JPS61122482A - High-frequency induction heating furnace - Google Patents

High-frequency induction heating furnace

Info

Publication number
JPS61122482A
JPS61122482A JP24309584A JP24309584A JPS61122482A JP S61122482 A JPS61122482 A JP S61122482A JP 24309584 A JP24309584 A JP 24309584A JP 24309584 A JP24309584 A JP 24309584A JP S61122482 A JPS61122482 A JP S61122482A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
heating furnace
frequency induction
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24309584A
Other languages
Japanese (ja)
Inventor
梅森 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24309584A priority Critical patent/JPS61122482A/en
Publication of JPS61122482A publication Critical patent/JPS61122482A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は黒鉛ヒータを内蔵する高周波誘導加熱炉の構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a high frequency induction heating furnace incorporating a graphite heater.

(従来の技術) 従来の高周波誘導加熱炉に採用されて来た構造について
9代表的な例を第6図に示す。すなわち炉の中央に黒鉛
製の容器1および底板2.上ぶた3で構成された黒鉛ヒ
ータが置かれ、この周囲を高周波ワークコイル13で渦
巻状にとりまかれた構造である。ワークコイルに高周波
電流を流すと黒鉛ヒータの外周面に誘導電流が発生する
とともにヒータ自身が加熱される。黒鉛ヒータ内に置か
れた被加熱物9及び治具10は、黒鉛ヒータからの熱輻
射及び熱伝導により加熱される。この場合。
(Prior Art) FIG. 6 shows nine typical examples of structures that have been adopted in conventional high-frequency induction heating furnaces. That is, a graphite container 1 and a bottom plate 2 are placed in the center of the furnace. It has a structure in which a graphite heater made up of an upper lid 3 is placed, and a high frequency work coil 13 is spirally surrounding the graphite heater. When a high-frequency current is passed through the work coil, an induced current is generated on the outer circumferential surface of the graphite heater, and the heater itself is heated. The object to be heated 9 and the jig 10 placed in the graphite heater are heated by thermal radiation and thermal conduction from the graphite heater. in this case.

被加熱物の処理の目的に応じて各穐のガス30を導入管
7を通してそのノズル6より黒鉛ヒータ内に導入し、黒
鉛ヒータ内で発生した反応ガス又は熱分解ガス等の排ガ
ス31は排ガスポート8を通って排出される。同図にお
いて5はノズル保護管、である。一般に黒鉛ヒータ内に
導入するガスは。
Depending on the purpose of processing the object to be heated, gas 30 from each box is introduced into the graphite heater from its nozzle 6 through the introduction pipe 7, and exhaust gas 31 such as reaction gas or pyrolysis gas generated in the graphite heater is passed through the exhaust gas port. 8 and is discharged. In the figure, 5 is a nozzle protection tube. Generally, the gas introduced into the graphite heater is:

燃焼や爆発等の危険な状態を誘発する空気(特に酸素)
を黒鉛ヒータ内から追い出し、かつ侵入を防止する目的
でe Nx * He + Ar等の不活性なガスが用
いられることが多い。
Air (especially oxygen) that can induce dangerous conditions such as combustion or explosion
Inert gas such as e Nx * He + Ar is often used for the purpose of expelling the gas from inside the graphite heater and preventing its intrusion.

一方、黒鉛ヒータの外周面とワークコイルとの閾の空間
にはカーボン粉等の詰粉11が充てんされ、黒鉛ヒータ
の熱効率向上ならびにワークコイルの過熱防止のための
断熱と黒鉛ヒータ燃焼防止のための空気遮断が図られて
いる。
On the other hand, the threshold space between the outer peripheral surface of the graphite heater and the work coil is filled with a filler powder 11 such as carbon powder to improve the thermal efficiency of the graphite heater, provide insulation to prevent overheating of the work coil, and prevent combustion of the graphite heater. The air is blocked.

ワークコイルの材料には、はとんどの場合、銅管が使わ
れるが、融点が1000℃程度であるために、詰粉から
の伝導熱および通電による発生熱で、変形又は破断する
のを避ける目的で、管内にゐ      水を通し、冷
却する。
Copper tubes are most often used as the material for work coils, but since their melting point is around 1000℃, they avoid deformation or breakage due to conduction heat from the filling powder and heat generated by electricity. For this purpose, water is passed through the pipe to cool it.

万一、この水が外部にもれると詰粉11に浸入し、ここ
で急激に蒸発するために詰粉の水蒸気爆発を誘発する恐
れがある。このため、ワークコイルの外周部はさらに耐
熱セメント12でおおい。
If this water were to leak outside, it would enter the stuffing 11 and evaporate rapidly, potentially causing a steam explosion in the stuffing. For this reason, the outer periphery of the work coil is further covered with heat-resistant cement 12.

詰粉からの伝導熱に対しワークコイルの破断防止等に万
全を期している。
Every effort has been made to prevent the work coil from breaking due to conduction heat from the stuffing powder.

また、上記の構造部材11.12とコンクリート基礎1
60間には、キャスタブル14を設け。
In addition, the above structural members 11 and 12 and concrete foundation 1
A castable 14 is provided between 60 and 60.

さらにヒータ支持脚(黒鉛製)4が接触するキャスタブ
ルの表面には、断熱材15を配して、黒鉛ヒータから基
礎16への熱伝導を遮断する。
Further, a heat insulating material 15 is disposed on the surface of the castable with which the heater support leg (made of graphite) 4 comes into contact to block heat conduction from the graphite heater to the foundation 16.

以上が、従来の高周波誘導加熱炉の基本構造であるが、
この炉を運転管理するための作業者は通常、床20の上
で作業を行なう。この場合、ワークコイル13を流れる
高周波電流ならびに黒鉛ヒータから伝わって来る熱に対
して、安全な距離を確保する目的で、耐熱セメント12
の外局を耐熱レンガ等による炉壁19でおおう。また排
ガスポート8から排出される排ガス31は高熱であり。
The above is the basic structure of a conventional high-frequency induction heating furnace.
Workers who operate and manage this furnace usually work on the floor 20. In this case, in order to ensure a safe distance from the high frequency current flowing through the work coil 13 and the heat transmitted from the graphite heater, the heat resistant cement 12
The outer part of the furnace is covered with a furnace wall 19 made of heat-resistant bricks or the like. Further, the exhaust gas 31 discharged from the exhaust gas port 8 has a high temperature.

