JPS61122462A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS61122462A
JPS61122462A JP24379484A JP24379484A JPS61122462A JP S61122462 A JPS61122462 A JP S61122462A JP 24379484 A JP24379484 A JP 24379484A JP 24379484 A JP24379484 A JP 24379484A JP S61122462 A JPS61122462 A JP S61122462A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heating
heat
pressurized oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24379484A
Other languages
Japanese (ja)
Other versions
JPH075020B2 (en
Inventor
伊佐治 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24379484A priority Critical patent/JPH075020B2/en
Publication of JPS61122462A publication Critical patent/JPS61122462A/en
Publication of JPH075020B2 publication Critical patent/JPH075020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機器の作動用油圧ポンプと、冷房用冷凍装置と
を併せ備えている、例えば土木建設作業用クレーン車の
運転室などに装架するのに適したヒートポンプ式空気調
和装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to a system installed in, for example, the operator's cab of a crane truck for civil engineering construction work, which is equipped with a hydraulic pump for operating equipment and a refrigeration system for cooling. This article relates to a heat pump type air conditioner suitable for

[従来の技術] 炎天下あるいは厳寒の戸外に曝されて活動する土木建設
機械などの運転者にとって運転空白が冷暖房されている
ことは極めて望ましい。運転室が360°回転するよう
なりレーン車の場゛合、普通自動車と違ってエンジン冷
却温水を暖房用熱源とすることができないので、冷房装
置の他に燃焼式暖房装置を併設することが行われてきた
。外気温がO℃〜−20℃以下にも達する寒冷地では、
冷房装置にいわゆる外気温吸収型のヒートポンプ機能を
与えても側底満足すべき暖房を行うことはできない。
[Prior Art] It is extremely desirable for the operators of civil engineering and construction machinery, etc., who are exposed to the scorching sun or the bitterly cold outdoors, to have air conditioning and heating during operation. Unlike regular cars, in the case of a lane car, where the driver's cab rotates 360 degrees, it is not possible to use engine cooling hot water as a heat source for heating, so it is necessary to install a combustion type heating system in addition to the cooling system. It has been. In cold regions where the outside temperature reaches 0°C to -20°C,
Even if a cooling device is provided with a so-called outside temperature absorption type heat pump function, it is not possible to perform heating that satisfies the bottom of the body.

[発明が解決しようとする問題点] 上述の如くエンジンの冷却温水を暖房用熱源として利用
することのできない土木建設機械等であっても、例えば
運転室を回動させたり油圧シリンダを作動させるために
油圧ポンプを備えているのが一般である。そこで圧縮エ
ネルギーを常に受けることによって寒冷地でも少なくと
も0℃以上に暖められているこれら油圧機器の作動油を
エンジン冷却温水の代換え熱源として活用して、いわば
油圧作動機器の油温吸収型のヒートポンプ式冷暖房装置
を提供しようというのが本発明の目的である。
[Problems to be Solved by the Invention] As mentioned above, even in civil engineering and construction machinery, etc., in which engine cooling hot water cannot be used as a heat source for heating, it can be used, for example, to rotate the driver's cab or operate a hydraulic cylinder. It is generally equipped with a hydraulic pump. Therefore, the hydraulic oil of these hydraulic equipment, which is heated to at least 0°C or higher even in cold regions by constantly receiving compression energy, is used as an alternative heat source for engine cooling hot water, so to speak, as a heat pump that absorbs the oil temperature of hydraulic equipment. It is an object of the present invention to provide a heating and cooling system.

