JPS61122599A - Method of melting spent nuclear fuel - Google Patents

Method of melting spent nuclear fuel

Info

Publication number
JPS61122599A
JPS61122599A JP59245669A JP24566984A JPS61122599A JP S61122599 A JPS61122599 A JP S61122599A JP 59245669 A JP59245669 A JP 59245669A JP 24566984 A JP24566984 A JP 24566984A JP S61122599 A JPS61122599 A JP S61122599A
Authority
JP
Japan
Prior art keywords
corrosion
gas
nox
nuclear fuel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59245669A
Other languages
Japanese (ja)
Inventor
大久保 勝夫
大類 徹也
正義 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59245669A priority Critical patent/JPS61122599A/en
Publication of JPS61122599A publication Critical patent/JPS61122599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は使用済核燃料の後処理技術に関するものである
。さらに詳述すれば、使用済核燃料を硝酸で溶解する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a technology for post-processing spent nuclear fuel. More specifically, the present invention relates to a method of dissolving spent nuclear fuel with nitric acid.

(従来技術) 使用済核燃料溶解槽では使用による核分裂で消耗した1
35 Uおよび核分裂の結果、生成した各種の核分裂生
成¥!IJ(FP)を含む使用済核燃料を硝酸により溶
解している。ここで、含まれる核分裂生成物には数多く
の化学種があり、その中には溶解する上で困難な問題を
引き起こすものもある。
(Prior art) In the spent nuclear fuel melting tank, 1
35 U and various fission products generated as a result of nuclear fission! Spent nuclear fuel containing IJ (FP) is dissolved with nitric acid. There are many chemical species of fission products involved, some of which pose difficult problems in dissolving.

例えば、プルトニウム、セリウム、ルテニウム、ヨー素
等の高い酸化力を有する熔解イオンやパラジウム、ルテ
ニウム、ロジウム等の貴金属系の不溶解残渣はいずれも
ステンレス網で構成された溶解槽の腐食電位を高め、こ
こでの硝酸濃度から予想される以上の激しい腐食をひき
おこす。また、不溶解残渣は腐食問題以外にも閉塞トラ
ブルやプロセス下流の抽出工程でエマルジョン生成の原
因の一つとなりウラン及びプルトニウムの抽出操作を阻
害する。更に、ルテニウムやヨー素等の気化しやすい核
分裂生成物は気相中へその一部あるいは大部分が移行し
、この結果、生ずる放射能除染対策に多大の努力を要す
る。
For example, dissolved ions with high oxidizing power, such as plutonium, cerium, ruthenium, and iodine, and undissolved residues of noble metals, such as palladium, ruthenium, and rhodium, increase the corrosion potential of the melting tank made of stainless steel mesh. This causes more severe corrosion than expected from the nitric acid concentration. In addition to corrosion problems, undissolved residues also cause blockage problems and emulsion formation in the downstream extraction step of the process, impeding uranium and plutonium extraction operations. Furthermore, fission products that are easily vaporized, such as ruthenium and iodine, are partially or largely transferred into the gas phase, and as a result, great efforts are required to decontaminate the resulting radioactivity.

(発明が解決しようする問題点) 本発明は使用済核燃料を硝酸を用いて溶解する際、ステ
ンレス網製溶解装置の腐食を抑制すること、不溶解残渣
を少なくすること、気化成分の分離回収を容易にするこ
となどである。
(Problems to be Solved by the Invention) The present invention aims to suppress corrosion of a stainless steel mesh melting device, reduce undissolved residue, and separate and recover vaporized components when melting spent nuclear fuel using nitric acid. Things like making things easier.

(問題点を解決する為の手段) 使用済核燃料を硝酸を用いて溶解するに際して、NOx
ガスを強制添加することを特徴とする使用済核燃料の溶
解方法である。
(Means to solve the problem) When dissolving spent nuclear fuel using nitric acid, NOx
This method of melting spent nuclear fuel is characterized by forcibly adding gas.

本発明にいう使用済核燃料とは硝酸等で溶解して再利用
をはかることができるものをいう。
Spent nuclear fuel as used in the present invention refers to fuel that can be reused by dissolving it with nitric acid or the like.