可燃性の熱分解成分を多く含む場合は1周囲の空気に触
れた直後、炎となることが多い。また、上記の熱分解ガ
ス中には有害成分を含むことがあり。
If it contains a large amount of flammable thermal decomposition components, it will often burst into flames immediately after coming into contact with the surrounding air. Additionally, the above pyrolysis gas may contain harmful components.

周囲の気流状態によっては作業者に対して、非常に危険
な事態となる。このため、耐熱セメント12又は炉壁1
9の上端に取付、取はすしが可能な排ガスフード21を
外壁12の上端にほぼ密着状態に取付けて、これらのす
き間からもれ込む空気32(一点鎖線)と共に排ガス3
1を点線矢印のように吸引し、排ガスダクト218を通
してプロワ−等により炉外に強制排出する。なお、排ガ
ス中に有害成分を含む場合は、排ガス処理装置を通して
から屋外大気中に排出する。
Depending on the surrounding airflow conditions, this can be extremely dangerous for workers. For this reason, the heat-resistant cement 12 or the furnace wall 1
An exhaust gas hood 21, which can be attached to and removed from the upper end of the outer wall 12, is attached almost tightly to the upper end of the outer wall 12.
1 is sucked in as shown by the dotted arrow and forcibly discharged out of the furnace through an exhaust gas duct 218 using a blower or the like. If the exhaust gas contains harmful components, it is passed through an exhaust gas treatment device before being discharged into the outdoor atmosphere.

上述の従来構造では、下記の三つの問題点がある。The conventional structure described above has the following three problems.

第一の問題点は排ガスポート8における排ガスの閉そく
である。被加熱物9の材質や導入ガスの種類、処理温度
によって排ガスポート8での閉そく状態は異なるが、一
般に排ガス中には多量の熱分解ガスが含まれているため
、排ガスポート8の内面に接触する過程で多量の付着物
(すす等)が堆積する。もし排ガスポート8が閉そくし
た場合は黒鉛ヒータ内の圧力が上昇し、上ぶた3及びそ
の上の詰粉11が吹き飛ばされるという・危険性がある
。この状態を避けるためには、炉の運転中定期的に排ガ
スポート8の内面に堆積した付着物を除去しなければな
らない。しかしながら、従来炉の場合、排ガス7−ド2
1は耐熱セメント12又は炉壁19の上端面に置かれて
いるため、排ガスポート8からのガス流出状況(炎の状
況)を常時監視することができず、閉そくの頻度は経験
に基づき予測するしかない。また、排ガスポート8の付
着物を除去する操作においても、そのつど排ガスフード
21を取はずす必要があプ高温雰囲気中における危険な
作業となる。
The first problem is the blockage of exhaust gas at the exhaust gas port 8. Although the state of blockage at the exhaust gas port 8 differs depending on the material of the object to be heated 9, the type of gas introduced, and the processing temperature, generally the exhaust gas contains a large amount of pyrolysis gas, so that it does not come into contact with the inner surface of the exhaust gas port 8. During this process, a large amount of deposits (such as soot) accumulate. If the exhaust gas port 8 is blocked, the pressure inside the graphite heater will increase, and there is a danger that the top lid 3 and the stuffing powder 11 thereon will be blown away. To avoid this situation, deposits deposited on the inner surface of the exhaust gas port 8 must be removed periodically during operation of the furnace. However, in the case of conventional furnaces, the exhaust gas
1 is placed on the upper end surface of the heat-resistant cement 12 or the furnace wall 19, it is not possible to constantly monitor the gas outflow condition (flame condition) from the exhaust gas port 8, and the frequency of blockage is predicted based on experience. There is no other choice. Further, in the operation of removing deposits from the exhaust gas port 8, it is necessary to remove the exhaust gas hood 21 each time, which is a dangerous operation in a high-temperature atmosphere.

第二の問題点としては、導入ガス30や排ガス31の種
類によっては空気より重い成分が含まれている場合があ
シ1作業者の気付かぬうちに床20の上側又は下側に滞
溜して窒息等の事故を招く恐れがある。特に床下のビッ
ト17は炉底部の点検修理および水だめ(外部からの浸
水あるいはワークコイル13からの漏水があったときに
、ここに流下させ炉底の詰粉部への大量浸水を防止する
)を目的としたもので1重いガスはここに滞溜し易い。
The second problem is that depending on the type of introduced gas 30 or exhaust gas 31, it may contain components heavier than air, which may accumulate on the upper or lower side of the floor 20 without the operator's knowledge. This may lead to accidents such as suffocation. In particular, the bit 17 under the floor is used for inspection and repair at the bottom of the furnace.(When there is water intrusion from the outside or leakage from the work coil 13, water is allowed to flow down here to prevent large amounts of water from entering the powder filling section at the bottom of the furnace.) 1 Heavy gas tends to accumulate here.

従って、ビット17における作業は特に注意を要する。Therefore, working with bit 17 requires special care.

第三の問題点は、加熱電源を切ってから冷却過程に多大
な時間を費やすことである。上述したように、加熱炉に
おける安全性および熱効率の点から黒鉛ヒータから外部
への伝熱を最小限に抑える構造としているため、逆に冷
却速度は非常に遅くなってしまう。ワークコイル13の
内部に通水しているが、詰粉11および耐熱セメントに
よる断熱のために、黒鉛ヒータに対する冷却効果はほと
んど無い。
The third problem is that a large amount of time is spent on the cooling process after the heating power is turned off. As described above, from the viewpoint of safety and thermal efficiency in the heating furnace, the structure is designed to minimize heat transfer from the graphite heater to the outside, so the cooling rate becomes extremely slow. Although water is passed through the inside of the work coil 13, it has almost no cooling effect on the graphite heater because of the insulation provided by the powder filling 11 and heat-resistant cement.

