat shrink tube 4 and the first and second cylindrical barriers 5 and 6, and the vertical axis In Fig. 8, with a 50% impulse flashover voltage and 50% FOV on the axis, curve A (positive polarity impulse application (hereinafter referred to as "positive polarity"), inner diameter of the first and second cylindrical barriers (hereinafter referred to as "each (inner diameter) 80, 100m/m), B (positive polarity, each inner diameter 90, 110m/m), C (positive polarity, each inner diameter
100, 120m/m), D (negative polarity impulse application (hereinafter referred to as "negative polarity"), each inner diameter 60, 80m/
m), E (negative polarity, each inner diameter 90, 110 m/m) and F (negative polarity, each inner diameter 120, 140 m/m).
したがつて第2実施例のものの場合は、第5図
で示される実験例のものと同様に、第1および第
2の円筒バリヤ5,6の内径の変化により絶縁耐
圧がバラつくが3者の突出長さL,が孔径Φ=
170m/mと等しくなることにより、正極性イン
パルスおよび負極性インパルスのいずれに対して
も飽和すること等が判るとともに、円筒バリヤを
2重とすることによつて円筒バリヤを1重とした
ものより耐圧が大きくなることが判る。 Therefore, in the case of the second embodiment, as in the experimental example shown in FIG. The protrusion length L, is the hole diameter Φ=
170m/m, it can be seen that both positive polarity impulses and negative polarity impulses are saturated, and by making the cylindrical barrier double, it is more effective than a single cylindrical barrier. It can be seen that the withstand pressure increases.
第9図および第10図は本発明に係る絶縁装置
の第3実施例の正面図および側断面図である。こ
の実施例のものは、前述した第2実施例のものに
おいて第2の円筒バリヤ6の外周に、ベークライ
トにより円筒状に形成された第3の円筒バリヤ7
を同心状に嵌装し円筒バリヤを3重にしたもので
あり、他の構成は第2実施例のものと同様である
ので、同一機能を奏する構成部材には同一符号を
付しその説明を省略する。 9 and 10 are a front view and a side sectional view of a third embodiment of an insulating device according to the present invention. This embodiment has a third cylindrical barrier 7 formed in a cylindrical shape from Bakelite on the outer periphery of the second cylindrical barrier 6 in the second embodiment described above.
The cylindrical barriers are fitted concentrically and the cylindrical barriers are triple layered.The other structure is the same as that of the second embodiment, so the same reference numerals are given to the constituent members that perform the same function, and the explanation thereof will be explained below. Omitted.
この第3実施例のものと前述した第1、第2実
施例のものとの閃絡値特性の比較実験結果は、高
圧導体1および孔3を有するアース電位の壁2を
第2実施例の場合とほぼ同様に設定し、熱収縮チ
ユーブ4および第1、第2、第3の円筒バリヤ
5,6,7を、4者同一の突出長さに保持しなが
ら、その突出長さL,を変化させた場合、横軸
に熱収縮チユーブ4および第1、第2、第3の円
筒バリヤ5,6,7の突出長さL,、縦軸に50
%インパルスフラツシユオーバ電圧50%F.O.Vを
とつた第11図において、円筒バリヤを1重にし
たものは曲線A(円筒バリヤ5の内径(以下「内
径」という)80m/m)、B(内径100m/m)お
よびC(内径120m/m)に示すようになり、ま
た円筒バリヤを2重にしたものは曲線D(第1、
第2の円筒バリヤ5,6の内径(以下「各内径」
という)80,100m/m)、E(各内径90,
110m/m)およびF(各内径100,120m/m)
に示すようになり、さらに円筒バリヤを3重にし
たものは曲線G(第1、第2、第3の円筒バリヤ
5,6,7の内径80,100,120m/m)に示すよ
うになつた。 The results of a comparison experiment of the flashover value characteristics of this third embodiment and those of the first and second embodiments described above show that the high voltage conductor 1 and the earth potential wall 2 having holes 3 are Setting the heat shrink tube 4 and the first, second, and third cylindrical barriers 5, 6, and 7 in almost the same way as in the case, while maintaining the same protrusion length L, When changed, the horizontal axis shows the protrusion length L of the heat shrink tube 4 and the first, second, and third cylindrical barriers 5, 6, 7, and the vertical axis shows 50
In Figure 11, which has a FOV of 50% impulse flashover voltage, curves A (inner diameter of cylindrical barrier 5 (hereinafter referred to as "inner diameter") 80 m/m) and B (inner diameter 100 m) are for a single cylindrical barrier. /m) and C (inner diameter 120m/m), and the curve D (first,
The inner diameter of the second cylindrical barriers 5 and 6 (hereinafter referred to as "each inner diameter")
) 80, 100m/m), E (each inner diameter 90,
110m/m) and F (each inner diameter 100, 120m/m)
In addition, a triple layered cylindrical barrier is shown in curve G (the inner diameters of the first, second, and third cylindrical barriers 5, 6, and 7 are 80, 100, and 120 m/m). Ta.