硝酸としては濃度が高い方が使用済核燃料自身の溶解は
早くなるが、それ以上に装置の腐食が激しくなるので、
該装置内では2〜6規定(以下、隼にNと記す。)であ
り、更に好ましくは3〜4Nである。本発明に用いるN
OxガスはNo、No2及びこれらの重合体のN z 
O4,N z O3を意味し、更にこれらの混合ガスで
も同様の効果があるつ又、これらのガスには02やN2
あるいはその他の不活性ガスが混合されていてもよい。
The higher the concentration of nitric acid, the faster the spent nuclear fuel will dissolve, but the corrosion of the equipment will be more severe.
The pressure inside the device is 2 to 6 normal (hereinafter referred to as N), and more preferably 3 to 4 N. N used in the present invention
Ox gas is No, No2 and Nz of these polymers.
It means O4, NzO3, and even a mixture of these gases has the same effect, and these gases also include O2 and N2.
Alternatively, other inert gases may be mixed.

NOxガスの必要量は硝酸濃度、温度、流動の有無、共
存化学種の種類と濃度、それらのイオン価数(これらは
核燃料の燃焼度によっても変化する)あるいは使用NO
xガスの種類等により変化す −るので、−律にこれを
規定することはできない。
The required amount of NOx gas depends on the nitric acid concentration, temperature, presence or absence of flow, types and concentrations of coexisting chemical species, their ion valences (these also change depending on the burnup of the nuclear fuel), or the NOx used.
Since it varies depending on the type of gas, etc., it is not possible to specify it in a certain way.

本発明者等はステンレス網製溶解装置の腐食環境につい
て鋭意検討した結果、少なくともステンレス鋼の腐食電
位が約0.9V (vs、5cE)以下になるようにN
Oxガスを強制添加すればよいことを見出した。ステン
レス鋼の腐食電位が約0.9’+         V
 (vs、5cE)以下であれば、ステンレス鋼の腐食
度は年間の許容限界である0、1mm以下に押さえるこ
とができるからである。(尚、これはステンレス鋼の比
重を7.9としてg / m ”・hrで表わした腐食
度と次の関係にある。即ち、1g7m”−hr=1.1
mm/Y)一方、NOxガスの添加量の上限値は過剰N
Oxガスを処理する付帯設備の容量で規制される。
As a result of intensive study on the corrosive environment of stainless steel mesh melting equipment, the inventors of the present invention found that N
It has been found that it is sufficient to forcibly add Ox gas. The corrosion potential of stainless steel is approximately 0.9'+V
(vs, 5cE) or less, the degree of corrosion of stainless steel can be kept below the annual permissible limit of 0.1 mm. (Note that this has the following relationship with the degree of corrosion expressed in g/m"・hr, assuming that the specific gravity of stainless steel is 7.9. That is, 1g7m"-hr=1.1
mm/Y) On the other hand, the upper limit of the amount of NOx gas added is
It is regulated by the capacity of ancillary equipment that processes Ox gas.

NOxガスを溶解液に添加する方法としては、その装置
内に加圧下で気相部に供給してもよいが、溶解液中に直
接吹き込むのが効果が大きくより好ましい。一般に硝酸
により金属類を溶解する際は硝酸の分解によってNOx
ガスが発生するが、このことは使用済核燃料でも同様で
ある。したがって、NOxガスの添加は溶解初期のNO
xガスが盛んに発生しているときは敢えて実施しなくて
もよい。
As a method for adding NOx gas to the solution, it may be supplied to the gas phase portion of the apparatus under pressure, but it is more preferable to directly blow it into the solution because it is more effective. Generally, when metals are dissolved with nitric acid, NOx is released due to the decomposition of the nitric acid.
Gas is generated, and this is also the case with spent nuclear fuel. Therefore, the addition of NOx gas is
It is not necessary to carry out this procedure when x gas is actively generated.

(作用) NOxガスの添加によって、ステンレス網製の溶解装置
の腐食が抑制できる機構は多くの要素が絡み合っている
ので一概にはこれを説明することはできないが、高い酸
化力を持つ高次イオン種を低次イオン種へ還元すること
、残渣を可溶化−溶解させ、不溶解残渣によって構成さ
れる高い腐食電位を消滅させることなどが考えられる。
(Effect) The mechanism by which the corrosion of stainless steel melting equipment is suppressed by the addition of NOx gas cannot be explained unambiguously because many factors are intertwined, but higher-order ions with high oxidizing power Possible methods include reducing the species to lower ionic species, solubilizing and dissolving the residue, and eliminating the high corrosion potential constituted by the undissolved residue.