(発明の目的) 本発明の目的は9以上の問題点を解決し、加熱炉の運転
管理が容易で、かつ安全であると同時に冷却過程に要す
る時間を短縮した高周波誘導加熱炉を提供することであ
る。
(Objective of the Invention) The object of the present invention is to provide a high-frequency induction heating furnace that solves the above nine problems and is easy and safe to manage the operation of the heating furnace, and at the same time shortens the time required for the cooling process. It is.

、      (発明の構成) 本発明は、高周波誘導により黒鉛ヒータを加熱すると共
にガスを導入排出する構造の高周波誘導加熱炉において
、al!i周波ワークコイルを内蔵する耐熱セメントの
外壁の上方に該外壁より−まわシ大きな断面のガス吸込
口を有する排ガスフードを。
(Structure of the Invention) The present invention provides a high-frequency induction heating furnace having a structure in which a graphite heater is heated by high-frequency induction and a gas is introduced and discharged.Al! Above the heat-resistant cement outer wall containing the i-frequency work coil, there is an exhaust gas hood having a gas inlet with a cross section larger than the outer wall.

黒鉛ヒータの上ぶたに取付けた排ガスポートの上端部が
見えるように外壁との間に空間を設けて配置し、排ガス
フードのガス吸込内とほぼ同じ形状及び大きさの断面を
もつ筒により外壁を包囲して作業床面の床下部の空間と
連通ずる環状空間を設け9頭部に多数の伝熱フィンを有
する放熱ブロック及び該放熱ブロックの頭部をおおうキ
ャップの複数組を黒鉛ヒータの上ぶたの上面に載置して
詰粉を前記キャップの上端まで充填する構造にしてなる
高周波誘導加熱炉に関する。
The exhaust gas port attached to the top lid of the graphite heater is placed with a space between it and the outer wall so that the upper end can be seen, and the outer wall is covered with a cylinder having a cross section of approximately the same shape and size as the inside of the gas suction of the exhaust gas hood. An annular space surrounding and communicating with the space below the work floor is provided, and a heat radiation block having a large number of heat transfer fins on the head and a plurality of sets of caps covering the head of the heat radiation block are attached to the upper lid of the graphite heater. The present invention relates to a high frequency induction heating furnace having a structure in which powder is placed on the upper surface of the cap and filled up to the upper end of the cap.

まず、第一の排ガスポートにおける閉そくに関する解決
策について説明する。排ガスポートにおけるガス流出状
況(又は炎の状況)を常時監視でき、閉そくの傾向が認
められたときに排ガスポートへの付着物の除去作業を容
易にするため9本発明ではガス吸込口である排ガスフー
ドの下端面と耐熱セメント(高周波ワークコイルを被覆
した部分)の上端との間に空間を設けた。この空間(排
ガスフード下端面と耐熱セメント上端面との間の距離H
)を決定する場合、Hを大きくするほど排ガスポートの
監視及び付着物除去作業は容易になるが、逆に炉の周囲
から上記空間に流入する空気が多くなるから排ガスフー
ドにおけるガス吸引量が増大し、経済的に不利になる。
First, a solution to the blockage at the first exhaust gas port will be explained. In order to be able to constantly monitor the gas outflow situation (or flame situation) at the exhaust gas port, and to facilitate the work of removing deposits from the exhaust gas port when a tendency towards blockage is recognized, 9. A space was provided between the lower end of the hood and the upper end of the heat-resistant cement (the part covered with the high-frequency work coil). This space (distance H between the lower end surface of the exhaust gas hood and the upper end surface of the heat-resistant cement)
), the larger H makes it easier to monitor the exhaust gas port and remove deposits, but conversely, more air flows into the space from around the furnace, which increases the amount of gas sucked into the exhaust gas hood. and become economically disadvantageous.

このことから。From this.

排ガスポートの全長(L)を基準として、距離Hは、H
=(0,5〜ZO)XLなる範囲から選定するのが好ま
しい。排ガスは通常ブロワ−により強制吸引するが、こ
の場合、排ガスフードにおけるガス吸引量に相当する排
ガスブロワ−の容量は。
Based on the overall length (L) of the exhaust gas port, the distance H is
It is preferable to select from the range =(0,5 to ZO)XL. Exhaust gas is normally forcibly sucked in by a blower, but in this case, the capacity of the exhaust gas blower is equivalent to the amount of gas sucked into the exhaust gas hood.

炉の周囲から排ガスフードの外周を通って上記空間に流
入する空気の流速が炉の周囲に発生している気流の最大
流速より太きくなるように選ぶ。これは、排ガスポート
から排出される排ガス(又は炎)の上昇流が乱れて、フ
ードの外部へ流出するのを防止するためである。炉の設
置場所における環境条件に左右されるが1通常の屋内で
排ガスフードの外周位置での周速は1 m / sec
以上が好ましい。排ガス7一ド外周部の適切な箇所に排
ガスポートの監視及び付着物除去作業に必要な空間だけ
を残し、他の空間を盲にして取付、取はすしが可能な盲
板を1枚又は複数枚、取付ければ必要なガス吸引量を低
減することができる。
The flow velocity of the air flowing from the periphery of the furnace into the space through the outer periphery of the exhaust gas hood is selected to be greater than the maximum flow velocity of the air current generated around the furnace. This is to prevent the upward flow of exhaust gas (or flame) discharged from the exhaust gas port from being disturbed and flowing out to the outside of the hood. Although it depends on the environmental conditions at the location where the furnace is installed, the peripheral speed at the outer circumferential position of the exhaust gas hood in a normal indoor environment is 1 m/sec.
The above is preferable. Install one or more blind plates at appropriate locations on the outer periphery of the exhaust gas port that can be installed and removed while leaving only the space necessary for monitoring the exhaust gas port and removing deposits, and blinding other spaces. If you install one, you can reduce the amount of gas suction required.