したがつて、円筒バリヤの数を増加させること
により絶縁耐圧を向上させ得ることが判るととも
に、いずれの実施例のものの場合においても、絶
縁物かなる熱収縮チユーブ4、円筒バリヤ5,
6,7の端部と壁面2aとの間隔,Lが壁2の
孔径Φの同等以上1.5倍以下では良好な耐電圧特
性を示すことが実験により判明した。 Therefore, it can be seen that the dielectric strength can be improved by increasing the number of cylindrical barriers, and in any of the embodiments, the heat shrinkable tube 4, the cylindrical barrier 5, which is made of an insulator,
It has been found through experiments that when the distance L between the end portions 6 and 7 and the wall surface 2a is equal to or more than 1.5 times the hole diameter Φ of the wall 2, good withstand voltage characteristics are exhibited.
なお、上述した各実施例において、熱収縮チユ
ーブを用いずに円筒バリヤのみを1〜3重と変え
た場合の耐圧特性は、熱収縮チユーブを併用した
場合と殆んど変らなかつた。 In addition, in each of the above-mentioned examples, when the cylindrical barrier alone was changed to 1 to 3 layers without using the heat shrink tube, the pressure resistance characteristics were almost the same as when the heat shrink tube was used in combination.
以上の各実施例から判るように、電気機器にお
けるアース電位の壁2の孔3を遊貫する高圧導体
1を絶縁するには、電気機器に要求される絶縁階
級に対応せしめて、熱収縮チユーブ4のみ、1
重、2〜3重の円筒バリヤと任意に選択して絶縁
装置を構成することができる。なお、円筒バリヤ
を2重にしたものと3重にしたものとでは、第1
1図から判るように、あまり差がない故高耐圧に
するには2重円筒バリヤものをコスト面から選ぶ
のも良い。 As can be seen from the above embodiments, in order to insulate the high voltage conductor 1 that loosely passes through the hole 3 in the wall 2 at earth potential in electrical equipment, a heat shrink tube is used to 4 only, 1
The insulating device can be constructed by arbitrarily selecting a cylindrical barrier with two or three layers. Note that the cylindrical barrier is double-layered and triple-layered.
As can be seen from Figure 1, there is not much difference, so in order to achieve high pressure resistance, it is better to choose a double cylindrical barrier type from a cost perspective.
第12図および第13図は、前述した各実施例
の絶縁装置における円筒バリヤの支持構造を、2
重としたものを例にとつて示したものである。す
なわち、円筒バリヤの支持は、第1の円筒バリヤ
5と第2の円筒バリヤ6との間における壁2の孔
3と対応する位置に絶縁物からなる曲板状の複数
のスペース8を介装せしめ、両者を所定間隔(例
えば5m/m)離隔して同心状に設け、第2の円
筒バリヤ6を、壁2にボルトとナツトからなる締
付具9により取付けた絶縁物からなる複数の支持
部材10により行なわれる。 FIG. 12 and FIG. 13 show the support structure of the cylindrical barrier in the insulating device of each of the embodiments described above.
This is an example of a heavy weight. That is, the cylindrical barrier is supported by interposing a plurality of curved plate-shaped spaces 8 made of an insulating material at positions corresponding to the holes 3 in the wall 2 between the first cylindrical barrier 5 and the second cylindrical barrier 6. The second cylindrical barrier 6 is attached to the wall 2 by a plurality of supports made of insulators, and the second cylindrical barrier 6 is attached to the wall 2 by fasteners 9 made of bolts and nuts. This is done by member 10.
以上の如く本発明は、アース電位の壁の孔を遊
貫する高圧導体を絶縁するものにして、前記高圧
導体に筒状の絶縁物を前記壁の孔を挿通するが如
くして嵌装するとともに、この絶縁物の端部と壁
面との間隔を壁の孔径と同等以上1.5倍以下とし
た絶縁装置であるから、孔径に対する絶縁物の突
出長さを適宜にすることができ、ひいては電気機
器の縮小化を行なうことができる。また、絶縁装
置の構成を簡単にすることができるとともにその
価格を大幅に低減することができる等の効果を奏
する。 As described above, the present invention insulates a high-voltage conductor passing loosely through a hole in a wall at earth potential, and fitting a cylindrical insulator to the high-voltage conductor so as to pass through the hole in the wall. In addition, since this is an insulating device in which the distance between the end of the insulator and the wall surface is equal to or more than 1.5 times the hole diameter of the wall, the protruding length of the insulator can be set appropriately for the hole diameter, and as a result, electrical equipment can be reduced. Moreover, the structure of the insulating device can be simplified and its cost can be significantly reduced.