不溶解残渣は主として貴金属元素から形成されており、
NOxによりニトロシル錯体を形成させることによって
可溶化する。
The insoluble residue is mainly formed from noble metal elements,
It is solubilized by forming a nitrosyl complex with NOx.

気化し易い成分としては主にルテニウムとヨー素がある
。ルテニウムは硝酸中で酸化性イオン(Ce”、Cr′
h、硝酸イオン等)によってRu Oaに酸化される。
The main components that easily vaporize are ruthenium and iodine. Ruthenium has oxidizing ions (Ce”, Cr’) in nitric acid.
h, nitrate ions, etc.) to RuOa.

Ru Oaは沸点が100℃と低く一部分は気化し、気
相部へ飛散するところを本発明のNOxによってRu 
O4までの酸化が抑制されRuO□までの酸化に止まり
、溶解液側に残留する。
Ru Oa has a low boiling point of 100°C, and a portion of it vaporizes and scatters into the gas phase, where the Ru Oa is removed by the NOx of the present invention.
The oxidation up to O4 is suppressed, and the oxidation stops at RuO□, which remains on the solution side.

ヨー素は+03−イオンで存在していたものがNOxに
よりI2に還元され、気相中に移行し、?8M液側には
残留しない。したがって、ヨー素は気相部を回収して処
理に付される。
Iodine, which existed as a +03- ion, is reduced to I2 by NOx, moves into the gas phase, and ? No residue remains on the 8M liquid side. Therefore, iodine is collected in the gas phase and subjected to treatment.

以下、実施例により本願発明を具体的に説明するが本願
発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1,2、比較例1,2 溶解槽環境下で各種金属イオンを複合添加した3N硝酸
沸騰下でのステンレス網(31oNb網)の腐食度を、
NOxガスの添加の有無で比較した。ここでの試験条件
の中、セリウムイオン及びルテニウムイオンにトロシル
ルテニウムイオンとして添加)は下記条件下でのオリゲ
ンコード値より求めた濃度によった。
Examples 1 and 2, Comparative Examples 1 and 2 The degree of corrosion of stainless steel mesh (31oNb mesh) under boiling 3N nitric acid mixed with various metal ions in a dissolution tank environment was
A comparison was made with and without the addition of NOx gas. Among the test conditions here, the concentration of cerium ion and ruthenium ion (added as trosylruthenium ion) was determined from the Origen code value under the following conditions.

核燃料   PWR燃料(UO□ 3.3%)燃焼度 
  40.000  MwD/l−U中性子密度 4.
07 x 13”n/cm”・s e c使用後冷却期
間  160日間 溶解槽液量    800 It/B。
Nuclear fuel PWR fuel (UO□ 3.3%) burnup
40.000 MwD/l-U neutron density 4.
07 x 13"n/cm"・sec Cooling period after use: 160 days Dissolution tank liquid volume: 800 It/B.

U仕込量     400kg/B。U preparation amount: 400kg/B.

ここで用いた3 1 ONb網は溶解装置を構成するス
テンレス網の一例であり、その化学組成(各、重量%)
はC: 0.010. S i : 0.26Mn:0
.67、P:0.019.S:0.001Cr : 2
4.85.Ni : 20.27゜Nb : 0.24
であり、650℃ x  2hrsの鋭敏化熱処理を加
えて供試した。試験は第1図に示す還流コンデンサー付
き腐食試験装置の液相および気相部に試験片を設置し、 沸騰7hrs  x  1パツチ浸漬し、試験前後の重
量変化より腐食度を求めた。此の試験での比液量は25
cc/cm2である。試験結果を第1表に示す。
The 3 1 ONb net used here is an example of a stainless steel net constituting the melting device, and its chemical composition (each, weight %)
is C: 0.010. Si: 0.26Mn:0
.. 67, P: 0.019. S: 0.001Cr: 2
4.85. Ni: 20.27°Nb: 0.24
The sample was subjected to sensitization heat treatment at 650°C for 2 hours. In the test, a test piece was placed in the liquid phase and gas phase parts of a corrosion testing apparatus equipped with a reflux condenser shown in Fig. 1, and 1 patch was immersed in boiling water for 7 hours, and the degree of corrosion was determined from the change in weight before and after the test. The specific liquid volume in this test was 25
It is cc/cm2. The test results are shown in Table 1.