[問題点を解決するための手段] 5        上記目的を達成するために、本発明
のヒートポンプ式空気調和装置は気相冷媒のコンプレッ
サと、冷房サイクル時にコンデンサとして働く室外熱交
換器と、液化冷媒の減圧装置と、冷房サイクル時にエバ
ポレータとしてまた暖房サイクル時にコンデンサとして
働く第1熱交換器と、前記コンプレッサの駆動用油圧モ
ータと、該油圧モータへの加圧油供給手段と、該加圧油
の保有熱を低圧側液冷媒に伝える第2熱交換器と、これ
ら機器を連らねる冷媒配管系に介在された冷・暖房サイ
クル切換用四方弁および逆止弁とを組み合わせてなり、
暖房サイクル時に、低圧側液冷媒が前記第2熱交換器に
通入されるような構成を採用した。
[Means for Solving the Problems] 5 In order to achieve the above object, the heat pump type air conditioner of the present invention includes a compressor for a gaseous refrigerant, an outdoor heat exchanger that functions as a condenser during the cooling cycle, and an outdoor heat exchanger for a liquefied refrigerant. a pressure reducing device, a first heat exchanger that functions as an evaporator during a cooling cycle and as a condenser during a heating cycle, a hydraulic motor for driving the compressor, means for supplying pressurized oil to the hydraulic motor, and holding the pressurized oil. It combines a second heat exchanger that transfers heat to the low-pressure side liquid refrigerant, and a four-way valve and check valve for switching between cooling and heating cycles that are interposed in the refrigerant piping system that connects these devices,
A configuration is adopted in which the low-pressure side liquid refrigerant is passed through the second heat exchanger during the heating cycle.

[作用] 上記の如き構成からなるヒートポンプ式空気調和装置は
、四方弁を冷房サイクル側にセットすることによって普
通の冷房装置として作動する。次に四方弁を暖房サイク
ル側に切換えることによって、いわゆるヒートポンプ式
暖房装置としての冷媒流路が形成されるが、その際の補
助的な熱エネルギー吸収手段として、従来装置のように
外気温を吸収するために冷媒を室外熱交換器に通入させ
る代りにコンプレッサ駆動用油圧モータに供給するため
の、寒冷時においても少なくとも0℃以上の温かい状態
にある加圧油を給熱源とする第2熱交換器に通入させる
ことによって、外気温吸収型のヒートポンプ式空調装置
よりはるかに多量の熱エネルギーが吸収される。
[Operation] The heat pump type air conditioner configured as described above operates as a normal air conditioner by setting the four-way valve to the cooling cycle side. Next, by switching the four-way valve to the heating cycle side, a refrigerant flow path is formed as a so-called heat pump type heating device.At this time, as an auxiliary thermal energy absorption means, it absorbs outside air temperature like a conventional device. In order to supply refrigerant to the hydraulic motor for driving the compressor, instead of passing the refrigerant through an outdoor heat exchanger, a second heat supply system uses pressurized oil that is warm at least 0°C even in cold weather as a heat source. By passing it through the exchanger, much more heat energy is absorbed than in a heat pump type air conditioner that absorbs outside temperature.

[実施例コ 以下に付図に示す実施例に基づいて本発明の具体的構成
を説明する。
[Embodiment] The specific structure of the present invention will be explained below based on the embodiment shown in the attached drawings.

第1図は本発明装置のシステム図であって、1はこの空
気調和装置を搭載した土木建設機械などに設置されてい
る油圧作動機器への加圧油供給手段としての油圧ポンプ
からの与圧油によって駆動される油圧モータ、2は動力
伝導用ベルト19を介して油圧モータ1によって回転す
るコンプレッサ、3は冷媒流路に介在させた冷・暖房サ
イクル切換用四方弁、4は片線気相冷媒のコンデンサ、
5は液化冷媒のレシーバ、6は液化冷媒の減圧装置、7
は冷房サイクル時にエバポレータとしてまた暖房サイク
ル時にはコンデンサとして働く第1熱交換器、8は加圧
油の保有熱を低圧側液冷媒に伝えるための第2熱交換器
、10.11.12および13はそれぞれ冷媒流路に介
在させた逆止弁、15と16は油圧モータ1への加圧油
供給路に介在された、それぞれリリーフ弁と油流量調整
弁、17は第1熱交換器用フアン、18はコンデンサ用
ファン、20と21はブーりである。図中2点鎖線で囲
まれたA部分とB部分とはそれぞれこの装置の室外ユニ
ットと室内ユニットであることを示している。
FIG. 1 is a system diagram of the device of the present invention, in which 1 indicates pressurization from a hydraulic pump as a means of supplying pressurized oil to hydraulically operated equipment installed in civil engineering and construction machinery equipped with this air conditioner. A hydraulic motor driven by oil, 2 a compressor rotated by the hydraulic motor 1 via a power transmission belt 19, 3 a four-way valve for switching between cooling and heating cycles interposed in the refrigerant flow path, and 4 a single-wire gas phase valve. refrigerant condenser,
5 is a liquefied refrigerant receiver; 6 is a liquefied refrigerant pressure reducing device; 7
10.11.12 and 13 are the first heat exchanger that functions as an evaporator during the cooling cycle and as a condenser during the heating cycle; 8 is the second heat exchanger for transmitting the heat retained in the pressurized oil to the low-pressure liquid refrigerant; 10.11.12 and 13 are the 15 and 16 are relief valves and oil flow rate regulating valves, respectively, which are interposed in the pressurized oil supply path to the hydraulic motor 1; 17 is a first heat exchanger fan; 18 is a condenser fan, and 20 and 21 are booleans. In the figure, portions A and B surrounded by two-dot chain lines indicate the outdoor unit and indoor unit of this device, respectively.

