JPS61122521A - Flow rate detector - Google Patents

Flow rate detector

Info

Publication number
JPS61122521A
JPS61122521A JP24495884A JP24495884A JPS61122521A JP S61122521 A JPS61122521 A JP S61122521A JP 24495884 A JP24495884 A JP 24495884A JP 24495884 A JP24495884 A JP 24495884A JP S61122521 A JPS61122521 A JP S61122521A
Authority
JP
Japan
Prior art keywords
spherical body
flow
sphere
wall surface
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24495884A
Other languages
Japanese (ja)
Other versions
JPH0360374B2 (en
Inventor
Yukinori Ozaki
行則 尾崎
Shuji Yamanochi
山ノ内 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24495884A priority Critical patent/JPS61122521A/en
Priority to DE8585109487T priority patent/DE3577347D1/en
Priority to EP85109487A priority patent/EP0172451B1/en
Priority to US06/761,021 priority patent/US4658654A/en
Publication of JPS61122521A publication Critical patent/JPS61122521A/en
Publication of JPH0360374B2 publication Critical patent/JPH0360374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/056Orbital ball flowmeters

Abstract

PURPOSE:To secure high operation reliability against foreign matter in fluid such as dust, sand, and iron rust and scale production by allowing a spherical body to receive a swivel flow generated by a swiveling means and rotates in contact an annular internal wall surface perpendicular to the flow direction. CONSTITUTION:The fluid is placed in swiveling motion in addition to axial motion when passing through the swiveling means 12 and the spherical body 17 receives the force of the swivel and rotates in contact with the annular internal wall surface 16. The rotation of the spherical body 17 is limited within the influence range of the swivel flow by a flowing-out preventing member 14. For the purpose, the interruption of light switch is caused every time the spherical body 17 crosses the optical axis between the light emitting element 18 and photodetecting element 19 provided while aligned to the track surface of the rotation is detected as an electric pulse signal to obtain the number of rotations of the spherical body 17, i.e. flow rate. The spherical body 17 rotates while pressed against the annular internal surface 16 with centrifugal force, so sticking scale deposition components are wiped away and transmissivity is not spoiled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体流量を計測する検出器の構成に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the construction of a detector for measuring fluid flow rate.

従来の技術 流体流量を計測するには種々の動作原理のものが知られ
ているが、手軽に電気信号出力が得られこれは流路中の
羽根*1が軸2を中心として回転し、その回転は羽根車
1と一体の永久磁石3と対向して設けた流路外の永久磁
石4へ伝達され、その永久磁石4の回転を磁気センサ5
で検出するようになっている。一方、軸受を用いない従
来例とした羽根JE6で流体に旋回方向の流れを与え、
その流れによって周回運動をする球体7の回転数を発光
素子8及び受光素子9で検出するものである。
Conventional technology Although various operating principles are known for measuring fluid flow rate, it is easy to obtain an electrical signal output. The rotation is transmitted to a permanent magnet 4 outside the flow path, which is provided opposite the permanent magnet 3 integrated with the impeller 1, and the rotation of the permanent magnet 4 is detected by a magnetic sensor 5.
It is now detected by . On the other hand, the conventional impeller JE6, which does not use bearings, gives the fluid a flow in the swirling direction.
The rotational speed of the sphere 7, which rotates due to the flow, is detected by the light emitting element 8 and the light receiving element 9.

発明が解決しようとする問題点 上記第7図の従来例では、流路中に軸受構造を有してい
るので流体中のゴミや砂などKよって回転数と流量の比
例関係が失われたり回転ムラを生じる恐れがある。特に
、通水流量の測定に用いる場合には配管中の鉄サビが永
久磁石に吸引付着して回転不能になる可能性を有してい
る。一方、第8図の従来例では軸受不調や鉄サビによる
影響の恐れはないが、通水流量の測定に用いた場合には
スケールが流路内面に付着して発光素子及び受光素子の
透光性が失われ検出不良を生じる可能性があった。本発
明は、このような従来技術の問題を解決するもので、流
体中のゴミ、砂、鉄サビなどの異物及びスケール生成に
対して動作信頼性を高く確保することを目的とする。
Problems to be Solved by the Invention The conventional example shown in FIG. This may cause unevenness. In particular, when used to measure the flow rate of water, there is a possibility that iron rust in the piping will attract and adhere to the permanent magnet, making it impossible to rotate. On the other hand, in the conventional example shown in Fig. 8, there is no risk of bearing malfunction or iron rust, but when used to measure water flow rate, scale adheres to the inner surface of the flow channel, causing light to pass through the light-emitting and light-receiving elements. There was a possibility that the sensitivity would be lost, resulting in poor detection. The present invention solves the problems of the prior art, and aims to ensure high operational reliability against foreign matter such as dust, sand, iron rust, and scale formation in the fluid.