これより、NO□ガスの吹き込みはステンレスTjr4
(310N bw4) ノFllt−*J < 抑制t
ルタケでなく、気相部へのRuの飛散をも防止する効果
のあることがわかる。Ruは共存する酸化性イオン(C
e”、  Ce”、沸騰硝酸)によってRuO4に酸化
される。これの沸点が低い(100℃)為に、ここでの
硝酸(3N)の沸点(104℃)ではその一部が気化し
、気相部容器壁面上でRuO□に還元されることによっ
て黒色付着物を生成する。N Oxガスの吹き込みはR
ub、への酸化を効果的に防止する作用がある。また、
ここでの腐食は腐食電位約0.9Vを越える場合に著し
いのに対し、N Ozガスの吹き込みによって腐食電位
が約0.9v以下になった場合には防食されることがわ
かる。
From this, the blowing of NO□ gas is performed using stainless steel Tjr4.
(310N bw4) ノFllt-*J < Suppression t
It can be seen that it is effective in preventing not only Rutake but also Ru from scattering into the gas phase. Ru coexists with oxidizing ions (C
oxidized to RuO4 by boiling nitric acid). Since the boiling point of this is low (100℃), a part of it vaporizes at the boiling point of nitric acid (3N) (104℃) and is reduced to RuO□ on the wall of the gas phase container, resulting in a black color. Generates a kimono. The blowing of NOx gas is R.
It has the effect of effectively preventing oxidation to ub. Also,
It can be seen that the corrosion here is significant when the corrosion potential exceeds about 0.9V, whereas corrosion is prevented when the corrosion potential is reduced to about 0.9V or less by blowing NOz gas.

実施例3〜6、比較例3〜6 溶解層の環境模擬実験をさらに押し進めて検討した結果
を大2表に示す。環境条件の選定は実施例1と同し手順
によったが、ここでは試験対象としてCe、Ruの他に
l0j−イオンを、また、貴金属系不溶解残渣としてR
h金属粉末を、さらにPuイオン(Pu”)の腐食性を
みる為にys−を添加した。酸化性イオンが共存する硝
酸中でのステンレス網の腐食に付いて検討した結果、こ
こでの腐食は第2図に示すように共存化学種の種類に関
係なく、ステンレス網の腐食電位で一義的に整理できる
ことを見出した。この知見にもとづいて、Pu4+/P
、3+の酸化還元電位に最も近似した値を持つvS゛/
y4−系でP、の腐食性を検討したものである。
Examples 3 to 6, Comparative Examples 3 to 6 Table 2 shows the results of a further study of the environment simulation experiment for the dissolved layer. The selection of environmental conditions followed the same procedure as in Example 1, but here, in addition to Ce and Ru, 10j- ions were used as test objects, and R was used as a noble metal-based insoluble residue.
In addition, ys- was added to the h metal powder to examine the corrosivity of Pu ions (Pu'').As a result of examining the corrosion of stainless steel mesh in nitric acid where oxidizing ions coexist, it was found that the corrosion here As shown in Fig. 2, we found that the corrosion potential of the stainless steel mesh can be used to determine the corrosion potential of the stainless steel mesh, regardless of the types of coexisting chemical species.
, vS゛/ with the value closest to the redox potential of 3+
This is a study of the corrosivity of P in the y4- system.

試験装置は実施例1と同様であるが、試験は8hrs、
テストを5バッチ繰り返した。8hrs、テスト中、試
験液の昇温に40分要するので沸騰時間は7hrs、2
0m1n、である。尚、比法量は臨界制限のある実機条
件を想定して4cc1cm”の少ない条件でテストした
。試験片は実施例1と同様であるが、ここでは溶体化熱
処理材を試験に供した。これらの試験結果を第2表に示
す。
The test equipment was the same as in Example 1, but the test was conducted for 8 hrs.
The test was repeated in 5 batches. 8 hrs. During the test, it takes 40 minutes to raise the temperature of the test solution, so the boiling time is 7 hrs.
0m1n. In addition, the specific amount was tested under conditions as small as 4 cc 1 cm, assuming the actual machine conditions with criticality limits.The test pieces were the same as in Example 1, but here, solution heat treated materials were used for the test. The test results are shown in Table 2.

この結果より、貴金属系不溶解やIO3−あるいはPu
模擬イオンが共存するより複雑な系でもNOxがスの効
果、すなわち腐食の軽減、気相へのRuの飛散防止が達
成されることがわかる。さらに実施例3−6では夜中に
溶存していたIO3−がNOxガスの添加によって液中
から消失することも示された。このことはNOxガスの
溶解生成物である亜硝酸によって103−イオンが12
へ還元され、沸騰下で気相中へ移行したためと考えられ
るが、放射能源となるヨー素を全て気相部へ集中させう
ることは、それだけ下流でのヨー素対策を容易にする効
果がある。
From this result, it is clear that noble metal-based insoluble, IO3- or Pu
It can be seen that even in a more complex system in which simulated ions coexist, the effect of NOx, that is, the reduction of corrosion and the prevention of Ru scattering into the gas phase, can be achieved. Furthermore, in Example 3-6, it was also shown that IO3-, which had been dissolved during the night, disappeared from the liquid by adding NOx gas. This means that 103- ions are converted to 12 by nitrous acid, which is a dissolved product of NOx gas.
It is thought that this is because the iodine was reduced to and transferred to the gas phase under boiling, but being able to concentrate all the iodine, which is a source of radioactivity, in the gas phase has the effect of making downstream iodine countermeasures easier. .

実施例3〜6では以上の諸効果がNOでも、またNO2
やN2O4でも同様に有効であり、さらに02が共存し
てもその効果に変りがないこともわかる。
In Examples 3 to 6, the above-mentioned effects can be obtained both with NO and with NO2.
It is also seen that 02 and N2O4 are equally effective, and the effect remains the same even when 02 coexists.

実施例7、比較例7 貴金属系不溶解残渣と接触した時のステンレス鋼のがル
パニック腐食について調査した。試験は第3図に示すよ
うに31 ONb試験片(実施例1と同じ試験片、65
0℃X 2 hrs、  鋭敏化熱処理して供試)にP
d板を接触させ、Cr’+ 500 rsW/ (lを
添加した3 N、  硝酸沸騰下でl 68 hrs 
、 ■ハツチ試験した。比液量は25cc/dである。
Example 7, Comparative Example 7 Lupanic corrosion of stainless steel when it came into contact with noble metal-based insoluble residue was investigated. The test was conducted using 31 ONb test piece (same test piece as in Example 1, 65 ONb test piece) as shown in FIG.
0°C x 2 hrs, sensitized heat treated (sample)
d plate was brought into contact with Cr'+ 500 rsW/(l) at 3 N, under boiling nitric acid for 68 hrs.
, ■Hatch test was conducted. The specific liquid amount is 25 cc/d.

試験結果を第3表に示す。The test results are shown in Table 3.

第3表より31 ONbステンレス鋼の腐食は貴金属(
P d 、)との接触によって1.8倍に加速されたが
、N O2ガスを吹き込むと予想外にPdの腐食が激増
しくNOxガス吹き込みによりPdの腐食度は約400
0倍に増大した)、これと接触していた3 1 ONb
ステンレス鋼の腐食は完全に防止された。ここでのP 
d’の腐食度はむしろ溶解と言うべき腐食速度であり、
NOxガスの吹き込みが不溶解残渣の一つであるPdの
溶解を大きく助けることがわかる。
From Table 3, 31 ONb stainless steel is corroded by precious metals (
The corrosion of Pd was accelerated by 1.8 times due to contact with Pd, ), but when NO2 gas was injected, the corrosion of Pd increased unexpectedly.The degree of corrosion of Pd increased by about 400
3 1 ONb that was in contact with this
Corrosion of stainless steel was completely prevented. P here
The corrosion degree of d' is rather a corrosion rate that should be called dissolution,
It can be seen that blowing NOx gas greatly helps dissolve Pd, which is one of the undissolved residues.