第1図および第2図はそれぞれ本発明の第1実
施例の正面図および側断面図、第3図、第4図お
よび第5図はそれぞれ第1実施例のものの閃絡値
特性の説明図、第6図および第7図はそれぞれ本
発明の第2実施例の正面図および側断面図、第8
図は第2実施例のものの閃絡値特性の説明図、第
9図および第10図はそれぞれ本発明の第3実施
例の正面図および側断面図、第11図は第1、第
2、第3実施例のものの閃絡値特性を比較した説
明図、第12図は本発明に係る絶縁装置における
円筒バリヤの支持構造の側断面図、第13図は第
12図におけるX−X線断面図である。
1……高圧導体、2……壁、3……孔、4……
熱収縮チユーブ、5,6,7……円筒バリヤ。
1 and 2 are respectively a front view and a side sectional view of the first embodiment of the present invention, and FIGS. 3, 4, and 5 are explanatory diagrams of flashover value characteristics of the first embodiment, respectively. , FIG. 6 and FIG. 7 are respectively a front view and a side sectional view of the second embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the flashover value characteristics of the second embodiment, FIGS. 9 and 10 are a front view and a side sectional view of the third embodiment of the present invention, respectively, and FIG. An explanatory diagram comparing the flashover value characteristics of the third embodiment, FIG. 12 is a side sectional view of the support structure of the cylindrical barrier in the insulating device according to the present invention, and FIG. 13 is a cross section taken along the line X-X in FIG. 12. It is a diagram. 1... High voltage conductor, 2... Wall, 3... Hole, 4...
Heat shrink tube, 5, 6, 7...Cylindrical barrier.
Claims (1)
縁するものにして、前記高圧導体に筒状の絶縁物
を前記壁の孔を挿通するが如くして嵌装するとと
もに、この絶縁物の端部と壁面との間隙を壁の孔
径の同等以上1.5倍以下としたことを特徴とする
高圧導体の絶縁装置。1. A high-voltage conductor passing loosely through a hole in a wall at earth potential is insulated, and a cylindrical insulator is fitted to the high-voltage conductor so as to pass through the hole in the wall, and the insulator is An insulating device for a high voltage conductor, characterized in that the gap between the end and the wall is equal to or more than 1.5 times the diameter of the hole in the wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3822881A JPS57152620A (en) | 1981-03-17 | 1981-03-17 | Device for insulating high voltage conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3822881A JPS57152620A (en) | 1981-03-17 | 1981-03-17 | Device for insulating high voltage conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57152620A JPS57152620A (en) | 1982-09-21 |
JPS6112325B2 true JPS6112325B2 (en) | 1986-04-08 |
Family
ID=12519444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3822881A Granted JPS57152620A (en) | 1981-03-17 | 1981-03-17 | Device for insulating high voltage conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57152620A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62167506U (en) * | 1986-04-15 | 1987-10-24 | ||
JPS63209A (en) * | 1986-05-25 | 1988-01-05 | 鋤柄農機株式会社 | Groove forming apparatus in deep layer fertilizer |
JPH0416963Y2 (en) * | 1986-05-19 | 1992-04-16 | ||
JPH0449856Y2 (en) * | 1987-02-26 | 1992-11-25 |
-
1981
- 1981-03-17 JP JP3822881A patent/JPS57152620A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62167506U (en) * | 1986-04-15 | 1987-10-24 | ||
JPH0416963Y2 (en) * | 1986-05-19 | 1992-04-16 | ||
JPS63209A (en) * | 1986-05-25 | 1988-01-05 | 鋤柄農機株式会社 | Groove forming apparatus in deep layer fertilizer |
JPH0449856Y2 (en) * | 1987-02-26 | 1992-11-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS57152620A (en) | 1982-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4366528A (en) | Switchboard housing apparatus | |
US3487158A (en) | Power line support system using bushing insulators for narrow right-of-way | |
US4370514A (en) | High-voltage bushing with double-layered potential control inserts | |
JPS6112325B2 (en) | ||
US4071882A (en) | Structure for electrical interface | |
US2246904A (en) | Insulator including clamping means for supporting high potential conductors | |
JP3424994B2 (en) | Gas-insulated equipment, gas-insulated switchgear, and gas-insulated switchgear directly connected to gas-insulated busbars and cables | |
US3519733A (en) | Bus structure comprising an insulating support and a coated electric bus bar | |
JPH0629853Y2 (en) | Insulation spacer for high voltage insulated wire | |
JPH0638689B2 (en) | Gas insulation equipment | |
CN220122467U (en) | Air insulation metering cabinet and switch cabinet combining structure | |
JP4545887B2 (en) | Mold type branch switchgear | |
US11804686B2 (en) | Compact auxiliary connector | |
CN220172597U (en) | Switch cabinet | |
JP2506724Y2 (en) | Gas equipment container | |
JPS6041764Y2 (en) | closed switchboard | |
JP2752681B2 (en) | Gas insulated three-phase collective bus | |
JPH0537611Y2 (en) | ||
JPS5836103A (en) | Gas insulated switching unit | |
JPH0116269Y2 (en) | ||
JPH0314901Y2 (en) | ||
JPH0610666Y2 (en) | Gas insulation capacitor for three phases | |
JP3011516B2 (en) | Insulated conductors and connections of insulated conductors | |
US3178507A (en) | Selectively insulated isolated phase bus | |
JPS6245466Y2 (en) |