第2図は第2熱交換器8の模式的側断面図であって22
は加圧油の流路をなすケーシング、23はケーシング2
2内に加圧油の通過用迷路を形成させるためのじゃま板
群、24と25は加圧油の入口と出口部、26は低圧側
液冷媒を通入させるための熱交換用蛇行管である。
FIG. 2 is a schematic side sectional view of the second heat exchanger 8.
23 is a casing forming a flow path for pressurized oil, and casing 2
2 is a group of baffle plates for forming a labyrinth for pressurized oil to pass through, 24 and 25 are an inlet and an outlet for pressurized oil, and 26 is a meandering pipe for heat exchange for passing liquid refrigerant on the low pressure side. be.

第3図は、本発明装置を装架させるための非自走型クレ
ーン車の外観図であって、50はシャシ、51は車輪、
52はクレーン操作時に使われる車体の固定用脚柱、5
3はウィンチ54と55や油圧作動アーム57を動かす
ための油圧ポンプあるいはダイナモなどを駆動させるた
めのエンジン、58はワイヤ巻込み滑車、Dはクレーン
の操作用運転室である。
FIG. 3 is an external view of a non-self-propelled crane vehicle on which the device of the present invention is mounted, in which 50 is a chassis, 51 is a wheel,
52 is a pedestal for fixing the vehicle body used during crane operation;
3 is an engine for driving the winches 54 and 55 and a hydraulic pump or dynamo for moving the hydraulic operating arm 57, 58 is a wire winding pulley, and D is a driver's cab for operating the crane.

第4図は第3図に描かれた運転至りの透視略図であって
、27と28は室外ユニットAと室内ユニットBとを結
ぶ冷媒の循環用配管、Eは運転席であり、その他の符号
は既述のそれと共通している。
FIG. 4 is a schematic perspective view of the operation depicted in FIG. 3, in which 27 and 28 are refrigerant circulation pipes connecting outdoor unit A and indoor unit B, E is a driver's seat, and other symbols are used. is similar to that already mentioned.

次に本発明装置の作動について冷房サイクル時と暖房サ
イクル時とに分けて説明する。
Next, the operation of the device of the present invention will be explained separately during the cooling cycle and during the heating cycle.

[1]冷房サイクル時の作動 装置の始動スイッチを投入すると加圧油供給源としての
油圧ポンプと油圧モータ1とを結ぶ送油管に介在させた
電磁弁が開弁じて加圧油はリリーフ弁15と油流I’l
l整弁16の働きによって定圧・定へ      流量
のもとに油圧モータ1に送り込まれて回転が始められる
。油圧モータ1の回転力はベルト19および2個のプー
リ20および21を経で冷媒コンプレッサ2を駆動させ
る。圧縮された高圧高温気相冷媒は、冷房サイクル位置
にセットされている四方弁3を通過することによって図
中に実線矢印で示された冷媒流路をたどることになる。
[1] When the start switch of the operating device during the cooling cycle is turned on, the solenoid valve interposed in the oil feed pipe connecting the hydraulic pump as the pressurized oil supply source and the hydraulic motor 1 opens, and the pressurized oil flows to the relief valve 15. and oil flow I'l
With the action of the regulating valve 16, a constant pressure and constant flow rate is fed into the hydraulic motor 1 and rotation is started. The rotational force of the hydraulic motor 1 drives the refrigerant compressor 2 via a belt 19 and two pulleys 20 and 21. The compressed high-pressure, high-temperature gas phase refrigerant passes through the four-way valve 3 set at the cooling cycle position, thereby following the refrigerant flow path shown by the solid line arrow in the figure.