実施例8、比較例8.9 溶解時のNOx発生の経時的変化と腐食との関係を調べ
た。試験装置及び試験片は実施例1と同しであるが、試
験片は溶体化熱処理材として供試した。使用済燃料の溶
解は溶解初期に激しく起こり、中期、後期へと鎮静化し
、これに伴ってNOxガスの発生も低減しやがて終息す
る。NOxガスの発生が止まった時期の溶液には最も濃
度濃く各種のイオンおよび不溶解残渣等が存在するので
、この時期での腐食性がどのように変化するかはここで
の装置の腐食にとって重要である。このため1バッチ2
0hrs、の腐食試験時間を初期の4hrs、と中、後
期の164hrs、とに分け、それぞれの期間中に生じ
る腐食を分割して評価した。試験結果を第4゛表に示す
Example 8, Comparative Example 8.9 The relationship between the temporal change in NOx generation during dissolution and corrosion was investigated. The test equipment and test piece were the same as in Example 1, but the test piece was used as a solution heat treated material. The dissolution of spent fuel occurs violently in the early stages of dissolution, and subsides in the middle and late stages, and the generation of NOx gas decreases accordingly, eventually ending. Since the solution at the time when NOx gas generation has stopped has the highest concentration of various ions and undissolved residues, how the corrosivity changes during this time is important for the corrosion of the equipment here. It is. For this reason, 1 batch 2
The corrosion test time of 0 hrs was divided into an initial period of 4 hrs, and a middle and late period of 164 hrs, and the corrosion occurring during each period was divided and evaluated. The test results are shown in Table 4.

この結果、初期のNOxガスの吹き込みによって低下し
た腐食はNOxガスの吹き込みが中止されると再び上昇
することが示している。ステンレス鋼の腐食電位もまた
限界値として規定したおよそ0.9vを越えて腐食危険
電位に復帰した。ここで、NOx吹き込みを中止しても
、初期に吹き込んだNOxは溶液中に飽和して残存して
いるものと思われ、それにもかかわらず、腐食が復元し
たことは溶解槽の運転においてNOxガスの発生が止む
溶解終期において無視できぬ腐食の危険があることを示
している。実施例8に示すように溶解反応の後半におい
てNOxガスを強制添加することにより、この腐食問題
は解決される。
The results show that the corrosion that was reduced by the initial injection of NOx gas increases again when the injection of NOx gas is stopped. The corrosion potential of stainless steel also exceeded the limit value of approximately 0.9V and returned to the dangerous corrosion potential. Here, even if NOx injection is stopped, the initially blown NOx is thought to remain saturated in the solution, and despite this, the corrosion has been restored. This indicates that there is a non-negligible risk of corrosion at the final stage of dissolution, when the occurrence of corrosion stops. This corrosion problem is solved by forcibly adding NOx gas in the latter half of the dissolution reaction as shown in Example 8.

以上の実施例等で示されるように本願発明はNOxガス
の吹き込みという簡単な方法によって溶解槽でのステン
レス鋼機器の腐食防止、貴金属系不溶解残渣の溶解促進
ざらにRuの気化飛散の防止とヨー素の液中残留防止に
よる放射能対策の簡素化(一元化)という−石三鳥の効
果が期待できる。さらに、本願発明の特筆すべき特徴は
用いる物質(NOxガス)が溶解槽環境にとって異物質
ではないということであり、この為、系内反応や或いは
過剰NOxガスの処理系に大きな変更を加える必要がな
い。
As shown in the above examples, the present invention prevents corrosion of stainless steel equipment in a melting tank, promotes dissolution of undissolved precious metal residues, and prevents vaporization and scattering of Ru by a simple method of blowing NOx gas. This can be expected to have the ultimate effect of simplifying (unifying) radioactivity countermeasures by preventing iodine from remaining in the liquid. Furthermore, a noteworthy feature of the present invention is that the substance used (NOx gas) is not a foreign substance to the dissolution tank environment, and therefore there is no need to make major changes to the reaction within the system or the treatment system for excess NOx gas. There is no.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は腐食試験装置を示す。図中の番号は次のものを
示す。 1 −−−−−−一・−−−−−−−−N Oxガス吹
き込み口2−・−・・−−一−−−−−−−・テストピ
ース(気相)3 ・〜・−一−−−−−・・・テストピ
ース(液相)4−・−−−−−−一−−−−−−・ガラ
スフック5 ・−・−−−一−・−・コンデンサー6−
・・−・−・−一−−−・−・500mA!フラスコ7
−−−−−・−m−−−−−・−・マントルヒーター第
2図は沸騰3N硝酸中での31 ONb綱の腐食に及ぼ
す共存化学種の影響を電位で整理して示したものである
。 第3図はガルバニック腐食試験片を示したものである。 図中の番号は次のものを示す。 +11−・・−−−−−−−−−−−−N bステンレ
ス網(25mm長さx20mm幅x2mm厚さ) (21−−−−−−−−−P d金属板(20mm長さ
xlOmm幅xQ、5mm厚さ) 尚、両金属の接着面積比は31 ONb綱:Pd板とし
て10:4である。 へ 第1図 腐食電位(3Qhrs後) V (vs、5CE)第2
図 第3図
Figure 1 shows the corrosion test equipment. The numbers in the figure indicate the following. 1 ---------1・---------N Ox gas blowing port 2--・--・--1--Test piece (gas phase) 3 ・~・- 1--------...Test piece (liquid phase) 4---------1--Glass hook 5 ・-----1----Condenser 6-
・・・−・−1−−−・−・500mA! flask 7
-------・-m-------・-・Mantle heater Figure 2 shows the influence of coexisting chemical species on the corrosion of 31ONb steel in boiling 3N nitric acid, organized by potential. be. Figure 3 shows a galvanic corrosion test piece. The numbers in the figure indicate the following. +11-...-----------------N b Stainless steel mesh (25 mm length x 20 mm width x 2 mm thickness) (21----------P d Metal plate (20 mm length x lOmm (width
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 使用済核燃料を硝酸を用いて溶解するに際して、NO_
xガスを強制添加することを特徴とする使用済核燃料の
溶解方法。
When dissolving spent nuclear fuel using nitric acid, NO_
A method for melting spent nuclear fuel, characterized by forcibly adding x gas.
JP59245669A 1984-11-20 1984-11-20 Method of melting spent nuclear fuel Pending JPS61122599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245669A JPS61122599A (en) 1984-11-20 1984-11-20 Method of melting spent nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245669A JPS61122599A (en) 1984-11-20 1984-11-20 Method of melting spent nuclear fuel