尚、排ガスフードの材質は高周波誘導を受けに<<、あ
る程度の耐熱性を有し、燃えにくいものであればよくア
ルミニウム合金が好ましい。
The material of the exhaust gas hood may be any material as long as it receives high frequency induction, has a certain degree of heat resistance, and is resistant to combustibility, and aluminum alloy is preferred.

吸引する空気の量が大きく、十分空冷できるものであれ
ば難燃性のプラスチック材でもよい。
A flame-retardant plastic material may be used as long as it can suck a large amount of air and can be sufficiently cooled.

第二の問題として作業床面付近(床下も含む)における
重いガスの滞溜現象に対する解決策について説明する。
The second problem is a solution to the phenomenon of heavy gas accumulation near the work floor (including under the floor).

作業床の上面における重いガスの滞溜問題については、
上述の第一の問題に対する構造にすれば1作業床上面の
周囲ガスを常時、換気していることになるため、自から
解決する。従って1作業床面の床下における重いガスの
滞溜現象が問題となる。この問題に対して1本発明では
以下のような解決方法をとった。すなわち、ワークコイ
ルを内蔵した耐熱セメントの外周面に対して1作業床面
を完全に密着させず、空気が抵抗なく通過できるほぼ一
定間隔の環状の空間を設ける。
Regarding the problem of heavy gas accumulation on the upper surface of the work floor,
If the structure solves the first problem mentioned above, the surrounding gas above the work floor will be constantly ventilated, so this will be solved by itself. Therefore, the accumulation of heavy gas under the floor of one working floor becomes a problem. The present invention takes the following solution to this problem. That is, one work floor is not brought into complete contact with the outer circumferential surface of the heat-resistant cement containing the work coil, but an annular space is provided at approximately constant intervals through which air can pass without resistance.

そのために、この作業床には上記耐熱セメントの外周に
その外周より−まわり大きな穴を設ける。
To this end, this working floor is provided with a hole that is larger around the outer periphery of the heat-resistant cement.

さらにこの穴とほぼ同じ形状及び大きさの断面を有する
筒を作業床の上に耐熱セメントの上端まで設け、上記の
耐熱セメントの外周全面を包囲する。
Further, a cylinder having a cross section having approximately the same shape and size as this hole is provided on the working floor up to the upper end of the heat-resistant cement, and surrounds the entire outer periphery of the heat-resistant cement.

この筒の材質は、高周波誘導を受けず(又は受けにくい
)、ある程度の難燃性と耐熱性を有するものであればよ
く一般にアルミニウム合金、アスベスト、セラミックレ
ンガ等が使用される。このような作業床及び筒を設けた
上で、上述の第一の問題に対する構造にすれば1作業床
の床下部も自動的に換気して重いガスの滞溜を解決する
。上記の筒は排ガスフードのガス吸込口と断面の形状及
び大きさをほぼ同じにする。
The material of this cylinder may be any material that is not susceptible to (or is not easily susceptible to) high-frequency induction and has a certain degree of flame retardancy and heat resistance, and aluminum alloy, asbestos, ceramic brick, etc. are generally used. If such a work floor and cylinder are provided and the structure is designed to address the first problem described above, the lower part of one work floor will be automatically ventilated to solve the problem of heavy gas accumulation. The above tube has a cross-sectional shape and size that are almost the same as the gas suction port of the exhaust gas hood.

また、上記の筒を設けたことで9作業の安全上5   
   のさまたげにはならない。むしろ9作業者が高周
波電流が流れるワークコイルに不用意に近づけぬだめの
防護ならびに作業床下に治工具等の物が落下しないため
の落下防止の役目を果たす。また上記筒と耐熱セメント
外周との間の環状空間に上昇する空気流が形成されるた
めこの空冷効果により上記簡の温度は上昇しない。
In addition, the provision of the above-mentioned tube improves the safety of 9 operations.
Don't be a hindrance. Rather, it serves to protect workers from inadvertently approaching the work coil through which high-frequency current flows, and to prevent objects such as jigs and tools from falling under the work floor. Further, since an upward air flow is formed in the annular space between the tube and the outer periphery of the heat-resistant cement, the temperature of the tube does not rise due to this air cooling effect.

第三の問題として加熱炉の冷却過程における時間短縮に
ついて本発明を説明する。
As a third problem, the present invention will be explained with regard to time reduction in the cooling process of the heating furnace.

加熱電源を切って、冷却過程に入った時、高周波誘導加
熱炉(以下加熱炉と呼ぶ)において最も高温度に蓄熱さ
れた黒鉛ヒータ及びその内部の被加熱物から外部へ放熱
する経路は、下記の3方向が挙げられる。すなわち、(
a)黒鉛ヒータ側面から黒鉛粉、コークス粉等の詰粉を
通って耐熱セメント及びその内部のワークコイルへ熱移
動し、最終的にワークコイル内を流れる冷却水及び耐熱
セメント外周面を上昇通過する空気によって冷却され放
熱する側面ルー) 、 (bl熊鉛ヒータ底板から詰粉
を経てキャスタブル、さらにコンクリート基礎へ伝熱す
る下方ルー) 、 tc)黒鉛ヒータ上ぶたから詰粉を
通り、詰粉表面に接触する空気によって冷却され放熱す
る上方ルートである。
When the heating power is turned off and the cooling process begins, the graphite heater that stores heat at the highest temperature in the high-frequency induction heating furnace (hereinafter referred to as the heating furnace) and the heat radiating path from the heated object inside it to the outside are as follows. There are three directions. That is, (
a) Heat transfers from the side of the graphite heater through packing powder such as graphite powder and coke powder to the heat-resistant cement and the work coil inside it, and finally rises and passes through the cooling water flowing inside the work coil and the outer circumferential surface of the heat-resistant cement. Side roux that is cooled and heat radiated by the air), (lower roux that transfers heat from the bottom plate of the lead heater to the caster through the padding and then to the concrete foundation), tc) From the top cover of the graphite heater, through the padding and onto the padding surface. This is the upward route where the air that comes into contact cools and radiates heat.

以上の放熱経路において前二者のルート(a)、 (b
)は前述したように加熱炉の安全面から厳重に断熱を図
っているため、冷却速度の増加は、これ以上。
Among the above heat dissipation routes, the former two routes (a) and (b
), as mentioned above, the heating furnace is strictly insulated for safety reasons, so the cooling rate will increase even more.

期待できないので、上記(C)の上方ルートの放熱効率
を上げる構造を検討した。通常、黒鉛ヒータ内の被加熱
物を炉詰め又は炉出しする時は黒鉛ヒータの上ぶたと、
この上ぶたの上に位置する詰粉を一時取りのぞいた状態
にする。そこで9本発明では炉詰めにおいて黒鉛ヒータ
上ぶたをセット後。
Since this cannot be expected, we investigated a structure that increases the heat dissipation efficiency of the upper route (C) above. Normally, when stuffing the object to be heated inside the graphite heater into the furnace or taking it out from the furnace, the top lid of the graphite heater is
Leave the filling on top of the top lid temporarily removed. Therefore, in the present invention, after setting the graphite heater top cover in the furnace packing.

上部詰粉を充填する前に頭部に多数の伝熱フィンを持っ
た放熱ブロック及びこの頭部をおおうキャップを組合せ
たものを複数組黒鉛ヒータ上ぶたの表面上に配置する。
Before filling the upper filling powder, a plurality of sets of heat dissipation blocks having a large number of heat transfer fins on the head and caps covering the heads are placed on the surface of the graphite heater top lid.

しかる後、上部詰粉を上記キャップの上端位置まで放熱
ブロック間に空隙を残さないようにして詰める。なお、
上記放熱ブロックの下端面と黒鉛ヒータ上ぶた表面は密
着するように9両者の間に空隙ができぬように、′!た
詰粉が入り込まぬようにセレトするのが好ましい。上記
した構成で加熱炉の運転に入り、被加熱物を加熱する。
Thereafter, the upper stuffing powder is packed up to the upper end of the cap so as not to leave any gaps between the heat radiation blocks. In addition,
Make sure that the lower end surface of the heat dissipation block and the upper lid surface of the graphite heater are in close contact with each other so that there is no gap between them.'! It is preferable to sieve to prevent tamed powder from entering. With the above configuration, the heating furnace starts operating and heats the object to be heated.

加熱完了後、冷却過程に入ったとき、空気酸化による燃
焼を最小限に抑えながら徐々に上部詰粉を取りのぞき、
上記キャップの下端位置まで、この詰粉除去作業を行な
う。しかるのち、キャップを取シ上げ、放熱ブロックの
頭部(伝熱フィン)を露出させる。このとき、前述の第
−及び第二の問題に対する本発明の構造によって多量の
空気を吸引する排ガスフードにより炉の上方に形成され
る空気流が上記の露出した伝熱フィンに接触するため、
高温のヒータから迅速に熱をうばうことが可能となる。
After heating is complete and the cooling process begins, the top filling is gradually removed while minimizing combustion due to air oxidation.
This powder removal work is carried out to the lower end of the cap. Afterwards, lift the cap to expose the head of the heat radiation block (heat transfer fins). At this time, the air flow formed above the furnace by the exhaust gas hood that sucks in a large amount of air due to the structure of the present invention for solving the above-mentioned first and second problems comes into contact with the above-mentioned exposed heat transfer fins.
It becomes possible to quickly remove heat from a high-temperature heater.

なお、上記の放熱ブロック及びキャップの材質は熱伝導
率及び耐熱性が、良好なものが選定条件で、一般の工業
用材料の中では黒鉛が最適である。
The material for the heat dissipation block and cap should be selected to have good thermal conductivity and heat resistance, and graphite is the most suitable among general industrial materials.

(実施例) 以上の本発明の内容について9本発明の実施例を示す第
1〜5図で具体的に説明する。
(Example) The contents of the present invention described above will be specifically explained with reference to FIGS. 1 to 5 showing nine embodiments of the present invention.

まず第1図は9本発明の一実施例になる高周波誘導加熱
炉の縦断面を示し、高周波ワークコイル13を内蔵する
耐熱セメント12の外周部より。
First, FIG. 1 shows a longitudinal section of a high-frequency induction heating furnace according to an embodiment of the present invention, taken from the outer periphery of a heat-resistant cement 12 containing a high-frequency work coil 13.

−まわり大きな断面のガス吸入口27bをもつ排ガスフ
ード27を耐熱セメント12の上端面より高い位置に取
付けた。このガス吸入口27bと耐熱セメント12の上
端面との間には排ガスポート8から排出される排ガス3
1の状態が容易に目視でき、しかも排ガスポート内部の
付着物を除去する作業に必要な空間を設けた。排ガス7
−ド27の取付は、コンクリート床面18から支柱をと
って設置する方法も可能であるが9本実施例では。
- The exhaust gas hood 27 having the gas inlet 27b with a large cross section was installed at a position higher than the upper end surface of the heat-resistant cement 12. Exhaust gas 3 discharged from the exhaust gas port 8 is located between the gas inlet 27b and the upper end surface of the heat-resistant cement 12.
The condition of No. 1 can be easily checked visually, and a space necessary for removing deposits inside the exhaust gas port is provided. Exhaust gas 7
- The door 27 can be installed by taking a support from the concrete floor 18, but in this embodiment.

上記の作業の障碍にならないようにとの配慮から排ガス
フード上面に数個所、取付けたリフティング22により
、上から吊下げる方法をとった。排ガスフード27の材
質はアルミニウム合金(JISH4000,A3052
)を用いた。
In order to avoid hindrance to the above-mentioned work, a method was adopted in which the exhaust gas hood was suspended from above using lifting parts 22 attached to the upper surface of the exhaust gas hood at several locations. The material of the exhaust gas hood 27 is aluminum alloy (JISH4000, A3052
) was used.

排ガスフード27の上部は、ダクト27aに接続する。The upper part of the exhaust gas hood 27 is connected to the duct 27a.

また排ガスプロワ−(図示せず)の容量不足を補うため
に排ガスポート8の監視及び付着物除去作業に必要な空
間だけを残し、ガス吸入口4    27bの外周面に
沿って全周の2/3にわたって1枚の盲板33を取付け
た。この取付けは、ポルト34によって締付固定し、取
はすしを可能にした。
In addition, in order to compensate for the lack of capacity of the exhaust gas blower (not shown), only the space necessary for monitoring the exhaust gas port 8 and removing deposits is left, and 2/2 of the entire circumference is left along the outer peripheral surface of the gas inlet 427b. One blind plate 33 was attached over 3. This installation was done by tightening and fixing the port 34, making it possible to remove it.

さらに、ガス吸入口27bとほぼ同じ形状と大きさの横
断面をもつ簡25を耐熱セメント12の外周面に対して
その全周に同一の間隙を設けて包囲した。筒25の上端
は耐熱セメント12の上端とほぼ同じ高さとし、ここに
上記の盲板33の下端を接触させた。一方、筒25の下
端25aは7ランジ形状とし、絶縁板26を介して作業
床面24にボルト締付等により固定した。
Furthermore, a strip 25 having a cross section of approximately the same shape and size as the gas inlet 27b was surrounded by the outer circumferential surface of the heat-resistant cement 12 with the same gap provided around its entire circumference. The upper end of the cylinder 25 was set at approximately the same height as the upper end of the heat-resistant cement 12, and the lower end of the blind plate 33 was brought into contact therewith. On the other hand, the lower end 25a of the tube 25 has a seven-lung shape and is fixed to the work floor 24 via an insulating plate 26 by tightening bolts or the like.

また1作業床面24の下には補強の目的で床ベース23
を設け、これらは、コンクリート床面18の上に設置し
た。なお、絶縁板261作業床面249.床ペース23
はいずれも簡25との接続部に筒25の内周面と一致す
る大きさの穴を設けた。これらの部品について本実施例
で用いた材料は盲板33.筒25及び作業床面24をア
ルミニウム合金(JIS H4000,A3052)、
絶縁板26をアスベスト、床ベース23を木材とし、い
ずれも高周波誘導に対する配慮で選定した。
In addition, a floor base 23 is provided below the work floor 24 for reinforcement purposes.
were installed on the concrete floor surface 18. In addition, the insulating plate 261 and the work floor surface 249. floor pace 23
In each case, a hole of a size matching the inner circumferential surface of the tube 25 was provided at the connection part with the tube 25. The material used in this example for these parts is blind plate 33. The cylinder 25 and the work floor 24 are made of aluminum alloy (JIS H4000, A3052),
The insulation board 26 is made of asbestos, and the floor base 23 is made of wood, both of which were selected in consideration of high frequency induction.

次に無鉛ヒータの上ぶた3の上面には黒鉛製の放熱ブロ
ック28とΦヤツブ29を組合わせたものを10組配置
した。このとき、放熱ブロック、28の下端面と上ぶた
3の表面は充分密着させ。
Next, ten sets of graphite heat dissipation blocks 28 and Φ pieces 29 were arranged on the upper surface of the upper lid 3 of the lead-free heater. At this time, the lower end surface of the heat radiation block 28 and the surface of the upper lid 3 are brought into close contact with each other.

これらの上から、第1図に示したように詰粉11を詰め
、放熱ブロック28又はキャップ29同士の間に空隙を
残さないようにした。第2図は本加熱炉が加熱運転に入
っているときの上ぶた3よシ上の部分の構造を示す。放
熱ブロック2Bの頭部には円板状の伝熱フィン28aを
多数設けた。また、底部にはツバ28bを設け、上ぶた
30表面と接触する面積をより大きくした。さらに放熱
ブロックの頭部にはキャップ29をかぶせ全ての伝熱フ
ィン28aを周囲の空気から遮断した。キャップ29の
上端面には空気抜き孔29aを2個設け、放熱ブロック
28が高温に加熱された時、キャップ29と放熱ブロッ
ク28との間に含まれる空気が熱膨張して急激にキャッ
プ29及びその周辺の詰粉11が吹き飛ばされるのを防
止した。このあと詰粉11をキャップ29の上端面まで
詰めた。
Powder 11 was packed over these as shown in FIG. 1 so that no voids were left between the heat dissipation blocks 28 or the caps 29. FIG. 2 shows the structure of the portion above the upper lid 3 when the heating furnace is in heating operation. A large number of disc-shaped heat transfer fins 28a are provided at the head of the heat radiation block 2B. Furthermore, a collar 28b is provided at the bottom to further increase the area in contact with the surface of the upper lid 30. Further, a cap 29 was placed over the head of the heat radiation block to isolate all heat transfer fins 28a from the surrounding air. Two air vent holes 29a are provided in the upper end surface of the cap 29, so that when the heat radiation block 28 is heated to a high temperature, the air contained between the cap 29 and the heat radiation block 28 thermally expands, and the cap 29 and its This prevents the surrounding powder 11 from being blown away. Thereafter, the stuffing powder 11 was filled up to the upper end surface of the cap 29.

上記のようにして本加熱炉を加熱運転し冷却過程に入っ
たときは、空気酸化による詰粉の燃焼を最小限に抑えな
がら徐々に上部の詰粉11を取9のぞき、最終的にキャ
ップの下端部29bの位置1で詰粉の表面を下げる。こ
のとき下端部29bのソバ部を利用してキャップ29を
取り去シ、第3図に示す状態とした。ここで、排ガスフ
ード27により強制的に対流している空気流32が。
When the main heating furnace is heated and begins the cooling process as described above, while minimizing the combustion of the stuffing powder due to air oxidation, gradually remove the stuffing powder 11 from the top 9, and finally remove the stuffing powder 9 from the cap. Lower the surface of the stuffed powder at position 1 of the lower end 29b. At this time, the cap 29 was removed using the buckle of the lower end 29b, resulting in the state shown in FIG. 3. Here, the air flow 32 is forced into convection by the exhaust gas hood 27.

放熱ブロックのもつ多数の伝熱フィン28aに接触し、
上ぶた3から直接的に熱をうばう。
comes into contact with a large number of heat transfer fins 28a of the heat radiation block,
Heat is transferred directly from the upper lid 3.

第4図および第5図は本発明になる加熱炉における放熱
ブロックの他の実施例で、第4図は上面図、第5図は側
面図である。
FIGS. 4 and 5 show other embodiments of the heat dissipation block in the heating furnace according to the present invention, with FIG. 4 being a top view and FIG. 5 being a side view.

放熱ブロック350頭部には、軸方向に−まわり細い8
棒35bを設け、この8棒の外周面に。
At the head of the heat dissipation block 350, there is a thin 8 in the axial direction.
A rod 35b is provided on the outer peripheral surface of these eight rods.

放射状に多数のブレード形伝熱フィン35aを設けて放
熱を促進させるようにした。
A large number of blade-shaped heat transfer fins 35a are provided radially to promote heat radiation.

実施例の高周波誘導加熱炉を運転した結果、下記の事項
が確認された。
As a result of operating the high frequency induction heating furnace of the example, the following items were confirmed.

(1)排ガスの流出状況が常時監視できるようになり、
また排ガスポートの閉そくの徴候を確認することが容易
となって、排ガスポートの閉そくする前に付着物の除去
作業を安全かつ迅速に行なうことができ、この作業を第
6図に示す従来の炉の場合の約115の2分に短縮でき
た。
(1) The outflow status of exhaust gas can be constantly monitored,
In addition, it becomes easy to check for signs of blockage in the exhaust gas port, and it is possible to safely and quickly remove deposits before blocking the exhaust gas port. It was possible to shorten the time to about 115 2 minutes.

尚第1図に示すような盲板33を取付けることによって
排ガス吸引に必要なプロワ−の容量を盲板を全く取付け
ない場合の約1/2に低減できた。
By attaching a blind plate 33 as shown in FIG. 1, the capacity of the blower required for suctioning exhaust gas can be reduced to about 1/2 of that in the case where no blind plate is attached.

(2)作業床の床上及び床下の空間に意図的にCotガ
スを滞溜させて炉を運転し、酸素濃度計で同空間の酸素
濃度を測定したところ、2分以内に正常な空気における
酸素濃度に復帰した。
(2) When the furnace was operated with Cot gas intentionally accumulated in the space above and below the work floor, and the oxygen concentration in the same space was measured with an oxygen concentration meter, it was found that the oxygen concentration in normal air was within 2 minutes. concentration has returned.

(3)第6図に示す従来の高周波誘導加熱炉では外径9
00mmの黒鉛製のヒータを2500℃に加熱運転し、
電源を切ってからヒータの温度が50℃以下に低下する
までに5日の時間を費したが9本発明の一実施例になる
第1図の高周波誘導加熱炉ら      においては同
じヒータを使用しても冷却は3日で完了した。
(3) In the conventional high frequency induction heating furnace shown in Fig. 6, the outer diameter is 9.
A 00mm graphite heater was heated to 2500℃,
It took five days for the temperature of the heater to drop below 50°C after the power was turned off, but the same heater was used in the high-frequency induction heating furnace shown in Figure 1, which is an embodiment of the present invention. However, cooling was completed in three days.

(発明の効果) 本発明によれば排ガスフードをはずすことなく。(Effect of the invention) According to the invention, without removing the exhaust gas hood.

排ガスポートの閉そくの監視及び付着物の除去が可能と
なり9作業床の床上又は床下に重いガスが滞溜して作業
者に悪影響を及ぼすことがないなど運転作業が安全にな
ると共に、黒鉛ヒータの冷却時間が短縮され加熱炉の運
転効率が向上する。
This makes it possible to monitor the blockage of exhaust gas ports and remove deposits, making operation work safer such as preventing heavy gas from accumulating on or under the work floor and having a negative impact on workers. The cooling time is shortened and the operating efficiency of the heating furnace is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる高周波誘導加熱炉の全
体を示す断面図、第2図は第1図における放熱ブロック
とキャップの組合せを示す断面図。 第3図は第2図の放熱ブロックの放熱の状態を説明する
断面図、第4図及び第5図は本発明の高周波誘導加熱炉
における放熱ブロックの他の実施例を示し、第4図は上
面図及び第5図は側面図、第6図は従来の代表的な高周
波誘導加熱炉の断面図である。 符号の説明 1・・・容器      2・・・底板3・・・上ぶた
     4・・・ヒータ支持脚5・・・ノズル保護管
  6・・・ノズル7・・・ガス導入管   8・・・
排ガスポート9・・・被加熱物    10・・・治具
11・・・詰粉      12・・・耐熱セメント1
3・・・高周波ワークコイル14・・・キャスタブル1
5・・・断熱材     16・・・コンクリート基礎
17・・・ビット      18・・・コンクリート
床面19・・・炉壁      20・・・作業床21
・・・排ガス7−ド  22・・・リフティングラグ2
3・・・床ペース    24・・・作業床面25・・
・筒       26・・・絶縁板27・・・排ガス
7−ド  28・・・放熱ブロック29・・・キャップ
    30・・・導入ガス31・・・排ガス    
 32・・・空気33・・・盲板      34・・
・取付ボルト35・・・放熱ブロック
FIG. 1 is a sectional view showing the entire high-frequency induction heating furnace according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a combination of the heat dissipation block and the cap in FIG. 1. FIG. 3 is a sectional view explaining the state of heat radiation of the heat radiation block of FIG. 2, FIGS. The top view and FIG. 5 are side views, and FIG. 6 is a sectional view of a typical conventional high frequency induction heating furnace. Explanation of symbols 1...Container 2...Bottom plate 3...Top lid 4...Heater support leg 5...Nozzle protection tube 6...Nozzle 7...Gas introduction tube 8...
Exhaust gas port 9...Heated object 10...Jig 11...Powder filling 12...Heat-resistant cement 1
3... High frequency work coil 14... Castable 1
5... Insulation material 16... Concrete foundation 17... Bit 18... Concrete floor surface 19... Furnace wall 20... Work floor 21
...Exhaust gas 7-de 22...Lifting lug 2
3... Floor pace 24... Working floor surface 25...
・Cylinder 26... Insulating plate 27... Exhaust gas 7-de 28... Heat radiation block 29... Cap 30... Introduced gas 31... Exhaust gas
32...Air 33...Blind plate 34...
・Mounting bolt 35...heat radiation block

Claims (1)

【特許請求の範囲】 1、高周波誘導により黒鉛ヒータを加熱すると共にガス
を導入排出する構造の高周波誘導加熱炉において、高周
波ワークコイルを内蔵する耐熱セメントの外壁の上方に
該外壁より一まわり大きな断面のガス吸込口を有する排
ガスフードを、黒鉛ヒータの上ぶたに取付けた排ガスポ
ートの上端部が見えるように外壁との間に空間を設けて
配置し、排ガスフードのガス吸込口とほぼ同じ形状及び
大きさの断面をもつ筒により外壁を包囲し、かつ作業床
面の床下部の空間と連通する環状空間を設け、頭部に多
数の伝熱フインを有する放熱ブロツク及び該放熱ブロツ
クの頭部をおおうキヤツプの複数組を黒鉛ヒータの上ぶ
たの上面に載置して詰粉を前記キヤツプの上端まで充填
する構造にしてなる高周波誘導加熱炉。 2、排ガスフードのガス吸込口の下端と筒上端との間に
一枚又は複数枚の盲板を部分的に取付けた特許請求の範
囲第1項記載の高周波誘導加熱炉。
[Scope of Claims] 1. In a high-frequency induction heating furnace having a structure in which a graphite heater is heated by high-frequency induction and gas is introduced and discharged, a cross section that is one size larger than the outer wall is provided above the outer wall of heat-resistant cement that houses the high-frequency work coil. An exhaust gas hood with a gas inlet of A heat dissipation block having a large number of heat transfer fins on the head and a head of the heat dissipation block, which surrounds the outer wall with a cylinder having a cross section of the same size and has an annular space communicating with the space under the floor of the work floor. A high-frequency induction heating furnace has a structure in which a plurality of sets of caps are placed on the upper surface of the upper lid of a graphite heater, and powder is filled up to the upper end of the caps. 2. The high-frequency induction heating furnace according to claim 1, wherein one or more blind plates are partially attached between the lower end of the gas inlet of the exhaust gas hood and the upper end of the cylinder.
JP24309584A 1984-11-16 1984-11-16 High-frequency induction heating furnace Pending JPS61122482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24309584A JPS61122482A (en) 1984-11-16 1984-11-16 High-frequency induction heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24309584A JPS61122482A (en) 1984-11-16 1984-11-16 High-frequency induction heating furnace

Publications (1)

Publication Number Publication Date
JPS61122482A true JPS61122482A (en) 1986-06-10

Family

ID=17098711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24309584A Pending JPS61122482A (en) 1984-11-16 1984-11-16 High-frequency induction heating furnace

Country Status (1)

Country Link
JP (1) JPS61122482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314887A (en) * 1988-06-14 1989-12-20 Kazuo Tsumura High-temperature electric furnace
JP2005083633A (en) * 2003-09-08 2005-03-31 Fuji Electric Systems Co Ltd Induction heating type pyrolysis furnace
JP2006234292A (en) * 2005-02-25 2006-09-07 Fuji Electric Systems Co Ltd Induction heating type dry distillation furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314887A (en) * 1988-06-14 1989-12-20 Kazuo Tsumura High-temperature electric furnace
JP2005083633A (en) * 2003-09-08 2005-03-31 Fuji Electric Systems Co Ltd Induction heating type pyrolysis furnace
JP2006234292A (en) * 2005-02-25 2006-09-07 Fuji Electric Systems Co Ltd Induction heating type dry distillation furnace
JP4658638B2 (en) * 2005-02-25 2011-03-23 メタウォーター株式会社 Induction heating type distillation furnace

Similar Documents

Publication Publication Date Title
RU2358831C2 (en) Heated flute for molten metal
EP0510701B1 (en) Improved heater arrangement for aluminum refining systems
JPS6252135A (en) Process for melting thermoplastic material
US2275902A (en) Outlet stack construction for building heating systems
CN107532849A (en) For active metal and the electric induction melting of alloy and holding furnace
JPS61122482A (en) High-frequency induction heating furnace
JP2002500749A (en) Heat exchanger having a tube suspended from a lower end plate capable of thermal movement and an end plate therefor
CN104891486B (en) Graphitization furnace with high heat insulation performance
JPS62252887A (en) Improving device for holding and refining molten aluminum
US3128325A (en) High temperature furnace
TWI824541B (en) Cylindrical heating part and exhaust gas treatment device equipped with cylindrical heating part
JP5832588B2 (en) Ladle heating device
CN204514033U (en) The molten aluminium stove of a kind of insulation
US2290031A (en) Protective device for electric furnaces
KR101159968B1 (en) Cooling Panel of Electric Furnace
CN211331874U (en) Arm protection device of welding robot
JP5255934B2 (en) Intermediate stalk, manufacturing method thereof, and low pressure casting apparatus
CN212469742U (en) Tundish cover lining structure
CN220288238U (en) Kiln tail ventilation cooling system of ceramic sintering kiln
CN214648321U (en) High-temperature-resistant protective cover for railway electric switch machine
CN215217126U (en) Tubular electric furnace
CN219607097U (en) Furnace door structure convenient for replacing heat-resistant material
CN217633055U (en) Special high temperature resistant water-cooling sealed axial flow fan for carbon roasting kiln
JPS5941519Y2 (en) Tunnel kiln heat recovery equipment
CN104677106A (en) Insulated aluminum melting furnace