問題点を解決するための手段 上記問題点の解決を図るため本発明の流量検出器では、
流路中に設けた旅回手段と、旋回流を受けて流れ方向に
対し垂直方向の環状内壁面に接触しながら周回する球体
と、球体を旋回流の影響範囲内にとどめる流出防止部材
と、球体の周回軌道面の径方向に設けた発光及び受光素
子とからなる構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the flow rate detector of the present invention includes:
a traveling means provided in the flow path, a sphere that receives the swirling flow and rotates while contacting an annular inner wall surface in a direction perpendicular to the flow direction, and an outflow prevention member that keeps the sphere within the influence range of the swirling flow; It has a configuration consisting of light emitting and light receiving elements provided in the radial direction of the orbital surface of a sphere.

、        作   用 本発明は上記した構成によって、球体の周回回転数が流
量に対し比例関係を有することはもちろん、軸受部分や
永久磁石が無い構成であるがら異物詰まりや鉄粉付着に
よる回転不調を生じる恐れがない。又、球体が常に流路
の環状内壁面を接触しながら周回するので接触面が常に
拭かれている状態となってスケール成分が析出付着する
こともない。従って発光及び受光素子の検出感度の低下
を生じることがなく、高い信頼性を確保することができ
る。特に、回転体である球体は旋回流によって不規則な
自転運動をしつつ公転するものであるから接触内壁面へ
のスケール付着防止効果が高く得られている。
, Operation The present invention has the above-described configuration, which not only allows the number of rotations of the sphere to be proportional to the flow rate, but also prevents malfunctions due to foreign matter clogging and adhesion of iron powder, even though the configuration does not include bearings or permanent magnets. There is no fear. In addition, since the sphere revolves around the annular inner wall surface of the flow path while always being in contact with it, the contact surface is constantly wiped and no scale components are deposited or deposited. Therefore, there is no reduction in the detection sensitivity of the light emitting and light receiving elements, and high reliability can be ensured. In particular, since the spherical body, which is a rotating body, revolves around its axis while making irregular rotational movements due to the swirling flow, a high effect of preventing scale adhesion to the contact inner wall surface is obtained.

実施例 以下、本発明の実施例を添付図面にもとづいて説明をす
る。第1図及び第2図において、ハウジング10を貫通
した流路11の上流側には流体に旋回力を与える固定さ
れた羽根車状の旅回付与手段12があり、その下流には
通孔13を複数個設けた流出防止部材14が設けられて
いる。前記旅回付与手段12と流出防止部材14の中間
には、流出防止手段14の中央傾斜面15と流路環状内
壁面16に接触しながら流れ方向と垂直方向に周回する
球体17が挿入されている。前記球体の周回運動をする
軌道面の径方向には対称位置に置かれた発光素子18及
び受光素子19があって、各々の素子は環状内壁面16
に臨む先端2oのみ透光性があ9他の面は光を反射する
よう金属メッキされた樹脂ケース21に収納されている
。もちろん、樹脂ケース21の先端20は流路内壁面1
6と同一面になるように仕上げられている。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the accompanying drawings. 1 and 2, on the upstream side of a flow path 11 passing through the housing 10, there is a fixed impeller-shaped travel imparting means 12 that applies swirling force to the fluid, and downstream thereof there is a through hole 13. The outflow prevention member 14 is provided with a plurality of . A sphere 17 is inserted between the travel force applying means 12 and the outflow prevention member 14, and the sphere 17 circulates in a direction perpendicular to the flow direction while contacting the central inclined surface 15 of the outflow prevention means 14 and the annular inner wall surface 16 of the flow path. There is. There are a light emitting element 18 and a light receiving element 19 placed at symmetrical positions in the radial direction of the orbital surface on which the sphere orbits, and each element is connected to the annular inner wall surface 16.
Only the tip 2o facing the front end 2o is translucent, and the other surfaces are housed in a resin case 21 plated with metal to reflect light. Of course, the tip 20 of the resin case 21 is connected to the channel inner wall surface 1.
It is finished so that it is flush with 6.

