JPS61122559A - Instrument for measuring oxygen concentration - Google Patents

Instrument for measuring oxygen concentration

Info

Publication number
JPS61122559A
JPS61122559A JP59246879A JP24687984A JPS61122559A JP S61122559 A JPS61122559 A JP S61122559A JP 59246879 A JP59246879 A JP 59246879A JP 24687984 A JP24687984 A JP 24687984A JP S61122559 A JPS61122559 A JP S61122559A
Authority
JP
Japan
Prior art keywords
heater
oxygen
oxygen sensor
oxygen concentration
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59246879A
Other languages
Japanese (ja)
Inventor
Toyoaki Nakagawa
豊昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59246879A priority Critical patent/JPS61122559A/en
Publication of JPS61122559A publication Critical patent/JPS61122559A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0029General constructional details of gas analysers, e.g. portable test equipment concerning the detector cleaning

Abstract

PURPOSE:To prevent the deterioration in the function of an oxygen sensor in the oxygen sensor consisting of an element part for detecting and heater by increasing the electric power supply to the heater when the oxygen concn. is at the prescribed concn. or above to burn the accumulated deposit. CONSTITUTION:The oxygen sensor (a) is constituted of the element part for detecting oxygen concn. and the heater for heating the element part and is provided in the exhaust pipe of an engine, etc. Diffusion current is changed according to the oxygen concn. and the oxygen concn. is detected from the current value thereof in order to detect continuously an air-fuel ratio. However, the carbon, hydrocarbon, etc. in the exhaust gas stick to the element part. The state in which the oxygen concn. in the measuring gas is larger than the prescribed concn. in then discriminated by a discriminating means (b) and a signal is fed to a means (c) for controlling the heater, by which the electric power to the heater is increased to burn the deposit sticking to the element part. Since the deposit accumulating on the oxygen sensor is burned, the deterioration in the function of the oxygen sensor is prevented.

Description

【発明の詳細な説明】 (技術分野) 本発明は酸素濃度測定装置、詳しくは酸素センサを用い
て被測定ガスの酸素濃度を広範囲に精度よく検出する酸
素濃度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an oxygen concentration measuring device, and more particularly to an oxygen concentration measuring device that accurately detects the oxygen concentration of a gas to be measured over a wide range using an oxygen sensor.

(従来技術) 近時、エンジンの燃費、排気対策等の要求を満たすため
、希薄領域においても空燃比がフィードバック制御され
る傾向にあり、このような空燃比は、通常、排気中の酸
素濃度をパラメータとして酸素センサにより検出される
(Prior art) In recent years, in order to meet the demands for engine fuel efficiency and exhaust emissions, there has been a trend toward feedback control of the air-fuel ratio even in the lean region. Detected as a parameter by an oxygen sensor.

このため、リッチからリーンまで、空燃比を広範囲に検
出可能を酸素センサ(例えば、特開昭59−67455
号公報、特開昭59−46350号公報参照)が種々開
発されている しかしながら、このような従来の酸素濃度測定装置にあ
っては、酸素センサの主要部が排気に直接晒される構成
であるため、酸素センサがリッチ空燃比の燃焼排気ガス
に長時間晒されていると、排気中のカーボンやHC成分
等の不要物(以下、不要付着物という)がその表面や電
極等に堆積しやすい。すなわち、このような酸素センサ
によればリッチ空燃比にフィードバック制御することが
できる反面、このリッチ空燃比への制御状態が長時間継
続される可能性があり、かかる場合、上記堆積を招きや
すい。このため、酸素センサ表面の目詰まりや電極間で
の電流リーク等を起こすおそれがあり、空燃比の検出精
度が低下して空燃比の制御精度の悪化が予想される。
For this reason, it is possible to detect air-fuel ratios over a wide range from rich to lean.
However, in such conventional oxygen concentration measuring devices, the main part of the oxygen sensor is directly exposed to exhaust gas. When an oxygen sensor is exposed to combustion exhaust gas with a rich air-fuel ratio for a long time, unnecessary substances such as carbon and HC components in the exhaust gas (hereinafter referred to as unnecessary deposits) tend to accumulate on its surface, electrodes, and the like. That is, although such an oxygen sensor can perform feedback control to a rich air-fuel ratio, there is a possibility that this control state to a rich air-fuel ratio may continue for a long time, and in such a case, the above-mentioned deposition is likely to occur. For this reason, there is a risk of clogging of the surface of the oxygen sensor, current leakage between the electrodes, etc., and it is expected that the air-fuel ratio detection accuracy will decrease and the air-fuel ratio control accuracy will deteriorate.