Publications (1)

Publication Number Publication Date
JPS61122599A true JPS61122599A (en) 1986-06-10

Family

ID=17137053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245669A Pending JPS61122599A (en) 1984-11-20 1984-11-20 Method of melting spent nuclear fuel

Country Status (1)

Country Link
JP (1) JPS61122599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001224A1 (en) * 1987-07-29 1989-02-09 Hitachi, Ltd. Nuclear fuel reprocessing plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001224A1 (en) * 1987-07-29 1989-02-09 Hitachi, Ltd. Nuclear fuel reprocessing plant

Similar Documents

Publication Publication Date Title
EP2596502B1 (en) Reactor decontamination system and process
JP5651754B2 (en) Chemical decontamination agent-free chemical decontamination agent for removing metal surface-fixed radioactive contamination oxide film and chemical decontamination method using the same
JP2014044190A (en) Method for adhering noble metal to component member of nuclear power plant
JP2016161466A (en) Method of suppressing sticking of radioactive nuclide on atomic power plant constitution member
EP0416756A2 (en) Method for decontaminating a pressurized water nuclear reactor system
JPS61122599A (en) Method of melting spent nuclear fuel
JP6552892B2 (en) Method for attaching noble metals to structural members of nuclear power plants
US3222125A (en) Dissolution of nuclear aluminum-base fuel
JPS6034502B2 (en) Method for reducing plutonium
US3004823A (en) Method of separating neptunium by liquid-liquid extraction
McIntosh et al. The effect of metal species present in irradiated fuel elements on the corrosion of stainless steel in nitric acid
DelCul et al. Advanced head-end for the treatment of used LWR fuel
US3832439A (en) Method for the suppression of hydrogen during the dissolution of zirconium and zirconium alloys
US6623712B1 (en) Method for dissolving plutonium or a plutonium alloy and converting it into nuclear fuel
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
Sakurai et al. A study on the expulsion of iodine from spent-fuel solutions
Speranzini et al. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents
Hatcher Evaluation of some possible decontaminating reagents for the NRU reactor
JPH0789159B2 (en) Clad melting method during shutdown of pressurized water nuclear power plant
Walker Stability tests with actual Savannah River site radioactive waste
Afanas' ev et al. Examination of corrosion behavior of 08Kh14MF steel in solutions
Carter Jr Method for the suppression of hydrogen during the dissolution of zirconium and zirconium alloys
Jantzen Phosphate additions to borosilicate waste glass cause phase separation
Anstine et al. Dilute chemical decontamination program review
JP2017203707A (en) Chemical decontamination method