上記構成において、流体Id旋回手段12を通過すると
軸方向運動に旅回運動が加った流れとな夛、球体17/
liその旋回の力を受けて環状内壁面16と接触しなが
ら周回運動を行うようになる。旋回運動量は流量に比例
するので球体17を周回させようとする力も流量に比例
することになり、回転数は流量を代表する値を示す。こ
の周回軌道面と発光素子18及び受光素子19の光軸が
一致しているから球体17が前記光軸を横切る度に光が
遮ざられ電気的なパルス信号として検出することが出来
る。球体17は遠心力によって環状内壁面16に抑圧接
触しながら回転するので、スケール析出成分の付着を常
に拭き取ることになって透光性が損なわれることがない
。第5図に示しだ従来例では球体7が内壁面から離れた
環状V字型の溝の中を回転するものであったから光軸上
の内面へのスケール付着を防ぐ効果がなかったものであ
る。
In the above configuration, when the fluid Id passes through the swirling means 12, it becomes a flow with traveling motion added to the axial motion, and the sphere 17/
In response to the turning force, the ring moves around while contacting the annular inner wall surface 16. Since the turning momentum is proportional to the flow rate, the force that causes the sphere 17 to revolve is also proportional to the flow rate, and the rotational speed shows a value representative of the flow rate. Since this orbit plane and the optical axes of the light emitting element 18 and the light receiving element 19 coincide, each time the sphere 17 crosses the optical axis, the light is blocked and can be detected as an electrical pulse signal. Since the sphere 17 rotates while being pressed into contact with the annular inner wall surface 16 due to centrifugal force, adhesion of scale deposits is constantly wiped off, so that the translucency is not impaired. In the conventional example shown in Fig. 5, the sphere 7 rotates in an annular V-shaped groove separated from the inner wall surface, so it is not effective in preventing scale from adhering to the inner surface on the optical axis. .

次に、本発明の他の実施例を第3図と第4図によって説
明する。ここでは、球体17が接触周回する環状内壁面
が環状透光性樹脂22で形成され、発光及び受光素子1
8.19が各々の先端が前記環状透光性樹脂22の外側
に接触しており、他の部分は第1図、第2図の実施例と
同構成であり、同じ作用を行う。この実施例では、球体
17の接触する相手部材が同一材料であるから回転中の
磨擦係数の変化がなく均一な回転が得られる効果がある
。又、第2図の実施例でハウジング10と樹脂ケース2
1を異種材料とした場合に心配される不均一な磨耗を生
じることもない。もちろん、スケール防止効果は同一で
ある。
Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4. Here, the annular inner wall surface on which the sphere 17 contacts and revolves is formed of an annular transparent resin 22, and the light emitting and light receiving element 1
8.19, each tip is in contact with the outside of the annular transparent resin 22, and the other parts have the same structure as the embodiment shown in FIGS. 1 and 2, and perform the same function. In this embodiment, since the mating members that the sphere 17 comes into contact with are made of the same material, there is no change in the coefficient of friction during rotation, resulting in uniform rotation. Moreover, in the embodiment shown in FIG. 2, the housing 10 and the resin case 2 are
Nonuniform wear, which is a concern when 1 is made of a different material, does not occur. Of course, the scale prevention effect is the same.

更に、本発明の他の実施例を第5図と第6図に示した。Furthermore, other embodiments of the present invention are shown in FIGS. 5 and 6.