(発明の目的) そこで本発明は、排気管内が所定酸素濃度以上(例えば
、所定のリーン空燃比)の状態になると、所定時間酸素
センサのヒータへの供給電力を増大させることにより、
ヒータの発生熱を大きくして酸素センサに堆積した不要
付着物を焼却し、酸素センサの機能低下を防止すること
を目的としている。
(Object of the Invention) Therefore, the present invention provides that when the inside of the exhaust pipe reaches a predetermined oxygen concentration or higher (for example, a predetermined lean air-fuel ratio), by increasing the power supplied to the heater of the oxygen sensor for a predetermined period of time,
The purpose is to increase the heat generated by the heater to burn off unnecessary deposits that have accumulated on the oxygen sensor, thereby preventing the oxygen sensor from deteriorating in function.

(発明の構成) 本発明による酸素濃度測定装置はぞの全体構成図を第1
図に示すように、排気中の酸素濃度を検出する酸素濃度
検出用素子部と、該素子部を加熱するヒータと、を有す
る酸素センサaと、被測へ     定ガスが所定酸素
濃度異状の状態にあるか否かを判別し、所定酸素濃度異
状の状態にあるとき所定時間加熱増大信号を出力する判
別手段すと、加熱増大信号が人力されるとヒータへの供
給電力を増大させるヒータ制御手段Cと、を備えており
、酸素センサaの不要付着物を焼却するものである。
(Structure of the Invention) The overall configuration diagram of the oxygen concentration measuring device according to the present invention is shown in FIG.
As shown in the figure, an oxygen sensor a has an oxygen concentration detection element section that detects the oxygen concentration in exhaust gas, a heater that heats the element section, and a state where the gas to be measured has a predetermined oxygen concentration abnormality. determination means for determining whether or not the oxygen concentration is present, and outputting a heating increase signal for a predetermined period of time when a predetermined oxygen concentration is abnormal; and heater control means for increasing power supplied to the heater when the heating increase signal is manually inputted. C, which incinerates unnecessary deposits on the oxygen sensor a.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜7図は本発明の一実施例を示す図であであり、本
発明をエンジンの排気中の酸素濃度、すなわち空燃比を
検出する装置に通用した例である。
2 to 7 are diagrams showing one embodiment of the present invention, and are examples in which the present invention is applied to a device for detecting the oxygen concentration in the exhaust gas of an engine, that is, the air-fuel ratio.

まず、構成を説明すると、第2図において、1はエンジ
ンであり、吸入空気はエアクリーナ2より吸気管3を通
して各気筒に供給され燃料は噴射信号Stに基づいてイ
ンジェクタ4により噴射される。そして、気筒内で燃焼
した排気は排気管5を通して触媒コンバータ6に導入さ
れ、触媒コンバータ6内で排気中の有害成分(Co、H
ClN0x)を三元触媒により清浄化して排出される。
First, to explain the configuration, in FIG. 2, 1 is an engine, intake air is supplied from an air cleaner 2 to each cylinder through an intake pipe 3, and fuel is injected by an injector 4 based on an injection signal St. Then, the exhaust gas combusted in the cylinder is introduced into the catalytic converter 6 through the exhaust pipe 5, and the harmful components (Co, H,
ClN0x) is purified by a three-way catalyst and discharged.

吸入空気の流量Qaはエアフローメータ7により検出さ
れ、吸気管3内の絞り弁8によって制御される。ウォー
タジャケットを流れる冷却水の温度Twは水温センサ9
により検出され、排気中の酸素濃度は酸素センサ10に
より検出される。また、エンジン1の回転数Nはクラン
ク角センサ11により検出される。これら記各センサ7
.9.10.11からの信号はコントロールユニット1
2に入力されており、コントロールユニット12はこれ
らのセンサ情報に基づいて空燃比制御および酸素センサ
10のヒータへの通電制御を行うもので、詳細な構成は
後述する。
The intake air flow rate Qa is detected by an air flow meter 7 and controlled by a throttle valve 8 in the intake pipe 3. The temperature Tw of the cooling water flowing through the water jacket is determined by the water temperature sensor 9.
The oxygen concentration in the exhaust gas is detected by the oxygen sensor 10. Further, the rotation speed N of the engine 1 is detected by a crank angle sensor 11. Each of these sensors 7
.. The signal from 9.10.11 is control unit 1
2, and the control unit 12 performs air-fuel ratio control and energization control to the heater of the oxygen sensor 10 based on these sensor information, and the detailed configuration will be described later.

第3.4図は酸素センサ10の分解斜視図およびその断
面図である。これらの図において、基板21は絶縁性を
有する基板であり、基板21上にはヒータ22を介して
チャンネル状の大気導入部詔を形成した大気導入板24
が積層される。その上に、酸素イオン伝導性の板状固体
電解質25が積層され、固体電解質25の下面には基準
電極26が、それに対応する上面にはポンプ電極27と
センサ電極28がそれぞれ印刷により設けられる。さら
に、この固体電解質25の上に排気を導入するガス導入
部29を窓状に形成した板状体30が積層され、その上
にガスの拡散を規制する(例えば、リーン時には矢印方
向への拡散を規制する)手段としての小孔31を設けた
板状体32が積層される。なお、33.34はヒータ2
2のリード線、35〜37はそれぞれ基準電極26、ポ
ンプ電極27、センサ電極28のリード線である。
FIG. 3.4 is an exploded perspective view and a sectional view of the oxygen sensor 10. In these figures, a substrate 21 is an insulating substrate, and an air introduction plate 24 on which a channel-shaped air introduction portion is formed is formed via a heater 22.
are stacked. A plate-shaped solid electrolyte 25 having oxygen ion conductivity is laminated thereon, and a reference electrode 26 is provided on the lower surface of the solid electrolyte 25, and a pump electrode 27 and a sensor electrode 28 are provided on the corresponding upper surface by printing. Further, a plate-like body 30 having a window-shaped gas introduction part 29 for introducing exhaust gas is laminated on top of the solid electrolyte 25, and is placed on top of the plate-like body 30 to restrict gas diffusion (for example, when lean, diffusion in the direction of the arrow is Plate-shaped bodies 32 provided with small holes 31 as a means for regulating the amount of water are laminated. In addition, 33.34 is heater 2
Lead wires 35 to 37 are lead wires for the reference electrode 26, pump electrode 27, and sensor electrode 28, respectively.

ポンプ電極rと基準電極26は固体電解質25に酸素イ
オンの移動を生じさせて上下両面間の酸素分圧比を一定
に保つポンプ電流Ipを流すための電極を構成し、セン
サ電極あと基準電極26は固体電解質25の両面間の酸
素分圧比によって発生する電圧を検出するための電極を
構成する。そして、上記大気導入板24、固体電解質怒
、基準電極26、ポンプ電極27、センサ電極28、板
状体30および板状体32は排気中の酸素濃度を検出す
る素子部38を構成する。
The pump electrode r and the reference electrode 26 constitute electrodes for flowing a pump current Ip that causes the movement of oxygen ions in the solid electrolyte 25 and keeps the oxygen partial pressure ratio between the upper and lower surfaces constant. This constitutes an electrode for detecting the voltage generated by the oxygen partial pressure ratio between both sides of the solid electrolyte 25. The atmosphere introducing plate 24, the solid electrolyte, the reference electrode 26, the pump electrode 27, the sensor electrode 28, the plate-shaped body 30, and the plate-shaped body 32 constitute an element section 38 for detecting the oxygen concentration in the exhaust gas.

第5図は、コントロールユニット12の+yt成ヲ示す
ブロック図である。この図において、コントロールユニ
・7ト12は空燃比検出回路41、スイッチ回路42、
A/D変換器43〜46、ドライバ回路47およびマイ
クロコンピュータ48により構成される。
FIG. 5 is a block diagram showing the +yt structure of the control unit 12. In this figure, the control unit 7 12 includes an air-fuel ratio detection circuit 41, a switch circuit 42,
It is composed of A/D converters 43 to 46, a driver circuit 47, and a microcomputer 48.

空燃比検出回路41は、目標電圧−Vaを発生する電圧
源49、差動アンプ50、抵抗R1、電流供給回路51
および電流検出回路52により構成される。差動アンプ
50は酸素センサ10の素子部38における基準電極2
6に対するセンサ電極28の電位(以下、センサ電圧と
いう)Vsを目標電圧(−Va)と比較してその差値(
ΔV)(ΔV=Vs−(−Va))を算出する。電流供
給回路51は差値Δ■が零になるように素子部38のポ
ンプ電極27からのポンプ電流Ipを流し出す(あるい
は流し込む)。すなわちΔVが正のときはIpを増やし
、負のときはIpを減らす。電流検出回路52は抵抗R
1の両端間の電位差によりポンプ電流Ipを電圧Vt(
V i QCT p )に変換して検出する。なお、ポ
ンプ電流Ipは実線矢印で示す方向を正(Viも正)、
破線矢印で示す逆方向を負とする。
The air-fuel ratio detection circuit 41 includes a voltage source 49 that generates a target voltage -Va, a differential amplifier 50, a resistor R1, and a current supply circuit 51.
and a current detection circuit 52. The differential amplifier 50 serves as the reference electrode 2 in the element section 38 of the oxygen sensor 10.
6, the potential of the sensor electrode 28 (hereinafter referred to as sensor voltage) Vs is compared with the target voltage (-Va), and the difference value (
ΔV) (ΔV=Vs−(−Va)) is calculated. The current supply circuit 51 flows out (or flows into) the pump current Ip from the pump electrode 27 of the element section 38 so that the difference value Δ■ becomes zero. That is, when ΔV is positive, Ip is increased, and when ΔV is negative, Ip is decreased. The current detection circuit 52 is a resistor R.
1, the pump current Ip is changed to the voltage Vt(
V i QCT p ) and detected. Note that the pump current Ip is positive in the direction shown by the solid arrow (Vi is also positive),
The opposite direction indicated by the dashed arrow is negative.

そして、目標電圧vaを素子部38のガス導入部29内
の酸素濃度が所定値に維持されているとき、1    
 すなわち固体電解質25の両面間の酸素分圧比が所定
値となるときのセンサ電圧Vsに相当する値に設定して
お(ことより、電流検出回路52によって検出されるポ
ンプ電流rpに比例した検出電圧Viは、第6図に示す
ように空燃比と一義的に対応するようになる。したがっ
て、この検出電圧Vtを利用すれば空燃比をリッチ域か
らリーン域まで広範囲に亘って連続的に精度よく検出す
ることができる。
Then, the target voltage va is set to 1 when the oxygen concentration in the gas introduction section 29 of the element section 38 is maintained at a predetermined value.
That is, it is set to a value corresponding to the sensor voltage Vs when the oxygen partial pressure ratio between both surfaces of the solid electrolyte 25 reaches a predetermined value (in particular, the detection voltage proportional to the pump current rp detected by the current detection circuit 52 is set to Vi corresponds uniquely to the air-fuel ratio as shown in Figure 6. Therefore, by using this detection voltage Vt, the air-fuel ratio can be continuously and precisely controlled over a wide range from the rich region to the lean region. can be detected.

スイッチ回路42はヒータ制御手段としての機能を有し
、例えば第7図に示すようにトランジスタQ1により構
成される。トランジスタQ1は通電制御信号shが(H
)であるときONとなってバッテリ53からの直流電圧
vbを酸素センサ10のヒータnに供給し、〔L〕であ
るときOFFとなって該供給を停止する。通電制御信号
shは〔H〕となる時間が所定周期内でデユーティ制御
される信号であり、後述するように空燃比が所定のリー
ン空燃比となったとき(H)である時間が長くなってヒ
ータ22の発熱量を増大させる。すなわち、所定のリー
ン空燃比になると、トランジスタQ1の所定周期内にお
けるオンデユーテイ期間が長くなる。本実施例では、上
述の条件下でオンデユーテイ期間の長くなるときの通電
制御信号shが加熱増大信号に相当する。A/D変換器
43〜45はそれぞれ空燃比検出回路41、エアフロー
メータ7および水温センサ9からの各信号をA/D変換
し、A/D変換器46はバッテリ53の直流電圧vbを
A/Dimしてマイクロコンピュータ48に出力する。
The switch circuit 42 has a function as a heater control means, and is composed of a transistor Q1, for example, as shown in FIG. The transistor Q1 has a conduction control signal sh of (H
), it is turned on and supplies the DC voltage vb from the battery 53 to the heater n of the oxygen sensor 10, and when it is [L], it is turned off and the supply is stopped. The energization control signal sh is a signal whose duty is controlled within a predetermined period for the time when the energization control signal sh becomes [H].As will be described later, when the air-fuel ratio reaches a predetermined lean air-fuel ratio, the time when the energization control signal sh becomes [H] becomes longer. The amount of heat generated by the heater 22 is increased. That is, when the air-fuel ratio reaches a predetermined lean air-fuel ratio, the on-duty period of the transistor Q1 within a predetermined cycle becomes longer. In this embodiment, the energization control signal sh when the on-duty period becomes longer under the above-mentioned conditions corresponds to the heating increase signal. The A/D converters 43 to 45 A/D convert the signals from the air-fuel ratio detection circuit 41, the air flow meter 7, and the water temperature sensor 9, respectively, and the A/D converter 46 converts the DC voltage vb of the battery 53 into A/D. Dim and output to the microcomputer 48.

また、ドライバ回路47はマイクロコンピュータ48か
ら出力される燃料噴射量に対応するインジェクタ駆動パ
ルスPiをインジェクタ4の作動可能な噴射信号Siに
増幅して出力する。
Further, the driver circuit 47 amplifies the injector drive pulse Pi corresponding to the fuel injection amount output from the microcomputer 48 into an injection signal Si that enables the injector 4 to operate, and outputs the amplified signal.

マイクロコンピュータ48は判別手段としての機能を有
し、CPU55、ROM56、RAM57、NVM(不
揮発性データメモリ)58およびI10ボート59によ
り構成される。CPU55はROM56に書き込まれて
いるプログラムに従ってI10ポート59より必要とす
る外部データを取り込んだり、またRAM57およびN
VM58との間でデータの授受を行ったりしながら演算
処理し、必要に応じて処理したデータをI10ポート5
9へ出力する。■10ポート59にはA/D変換器43
〜46および運転状態検出手段13からの信号が入力さ
れるとともに、110ポート59からはインジェクタ駆
動パルスPiおよび通電制御信号shが出力される。R
OM56はCPU55における演算プログラムを格納し
ており、RAM57およびNVM58は演算に使用する
データをマツプ等の形で記憶している。
The microcomputer 48 has a function as a determining means, and is composed of a CPU 55, a ROM 56, a RAM 57, an NVM (nonvolatile data memory) 58, and an I10 board 59. The CPU 55 takes in necessary external data from the I10 port 59 according to the program written in the ROM 56, and also imports necessary external data from the RAM 57 and N
Arithmetic processing is performed while exchanging data with the VM58, and the processed data is sent to I10 port 5 as necessary.
Output to 9. ■10 port 59 has A/D converter 43
-46 and the signals from the operating state detection means 13 are inputted, and the injector drive pulse Pi and the energization control signal sh are outputted from the 110 port 59. R
The OM 56 stores a calculation program for the CPU 55, and the RAM 57 and NVM 58 store data used in calculations in the form of a map or the like.

次に、作用を説明する。Next, the effect will be explained.

一般に、酸素センサは高温でかつカーボン成分等が入り
混じっているという排気被測定対象物としており、測定
環境の厳しい条件下にある。また、例えば空燃比を連続
的に検出するために、拡散電流(ポンプ電流)を酸素濃
度に応じて変化させる等、特有の構造を必要としている
。従来は、空燃比の検出という機能に重点がおかれてお
り、厳しい環境下での検出態勢を良好に維持していくと
いう点でやや不十分である。
In general, oxygen sensors are used to measure exhaust gases that are at high temperatures and are mixed with carbon components, etc., and are subject to harsh measurement environments. Further, for example, in order to continuously detect the air-fuel ratio, a unique structure is required, such as changing the diffusion current (pump current) according to the oxygen concentration. Conventionally, emphasis has been placed on the function of detecting the air-fuel ratio, which is somewhat insufficient in terms of maintaining a good detection posture under harsh environments.

そこで本実施例では、酸素センナの検出精度が低下する
主原因はカーボン、HC成分の付着によるという点に着
目して、カーボン等の付着が予想される条件下でこれを
推定、判別し、カーボン等が付着、堆積したと判別した
とき酸素センサ10のヒータ22への供給電力を増大さ
せることで、不要付着物を焼切り、除去している。
Therefore, in this example, we focused on the fact that the main cause of the decrease in the detection accuracy of the oxygen sensor is the adhesion of carbon and HC components, and estimated and determined this under conditions in which adhesion of carbon, etc. is expected. When it is determined that the unnecessary deposits have adhered or accumulated, the power supplied to the heater 22 of the oxygen sensor 10 is increased to burn off and remove the unnecessary deposits.

第8図はROM56に書き込まれているヒータ通電制御
のプログラムを示すフローチャートであり、図中P、〜
P1はフローチャートの各ステップを示している。本プ
ログラムは所定時間毎に1度実行される。
FIG. 8 is a flowchart showing a heater energization control program written in the ROM 56.
P1 indicates each step of the flowchart. This program is executed once every predetermined time.

まず、P、で他のルーチン(図示時)において演算され
た基本噴射量’rpおよび最終噴射量Tiから現在の運
転域がリッチ運転域でありか否かを判別する。これらの
各噴射量TP、Tiはそれぞれ次式■、■に従って演算
される。
First, at P, it is determined whether the current operating range is a rich operating range from the basic injection amount 'rp and the final injection amount Ti calculated in another routine (as shown). These injection amounts TP and Ti are calculated according to the following equations (1) and (2), respectively.

T p −K X Q a / N        ・
−−−−一■但し、K:定数 Ti−TpXCOEFxα+Ts  −・−■なお、基
本噴射量’rpは略理論空燃比近傍の5     値と
なるように演算される。また、0式中、cOEFは各種
増量係数であり、例えば冷却水温Tw等に基づいて基本
噴射量Tpを各種増量補正するものである。αは空燃比
を目標空燃比にフィードバック制御するときの空燃比補
正係数であり、TSはインジェクタ4の応答遅れ(むだ
時間)を補正するための係数である。
T p −K X Q a / N ・
----1 ■ However, K: Constant Ti-Tp Furthermore, in equation 0, cOEF is various increase coefficients, and is used to perform various increase corrections on the basic injection amount Tp based on, for example, the cooling water temperature Tw. α is an air-fuel ratio correction coefficient when performing feedback control of the air-fuel ratio to the target air-fuel ratio, and TS is a coefficient for correcting a response delay (dead time) of the injector 4.

リッチ運転域であるときはP2でリッチカウンタのカウ
ント値C1を付着予測値Go、と比較する。リッチカウ
ンタは空燃比がリッチ側に制御され始めてからの経過時
間をカウントするもので、そのカウント値C,は本ルー
チンの実行毎にインクリメントされる。C1<Co、の
ときはP3でリッチカウンタをインクリメントし、CI
≧C。
When the engine is in the rich operating range, the count value C1 of the rich counter is compared with the predicted adhesion value Go at P2. The rich counter counts the time elapsed since the air-fuel ratio started being controlled to the rich side, and its count value C is incremented each time this routine is executed. When C1<Co, the rich counter is incremented in P3 and CI
≧C.

1になると酸素センサ10に不要付着物が堆積したと判
断しP4で焼却フラグFHをセットしてリターンする。
When it becomes 1, it is determined that unnecessary deposits have accumulated on the oxygen sensor 10, and the incineration flag FH is set in P4 and the process returns.

焼却フラグFHはヒータ22への供給電力を増大して(
すなわち、加熱増大信号を出力して)不要付着物を焼却
するか否かを表すもので、増大するときセット(FH−
1)され、増大しないときリセット(FH=O)される
。したがって、P4で焼却フラグFHがセットされると
、酸素センサ10への不要付着物の堆積が予測され、次
に述べるように所定のリーン空燃比に移行したときこれ
を焼却するようにフローが流れる。
The incineration flag FH increases the power supplied to the heater 22 (
In other words, it indicates whether or not to incinerate unnecessary deposits by outputting a heating increase signal.
1) and is reset (FH=O) when it does not increase. Therefore, when the incineration flag FH is set at P4, it is predicted that unnecessary deposits will accumulate on the oxygen sensor 10, and a flow will flow to incinerate this when the air-fuel ratio shifts to a predetermined lean air-fuel ratio, as described below. .

すなわち、Plでリッチ運転域にないときは、P、で焼
却フラグFHがセットされているか否かを判別する。F
H=0のときはP6で通電制御信号shを出力するとと
もに、P7で焼却カウンタのカウント値C2をクリア(
C2= 0 )シてリターンする。一方、FH= 1の
ときはP8で現在の運転域が所定のリーン運転域である
か否かを判別し、所定のリーン運転域でなければP6に
ジャンプする。また、所定のリーン運転域であればP。
That is, when Pl is not in the rich operating range, P determines whether or not the incineration flag FH is set. F
When H=0, the energization control signal sh is output at P6, and the count value C2 of the incineration counter is cleared at P7 (
C2=0) and return. On the other hand, when FH=1, it is determined in P8 whether the current operating range is in a predetermined lean operating range, and if it is not in the predetermined lean operating range, the process jumps to P6. Also, if it is in a predetermined lean operating range, P.

で焼却カウンタのカウント値c2を焼却完了カウント値
CO2と比較する。焼却カウンタは焼却期間(加熱増大
信号の出力期間)を計測するカウンタであり、焼却期間
は不要付着物の焼却可能範囲内で所定値に設定される。
The count value c2 of the incineration counter is compared with the incineration completion count value CO2. The incineration counter is a counter that measures the incineration period (the output period of the heating increase signal), and the incineration period is set to a predetermined value within the range in which unnecessary deposits can be incinerated.

なお、このCo2なる値と上述した付着予測値Co、と
は相互に関連性をもたせてそれぞれ適切な固定値、ある
いは運転条件によって変化する可変値に設定してもよい
Note that this value Co2 and the above-mentioned adhesion predicted value Co may be mutually related and set to appropriate fixed values or variable values that change depending on the operating conditions.

さて、P、でC2<Co、のときはP、、3で加熱増大
信号を出力してヒータnの発熱量を高め、Pl+で焼却
カウンタをインクリメントとしてリターンする。これに
より、リーン空燃比という過剰酸素中で酸素センサ10
がより一層加熱されて堆積した不要付着物の焼却が開始
される。そして、カウント値C2が02≧CO□になる
と、不要付着慣の焼却が完了したと判断してPl2で焼
却フラグFHをリセットするとともに、PI3でリッチ
カウンタをクリア(C,=0)してP6に進む。
Now, when C2<Co at P, a heating increase signal is output at P, 3 to increase the calorific value of heater n, the incineration counter is incremented at Pl+, and the process returns. This allows the oxygen sensor 10 to
is further heated and the incineration of the accumulated unnecessary deposits begins. When the count value C2 becomes 02≧CO□, it is determined that the incineration of unnecessary adhesion is completed, and the incineration flag FH is reset in PI2, and the rich counter is cleared (C, = 0) in PI3, and the Proceed to.

このように、不要付着物の堆積が予測されるリッチ運転
域を所定時間径ると、次回のリーン運転域に移行したと
きヒータ22への供給電力が増大されて不要付着物が焼
却される。そして、焼却後は再び通常のヒータ通電制御
が実行される。したがって、酸素センサ10の機能低下
を防止することができ、空燃比制御の精度低下を避ける
ことができる。この場合、上記焼却は不要付着物の堆積
が予測されるときのみに限定されるため、不必要にヒー
タ電力が増大されず電力消費の浪費を避けることができ
る。
In this way, after a predetermined period of time has elapsed in the rich operation region where unnecessary deposits are expected to accumulate, the power supplied to the heater 22 is increased when the next lean operation region is entered, and the unnecessary deposits are incinerated. After incineration, normal heater energization control is executed again. Therefore, it is possible to prevent the oxygen sensor 10 from deteriorating in function, and it is possible to avoid deteriorating the accuracy of air-fuel ratio control. In this case, the incineration is limited to only when accumulation of unnecessary deposits is predicted, so that the heater power is not increased unnecessarily and wasteful power consumption can be avoided.

なお、所定のリーン運転域はツユニルカット領域やエン
ジン停止中を含めてもよい。
Note that the predetermined lean operating range may include the engine cut range and the engine stop period.

また、本発明は上記実施例に示したタイプの酸素センサ
に限らず、ヒータを有するものであればすべてに適用が
可能である。
Further, the present invention is not limited to the type of oxygen sensor shown in the above embodiments, but can be applied to any type of oxygen sensor as long as it has a heater.

(効果) 本発明によれば、酸素センサに堆積した不要付着物を焼
却することができ、酸素センサの機能低下を防止するこ
とができる。
(Effects) According to the present invention, unnecessary deposits deposited on the oxygen sensor can be incinerated, and deterioration in the function of the oxygen sensor can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2〜8図は本発明の一
実施例を示す図であり、第2図はその概略構成図、第3
図はその酸素センナの分解斜視図、第4図はその酸素セ
ンサの断面図、第5図はそのブロック構成図、第6図は
その空燃比と検出電圧との関係を示す図、第7図はその
スイッチ回へ    路の詳細な回路図、第8図はその
ヒータ通電制御のプログラムを示すフローチャートであ
る。 1−−−一エンジン、 10・−−−−一酸素センサ、 12−・−コントロールユニット(判別手段)、42−
一一一・−スイッチ回路(ヒータ制御手段)。
FIG. 1 is an overall configuration diagram of the present invention, FIGS. 2 to 8 are diagrams showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram thereof, and FIG.
Figure 4 is an exploded perspective view of the oxygen sensor, Figure 4 is a sectional view of the oxygen sensor, Figure 5 is its block diagram, Figure 6 is a diagram showing the relationship between the air-fuel ratio and detected voltage, and Figure 7. is a detailed circuit diagram of the switch circuit, and FIG. 8 is a flowchart showing the heater energization control program. 1----1 engine, 10・----1 oxygen sensor, 12-・・control unit (discrimination means), 42-
111.-Switch circuit (heater control means).