すなわち冷媒管路aに流入した冷媒は逆止弁13に阻ま
れて管路すに入り、冷媒凝縮用コンデンサ4を通過する
間に外気と熱交換して冷却液化し、逆止弁10を通過し
た後逆止弁12に阻まれて管路Cに入りレシーバ5に一
端蓄えられる。レシーバ5から管路dに吐出された冷媒
は減圧装置例えば自動温度式膨張弁6を経て逆止弁11
を通過し、管路eとfをたグクでエバポレータとしての
第1熱交換器7に流入し高温下にある運転室内空気から
気化の潜熱を奪うことによって冷房仕事を行うと共に再
び元の気相にもどり四方弁3、管路9を経て再循環のた
めにコンプレッサ2に吸入される。以上の冷房サイクル
は通常の冷房装置と異なる所はない。
That is, the refrigerant flowing into the refrigerant pipe a is blocked by the check valve 13 and enters the pipe, and while passing through the refrigerant condensing condenser 4, it exchanges heat with the outside air to cool and liquefy, and then passes through the check valve 10. After that, it is blocked by the check valve 12 and enters the conduit C, where it is temporarily stored in the receiver 5. The refrigerant discharged from the receiver 5 to the pipe d passes through a pressure reducing device, for example, an automatic temperature expansion valve 6, and then passes through a check valve 11.
It passes through pipes e and f and flows into the first heat exchanger 7 as an evaporator, where it performs cooling work by removing the latent heat of vaporization from the high-temperature air in the operating room and returns to the original gas phase. It returns via the four-way valve 3 and the line 9 and is sucked into the compressor 2 for recirculation. The above cooling cycle is no different from a normal cooling system.

[2]暖房サイクル時の作動 装置の始動スイッチが投入され空調モードスイッチが暖
房サイクル側に切換えられると、冷房サイクル時と同様
にしてコンプレッサ2から吐出された高圧高温冷媒は四
方弁3を経て図中の鎖線で示された流路をたどることに
なる。即ち管路りに流入した比較的高い温度と圧力を保
有する気相冷媒は、ヒータとしての第1熱交換器7を通
過する間に運転室内の冷たい空気と熱交換してこれを暖
め暖房仕事を行うと共に自身は冷却して液化される。つ
まりこの場合第1熱交換器7はコンデンサとして機能す
ることになる。液化冷媒は管路fをたどり逆止弁11に
阻まれて逆止弁12を通過した後、逆止弁10に阻まれ
て管路Cからレシーバ5に流入する。レシーバ5から吐
出された冷媒は減圧装置6を経て低圧になり、高圧側管
路eを避けて管路iをたどり第2熱交換器8に通入させ
られる。第2熱交換器8は、油圧ポンプで圧縮エネルギ
ーを受は取り、また油圧モータ1内で摩擦エネルギーを
生じることによって暖められている加圧油の帰路配管j
の途中に介在されているので、低圧側液冷媒はこの熱交
換器内で加圧油から気化の潜熱を奪いとって再び気体に
もどり逆止弁13を通過して管路a、四方弁3、管路9
を経てコンプレッサ2に帰着する。
[2] When the start switch of the operating device during the heating cycle is turned on and the air conditioning mode switch is switched to the heating cycle side, the high-pressure, high-temperature refrigerant discharged from the compressor 2 passes through the four-way valve 3 and is refrigerated in the same manner as during the cooling cycle. Follow the flow path indicated by the dashed line inside. That is, the gas phase refrigerant having a relatively high temperature and pressure flowing into the pipeline exchanges heat with the cold air in the driver's cabin while passing through the first heat exchanger 7 serving as a heater, warming it and performing heating work. At the same time, it cools and liquefies itself. In other words, in this case, the first heat exchanger 7 functions as a condenser. The liquefied refrigerant follows the pipe f, is blocked by the check valve 11, passes through the check valve 12, and then is blocked by the check valve 10 and flows into the receiver 5 from the pipe C. The refrigerant discharged from the receiver 5 passes through the pressure reducing device 6 to have a low pressure, and then passes through the second heat exchanger 8 following the pipe i, avoiding the high-pressure pipe e. The second heat exchanger 8 receives and receives compression energy from a hydraulic pump and is a return pipe for pressurized oil that is heated by generating frictional energy within the hydraulic motor 1.
Since the low-pressure side liquid refrigerant takes away the latent heat of vaporization from the pressurized oil in this heat exchanger, it returns to gas again and passes through the check valve 13 to the pipe a and the four-way valve 3. , conduit 9
It returns to compressor 2 through .

参考のために、従来の外気温吸収型のヒートポンプ式冷
暖房装置の暖房サイクルを第1図を借りて説明すると、
冷媒がレシーバ5を経て減圧装置6に流入する経路まで
は本発明装置と共通しているが、減圧装置i6から吐出
された冷媒は管路iから破線で示した管路にと1を経て
外気との熱交換器としてのコンデンサ4を通過する門に
外気から気化の潜熱を吸収したうえ、コンプレッサ2に
吸入されるサイクルを繰り返すように構成されている。
For reference, the heating cycle of a conventional heat pump air-conditioning system that absorbs outside air temperature is explained using Figure 1.
The route through which the refrigerant flows through the receiver 5 and into the pressure reducing device 6 is the same as in the device of the present invention, but the refrigerant discharged from the pressure reducing device i6 flows from the pipe i to the pipe shown by the broken line and through the pipe 1 to the outside air. The latent heat of vaporization is absorbed from the outside air through a gate passing through a condenser 4 as a heat exchanger with the outside air, and the latent heat of vaporization is then sucked into the compressor 2 to repeat the cycle.

そこで、上記の従来の外気温吸収型のヒートポンプ式冷
暖房装置と、本発明の油圧作動機器の油温吸収型のヒー
トポンプ式冷暖房装置とを比較してみると、前者は外気
温が0℃〜−20℃以下に達する寒冷時には、暖房性能
が著しく低下する上に、暖房開始後定常運転温度に到達
するまでにかなり時間がかかって、いわゆる即効暖房能
力がほとんど失われ、更には外気に触れているコンデン
サ4に着霜するので、暖房運転中にも例えば50分経過
する毎に10分間といった間隔をもって霜取りのための
冷房サイクル運転を行い圧縮冷媒の凝縮熱を利用して霜
を溶かす必要がある。その際に冷風を室内に吹出させな
いためにファン17は停止させるので、この間に熱容歇
の小さな狭い運転室内はかなり急速に冷却されてしまう
ことになり、極めて不満足な暖房しか行うことができな
くなる。
Therefore, when comparing the above-mentioned conventional outside temperature absorption type heat pump type air conditioning system and the oil temperature absorption type heat pump type air conditioning system of the hydraulically operated equipment of the present invention, the former has an outside temperature of 0°C to - In cold weather that reaches 20 degrees Celsius or below, not only does the heating performance drop significantly, but it takes a considerable amount of time to reach the steady operating temperature after heating starts, and most of the so-called immediate heating capacity is lost, and what's more, it is exposed to the outside air. Since frost forms on the condenser 4, it is necessary to perform a cooling cycle operation for defrosting at intervals of 10 minutes, for example every 50 minutes, during heating operation to melt the frost using the condensation heat of the compressed refrigerant. At this time, the fan 17 is stopped in order to prevent cold air from blowing into the room, so during this time the narrow operating room with a small heat exchanger is cooled down quite rapidly, making it possible to provide only extremely unsatisfactory heating. .

一方後者の本発明装置は、厳寒時にも最低0℃以上は充
分に確保され油圧ポンプの定常運転状態のもとでは冬期
でも10〜30℃に温まっている加圧油を外気温に代る
暖房用熱源として使用するので、よほどの厳寒時でない
限り暖房能力の不足を嘆くや       ことは起こ
らず、また即効暖房も油圧ポンプの暖機運転を行うこと
によって可能であり、もちろんコンデンサの霜取りのた
めの暖房機能の低下や自動霜取り機能のために余分の制
御装置をつける必要がなく、暖房が中断されるという不
都合をまぬがれることができる。
On the other hand, the latter device of the present invention uses pressurized oil, which is heated to 10 to 30 degrees Celsius even in winter, to maintain a temperature of at least 0 degrees Celsius or higher even in severe cold, and under steady operation of the hydraulic pump, in place of the outside temperature. Since it is used as a heat source for general use, there is no need to worry about the lack of heating capacity unless it is extremely cold, and instant heating is possible by warming up the hydraulic pump, and of course, it is possible to use a heater to defrost the condenser. There is no need to install an extra control device to lower the heating function or to automatically defrost, and the inconvenience of interruptions in heating can be avoided.

本発明装置の核心部分をなす熱交換器8を加圧油の配管
系中のいずれの個所に設けるかについては、油圧モータ
1の下流側が最も適している。油圧モータ1内で油圧が
低下するのに伴って油温が上昇する効果に加えて、第2
熱交換器8はより低い耐圧構造で足りるからである。
As to where in the pressurized oil piping system the heat exchanger 8, which is the core of the device of the present invention, is to be installed, it is most suitable to install it downstream of the hydraulic motor 1. In addition to the effect of increasing oil temperature as the oil pressure decreases within the hydraulic motor 1, the second
This is because the heat exchanger 8 only needs to have a lower pressure-resistant structure.

また油圧モータ1への給油路にはリリーフ弁15と油流
量制御弁16とが設けられているので、リリーフ弁15
の逃がし圧を調節する方法と、油流量を増減させる方法
とのいずれかの単用または併用によって自由自在に油圧
モータ1の回転数、従ってコンプレッサ2の冷媒圧縮お
よび循環能力を制御することができる。このことは本発
明装置の暖房能力が充分に満足すべき高い水準から、必
要最小限度の低い水準に至るまで自在に調節させられる
ことを意味し、各個人毎に異なる空調状態への要求に対
して俊敏に応答させることができる。
Further, since a relief valve 15 and an oil flow control valve 16 are provided in the oil supply path to the hydraulic motor 1, the relief valve 15
The rotational speed of the hydraulic motor 1, and therefore the refrigerant compression and circulation capacity of the compressor 2, can be freely controlled by using either the method of adjusting the relief pressure of the compressor or the method of increasing/decreasing the oil flow rate, either alone or in combination. . This means that the heating capacity of the device of the present invention can be freely adjusted from a sufficiently high level to a low level that is the bare minimum, and can accommodate the different air conditioning requirements of each individual. can respond quickly.

なお第1゛図のシステム図はあくまでも本発明装置の基
本構成の説明のために例示したものであって、細部の構
成は例えば減圧装置としてキャピラリチューブを使用し
、逆止弁に代えて電磁弁を採用し、あるいはレシーバを
省略したり、または第2熱交換器を加圧油の供給配管に
対して油圧モータと並列に配置するなど、装置の個々の
設置状況や制作コストなどの兼ね合いにおいて臨機応変
に変更しても一向さしつかえない。またコンプレッサの
運転断続は通常の車両用冷暖房装置に組み込まれている
マグネットクラッチを使用して行うこともできる。
Note that the system diagram in Figure 1 is merely an example for explaining the basic configuration of the device of the present invention, and the detailed configuration may include, for example, a capillary tube used as a pressure reducing device and a solenoid valve instead of a check valve. Depending on the individual installation situation of the equipment and production costs, there may be some flexibility, such as adopting a new heat exchanger, omitting the receiver, or placing the second heat exchanger in parallel with the hydraulic motor in the pressurized oil supply piping. Even if you change it as needed, there is no problem. Furthermore, the operation of the compressor can be switched on and off using a magnetic clutch that is incorporated in a normal vehicle air-conditioning system.

上記実施例では本発明装置をクレーン車に装架させてい
るが、要は油圧ポンプなどの加圧油供給源はあるものの
、暖房用エネルギー源としての動力あるいは燃料の供給
の点において難があり、且つ非常な寒冷下にあるという
条件が当てはまる使用個所においてこの装置の長所を有
効に引き出すことができる。
In the above embodiment, the device of the present invention is mounted on a crane truck, but although there is a pressurized oil supply source such as a hydraulic pump, there are difficulties in supplying power or fuel as an energy source for heating. The advantages of this device can be effectively brought out in locations where the device is used under conditions such as , and extremely cold conditions.

[発明の効果] 本発明のヒートポンプ式空調装置は下記の如き効果を奏
する。
[Effects of the Invention] The heat pump type air conditioner of the present invention has the following effects.

イ)運転室が360″回転するクレーン車などに搭載し
て使用する場合、従来の外気温熱源型のヒートポンプ式
空調装置では、気温がO〜−20℃以下に及ぶ寒冷時に
は暖房能力を期待できない。しかも一般車両と違ってエ
ンジン冷却水温を利用できないので、燃焼式暖房装置を
別個に使用しなければならず、設置スペース、保守、経
費などの点で大きな不利益をともなったのに対して、本
発明装置は冷媒コンプレッサの駆動用油圧モータから供
給される寒冷時でも0℃を下がることがなく冬期でも1
0〜30℃になる加圧油の保有熱を吸収するように構成
されているので、ヒートポンプ式空調装置唯一台だけで
厳寒時にも満足すべき暖房を行うことができる。
b) When used on a crane vehicle with a cab that rotates 360 inches, conventional heat pump air conditioners using outside temperature heat sources cannot be expected to provide sufficient heating capacity in cold weather, where the temperature ranges from 0 to -20 degrees Celsius. Moreover, unlike regular vehicles, the engine cooling water temperature cannot be used, so a combustion heating system must be used separately, which is a major disadvantage in terms of installation space, maintenance, and costs. The device of the present invention supplies the refrigerant from the hydraulic motor for driving the refrigerant compressor, and does not drop below 0°C even in cold weather.
Since it is configured to absorb the heat held by the pressurized oil at a temperature of 0 to 30 degrees Celsius, satisfactory heating can be performed even in severe cold with only one heat pump type air conditioner.

口)加圧油供給源としての油圧ポンプの暖機運転を行う
ことによって、充分な即効暖房能力を与えることができ
る。
(1) Sufficient immediate heating capacity can be provided by warming up the hydraulic pump as the pressurized oil supply source.

ハ)リリーフ弁や油流量制御弁の操作を通じて油圧モー
タの回転数、従ってコンプレッサの能力を巾広い範囲に
亘って自在に且つ緻密にコントロールできるので、暖房
状態の調節も自在且つ的確に行うことができる。
c) By operating the relief valve and oil flow control valve, the rotation speed of the hydraulic motor and, therefore, the capacity of the compressor can be freely and precisely controlled over a wide range, so the heating condition can be adjusted freely and accurately. can.

二)ヒートポンプの補助吸熱源として、油圧作動機器の
駆動用加圧油に、圧縮エネルギーや摩擦エネルギーある
いは減圧エネルギーの受容という形で自然発生的に蓄え
られたいわば廃熱を利用するものであり、時に応じて加
圧油の過熱防止効果も得られる。
2) As an auxiliary heat absorption source for a heat pump, it utilizes so-called waste heat that is naturally stored in the pressurized oil for driving hydraulically operated equipment in the form of receiving compression energy, frictional energy, or decompression energy; Depending on the situation, the effect of preventing the pressurized oil from overheating can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置のシステム図、第2図は第2熱交換
器の模式的側断面図、第3図は装置を装、      
架した非自走式のクレーン車の斜視図、そして第4図は
クレーン車の運転室の透視図である。
Fig. 1 is a system diagram of the device of the present invention, Fig. 2 is a schematic side sectional view of the second heat exchanger, and Fig. 3 is a system diagram of the device of the present invention.
FIG. 4 is a perspective view of a suspended non-self-propelled crane vehicle, and FIG. 4 is a perspective view of the operator's cab of the crane vehicle.

Claims (1)

【特許請求の範囲】 1)気相冷媒を圧縮するコンプレッサと、冷房サイクル
時にコンデンサとして働く室外熱交換器と、液化冷媒の
減圧装置と、冷房サイクル時にエバポレータとしてまた
暖房サイクル時にコンデンサとして働く第1熱交換器と
、前記コンプレッサの駆動用油圧モータと、該油圧モー
タへの加圧油供給手段と、該加圧油の保有熱を低圧側液
冷媒に伝える第2熱交換器と、これら機器を連らねる冷
媒配管系に介在された冷・暖房サイクル切換用四方弁お
よび逆止弁とを組み合わせてなり、 暖房サイクル時に、前記低圧側液冷媒が前記第2熱交換
器に通入されるように構成されていることを特徴とする
ヒートポンプ式空気調和装置。 2)前記第2熱交換器への前記加圧油の供給口が、前記
油圧モータへの加圧油供給路の帰路に設けられているこ
とを特徴とする特許請求の範囲第1項記載のヒートポン
プ式空気調和装置。
[Scope of Claims] 1) A compressor that compresses a gas phase refrigerant, an outdoor heat exchanger that functions as a condenser during the cooling cycle, a pressure reducing device for liquefied refrigerant, and a first compressor that functions as an evaporator during the cooling cycle and as a condenser during the heating cycle. A heat exchanger, a hydraulic motor for driving the compressor, a means for supplying pressurized oil to the hydraulic motor, a second heat exchanger that transfers the heat retained in the pressurized oil to the low-pressure side liquid refrigerant, and these devices. A four-way valve for switching cooling/heating cycles and a check valve are interposed in a continuous refrigerant piping system in combination, and the low-pressure side liquid refrigerant is passed through the second heat exchanger during the heating cycle. A heat pump air conditioner characterized by comprising: 2) The pressurized oil supply port to the second heat exchanger is provided on the return path of the pressurized oil supply path to the hydraulic motor. Heat pump air conditioner.
JP24379484A 1984-11-19 1984-11-19 Heat pump type air conditioner Expired - Lifetime JPH075020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24379484A JPH075020B2 (en) 1984-11-19 1984-11-19 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24379484A JPH075020B2 (en) 1984-11-19 1984-11-19 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS61122462A true JPS61122462A (en) 1986-06-10
JPH075020B2 JPH075020B2 (en) 1995-01-25

Family

ID=17109045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24379484A Expired - Lifetime JPH075020B2 (en) 1984-11-19 1984-11-19 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH075020B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363412U (en) * 1989-10-23 1991-06-20
JPH0363407U (en) * 1989-10-23 1991-06-20
JPH0363408U (en) * 1989-10-23 1991-06-20
JPH0492417U (en) * 1990-12-28 1992-08-12
JPH0492418U (en) * 1990-12-28 1992-08-12
US5318100A (en) * 1991-11-18 1994-06-07 Sanden Corporation Air conditioning system and method for vehicles
US5355939A (en) * 1991-11-18 1994-10-18 Sanden Corporation Hydraulically driven vehicular air conditioning system with valve cleaning feature

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363412U (en) * 1989-10-23 1991-06-20
JPH0363407U (en) * 1989-10-23 1991-06-20
JPH0363408U (en) * 1989-10-23 1991-06-20
JPH0492417U (en) * 1990-12-28 1992-08-12
JPH0492418U (en) * 1990-12-28 1992-08-12
US5318100A (en) * 1991-11-18 1994-06-07 Sanden Corporation Air conditioning system and method for vehicles
US5355939A (en) * 1991-11-18 1994-10-18 Sanden Corporation Hydraulically driven vehicular air conditioning system with valve cleaning feature

Also Published As

Publication number Publication date
JPH075020B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US7055590B2 (en) Air conditioning apparatus for vehicle
CA1307666C (en) Auxiliary air conditioning, heating and engine warming system for trucks
US8733126B2 (en) Vehicle air-conditioning apparatus
CN100587348C (en) Thermal storage air conditioner
US4384608A (en) Reverse cycle air conditioner system
CN112498046B (en) Thermal management system
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
JPS61122462A (en) Heat pump type air conditioner
US2355040A (en) Refrigerating apparatus
JP3272663B2 (en) Vehicle air conditioner
US9180891B2 (en) HVAC system for heating and cooling a mobile machine cabin
JP3583792B2 (en) Hot water supply / air conditioning system
JPS61150818A (en) Air conditioner for automobile
KR102577144B1 (en) Automotive heat pump system
KR100298724B1 (en) Heater pump for electric automobile
KR102478225B1 (en) Electric vehicle air conditioning system and its control method
JP2508758B2 (en) Freezing / heating control device mounted on the vehicle
JPS63482Y2 (en)
JP3142897B2 (en) Cooling and heating system with heat storage function
JPH0212541Y2 (en)
JP2001219732A (en) Air conditioner for vehicle
JPH06123499A (en) Air conditioner
JPS6311569Y2 (en)
JP2020132053A (en) Vehicle air conditioner
JPS5973356A (en) Air conditioner for diesel locomotive