ここでは、球体17の周回する環状内壁面16の周回軌
道面上に発光素子18と受光素子19に接続した光ファ
イバ23と24を臨ませたもので、二本の光ファイバは
先端のみが透光性を有する樹脂ケース25に端面が保持
されている。
Here, optical fibers 23 and 24 connected to a light-emitting element 18 and a light-receiving element 19 are exposed on the orbital plane of the annular inner wall surface 16 around which the sphere 17 revolves, and only the tips of the two optical fibers are transparent. The end face is held in a resin case 25 having optical properties.

発光素子18と受光素子19は別設のプリント基板26
に設けられていて信号処理回路27を形成している。そ
の他の部分は第1図の実施例と同一構成で同じ作用を行
う。この実施例では図の位置に球体17が来た時に光が
反射され、他の位置にある時は光が拡散するから受光素
子19の受ける光量変化で回転数を検出するもので、ハ
ウジング10の加工が少くて済むと共に信号処理回路2
7の中へ電気部品である発光素子18と受光素子19を
設けたので電気的コネクタがなく接触不良などに関する
事故発生の恐れがない。
The light emitting element 18 and the light receiving element 19 are mounted on a separate printed circuit board 26.
, and forms a signal processing circuit 27. The other parts have the same structure and function as the embodiment shown in FIG. In this embodiment, the light is reflected when the sphere 17 is at the position shown in the figure, and the light is diffused when the sphere 17 is at any other position. Less processing is required and the signal processing circuit 2
Since the light-emitting element 18 and the light-receiving element 19, which are electrical parts, are provided in the light emitting element 7, there is no electrical connector and there is no risk of accidents caused by poor contact.

発明の効果 へ      以上のように本発明の流量検出器によれ
ば次の効果が得られる。
Effects of the Invention As described above, the flow rate detector of the present invention provides the following effects.

(1)球体の周回運動を検出するものであるから軸受や
流路内の永久磁石を必要とせず流体中の異物による性能
劣化を生ぜず、長期使用に対する信頼性が高い。
(1) Since it detects the circular motion of a sphere, it does not require bearings or permanent magnets in the flow path, does not cause performance deterioration due to foreign matter in the fluid, and is highly reliable for long-term use.

■ 球体の周回軌道面上に発光素子と受光素子の光軸を
設けたので周回する内壁面が常に拭かれた状態となるか
らスケール付着による透光性の劣化がなく水量検出用と
しても長期信頼性に富む。
■ The optical axes of the light emitting element and light receiving element are placed on the orbiting surface of the sphere, so the inner wall surface of the orbit is always wiped clean, so there is no deterioration in translucency due to scale adhesion, making it reliable for long periods of time even for water level detection. Rich in sex.