Claims (1)

【特許請求の範囲】 a)被測定ガスの酸素濃度を検出する酸素濃度検出用素
子部と、該素子部を加熱するヒータと、を有する酸素セ
ンサと、 b)被測定ガスが所定酸素濃度以上の状態にあるか否か
を判別し、所定酸素濃度以上の状態にあるとき所定時間
加熱増大信号を出力する判別手段と、 c)加熱増大信号が入力されるとヒータへの供給電力を
増大させるヒータ制御手段と、 を備えたことを特徴とする酸素濃度測定装置。
[Scope of Claims] a) an oxygen sensor having an oxygen concentration detection element section that detects the oxygen concentration of a gas to be measured and a heater that heats the element section; b) when the gas to be measured has a predetermined oxygen concentration or higher c) determining means for determining whether or not the oxygen concentration is present, and outputting a heating increase signal for a predetermined time when the oxygen concentration is higher than a predetermined oxygen concentration; and c) increasing power supplied to the heater when the heating increase signal is input. An oxygen concentration measuring device comprising: a heater control means;
JP59246879A 1984-11-20 1984-11-20 Instrument for measuring oxygen concentration Pending JPS61122559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246879A JPS61122559A (en) 1984-11-20 1984-11-20 Instrument for measuring oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246879A JPS61122559A (en) 1984-11-20 1984-11-20 Instrument for measuring oxygen concentration

Publications (1)

Publication Number Publication Date
JPS61122559A true JPS61122559A (en) 1986-06-10

Family

ID=17155096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246879A Pending JPS61122559A (en) 1984-11-20 1984-11-20 Instrument for measuring oxygen concentration

Country Status (1)

Country Link
JP (1) JPS61122559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048573A1 (en) * 2005-10-24 2007-05-03 Heraeus Sensor Technology Gmbh Flow sensor element and its self-cleaning
JP2013064604A (en) * 2011-09-15 2013-04-11 Ngk Spark Plug Co Ltd Gas sensor control apparatus and gas sensor control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048573A1 (en) * 2005-10-24 2007-05-03 Heraeus Sensor Technology Gmbh Flow sensor element and its self-cleaning
US7739908B2 (en) 2005-10-24 2010-06-22 Heraeus Sensor Technology Gmbh Flow sensor element and its self-cleaning
EP2759811A3 (en) * 2005-10-24 2014-09-10 Heraeus Sensor Technology Gmbh Flow sensor element and its self-cleaning
JP2013064604A (en) * 2011-09-15 2013-04-11 Ngk Spark Plug Co Ltd Gas sensor control apparatus and gas sensor control method

Similar Documents

Publication Publication Date Title
EP0994345B1 (en) Power supply control system for heater used in gas concentration sensor
JPH065217B2 (en) Air-fuel ratio controller
EP2442099B1 (en) Gas concentration measuring apparatus designed to compensate for output error
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
JP3785024B2 (en) Catalyst temperature detector
US20050072410A1 (en) Air-fuel ratio feedback control apparatus and method for internal combustion engine
JPH073404B2 (en) Abnormality detection method for oxygen concentration sensor
JPH0612525Y2 (en) Air-fuel ratio detector
JPS61244848A (en) Air-fuel ratio controller
JPS61122559A (en) Instrument for measuring oxygen concentration
JPH07104319B2 (en) Air-fuel ratio sensor
JPS61122558A (en) Instrument for measuring oxygen concentration
JP2006322426A (en) Diagnosis device for air-fuel ratio sensor
JPH0627724B2 (en) Air-fuel ratio detector
JPS61274249A (en) Oxygen concentration measuring apparatus
JP3854040B2 (en) Air-fuel ratio detection device for internal combustion engine
JPS6185547A (en) Air-fuel ratio controller
JPS6185553A (en) Air-fuel ratio controller
JP2000241383A (en) Detecting device for concentration of gas
JPS60243316A (en) Secondary air control device of engine
US11199148B2 (en) Control device for exhaust sensor
JPS61185639A (en) Air-fuel ratio controller for internal-combustion engine
JPH053976Y2 (en)
JPS61116652A (en) Heater controller for oxygen sensor
JP2004308474A (en) False degradation signal generating device of air-fuel ratio sensor