■ 磁気的なセンサを用いないので近接されてソレノイ
ドやモータが設置された場合でも誤信号を発生する恐れ
がない。又、球体の近接と離反に伴う受光量の変化は、
永久磁石の近接と離反に伴う磁束量変化に比べ著しく変
化幅が広いので信号はデジタル化されSN比も高く処理
回路が容易となる。
■ Since no magnetic sensor is used, there is no risk of generating false signals even if a solenoid or motor is installed in close proximity. Also, the change in the amount of light received as the sphere approaches and moves away is
Since the variation range is significantly wider than the variation in the amount of magnetic flux due to the proximity and separation of the permanent magnets, the signal is digitized, the signal-to-noise ratio is high, and the processing circuit is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における流量検出器の断
面図、第2図は第1図のA−A線断面図、第3図は本発
明の第2の実施例を示す断面図、第4図は第3図のA−
A線断面図、第5図は本発明の第3の実施例を示す断面
図、第6図は第5図のA−A線断面図、第7図と第8図
は従来の流量検出器の断面図である。 11 ・・・流路、12・・・・軸流旋回手段、14・
・・・・・流出防止部材、16・・・・−環状内壁面、
17・・・・・・球体、18−・・・発光素子、19・
・・・・受光素子、22・・・・・・環状透光性樹脂。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図      第4図
FIG. 1 is a sectional view of a flow rate detector according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is a sectional view showing a second embodiment of the present invention. Figure 4 is A- of Figure 3.
5 is a sectional view showing the third embodiment of the present invention, FIG. 6 is a sectional view taken along line A-A in FIG. 5, and FIGS. 7 and 8 are a conventional flow rate detector. FIG. 11...flow path, 12...axial flow swirling means, 14...
...Outflow prevention member, 16...-annular inner wall surface,
17... Sphere, 18-... Light emitting element, 19...
. . . Light receiving element, 22 . . . Annular translucent resin. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)流路中の流体を軸流旋回させる手段と、前記旋回
流の中に位置して流れ方向に対し垂直方向の流路環状内
壁面に接触して周回する球体と、前記球体を前記旋回流
の範囲内にとどめる流出防止部材と、前記球体の周回軌
道面の径方向に設けられ球体回転数を検出する発光及び
受光素子とを有する流量検出器。
(1) A means for axially swirling the fluid in the flow path; a sphere located in the swirl flow and circulating in contact with an annular inner wall surface of the flow path in a direction perpendicular to the flow direction; A flow rate detector comprising an outflow prevention member that keeps the swirling flow within the range, and a light emitting and light receiving element that is provided in the radial direction of the orbital surface of the sphere and detects the rotation speed of the sphere.
(2)球体が接触周回する環状内壁面を環状透光性樹脂
で構成した特許請求の範囲第1項記載の流量検出器。
(2) The flow rate detector according to claim 1, wherein the annular inner wall surface around which the sphere contacts is made of an annular transparent resin.
JP24495884A 1984-07-31 1984-11-20 Flow rate detector Granted JPS61122521A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24495884A JPS61122521A (en) 1984-11-20 1984-11-20 Flow rate detector
DE8585109487T DE3577347D1 (en) 1984-07-31 1985-07-27 FLOW SPEED DETECTOR.
EP85109487A EP0172451B1 (en) 1984-07-31 1985-07-27 Flow rate detecting device
US06/761,021 US4658654A (en) 1984-07-31 1985-07-31 Flow rate detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24495884A JPS61122521A (en) 1984-11-20 1984-11-20 Flow rate detector

Publications (2)

Publication Number Publication Date
JPS61122521A true JPS61122521A (en) 1986-06-10
JPH0360374B2 JPH0360374B2 (en) 1991-09-13

Family

ID=17126478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24495884A Granted JPS61122521A (en) 1984-07-31 1984-11-20 Flow rate detector

Country Status (1)

Country Link
JP (1) JPS61122521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189519A (en) * 1988-01-26 1989-07-28 Matsushita Electric Ind Co Ltd Flow rate detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189519A (en) * 1988-01-26 1989-07-28 Matsushita Electric Ind Co Ltd Flow rate detector

Also Published As

Publication number Publication date
JPH0360374B2 (en) 1991-09-13

Similar Documents

Publication Publication Date Title
US3623835A (en) Gas flowmeter
US6227710B1 (en) Rolling bearing with information sensor
KR940001631B1 (en) Magnetic field sensor mounting with sensor arm contacting rotating bearing member
JPS62105012A (en) Bearing device with rotation detector
US4658654A (en) Flow rate detecting device
EP0088309A1 (en) Fluid flow meter
JPS61122521A (en) Flow rate detector
EP0880653B1 (en) Rotor arrangement including axial displacement rate transducer
JPH0512738Y2 (en)
JPH0139530B2 (en)
KR19990036309A (en) Speed measuring mechanism with partially magnetized rotary rotor
JP3490826B2 (en) Encoder
JPS61138124A (en) Flow rate detector
JPH0472172B2 (en)
JPS61259120A (en) Flow rate detector
JPH01178819A (en) Flow rate sensor
JPH0140296B2 (en)
JP2574401B2 (en) Flow detector
JPS62237319A (en) Impeller flow meter
JPH01265121A (en) Flow rate detector
JPH07167689A (en) Flow rate sensor
JPS59153123A (en) Flow rate detecting device
JPH0468568B2 (en)
JP3347500B2 (en) Flow sensor
JPH02168118A (en) Detecting device of flow rate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees