JPS6112239B2 - - Google Patents

Info

Publication number
JPS6112239B2
JPS6112239B2 JP3650381A JP3650381A JPS6112239B2 JP S6112239 B2 JPS6112239 B2 JP S6112239B2 JP 3650381 A JP3650381 A JP 3650381A JP 3650381 A JP3650381 A JP 3650381A JP S6112239 B2 JPS6112239 B2 JP S6112239B2
Authority
JP
Japan
Prior art keywords
corrosion
waste liquid
acid
sus316l
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3650381A
Other languages
Japanese (ja)
Other versions
JPS57151899A (en
Inventor
Katsumi Suzuki
Kazutoshi Ito
Mamoru Suzuki
Akira Minato
Hideo Ukaji
Kyotaka Shirasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3650381A priority Critical patent/JPS57151899A/en
Publication of JPS57151899A publication Critical patent/JPS57151899A/en
Publication of JPS6112239B2 publication Critical patent/JPS6112239B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は原子力プラント廃液の凊理方法に係
り、特にステンレス鋌材で圢成された原子力プラ
ント廃液凊理装眮の腐食ずスケヌル付着ずを防止
する方法に関する。 原子力発電所においお排出される攟射性廃液
は、所倖ぞ攟出するこずができないので、所内に
蚭けられた廃液凊理蚭備においお凊理される。こ
の蚭備においお凊理される攟射性廃液には、むオ
ン亀換暹脂の再生廃液、床ドレンおよび機噚ドレ
ン等である。これらの廃液䞭には、むオン亀換暹
脂の再生に䜿甚した氎酞化ナトリりムず硫酞から
生成した硫酞ナトリりム、むオン亀換暹脂に捕集
されおいた鉄酞化物Fe2O3Fe3O4および氎酞
化鉄FeOH3のクラツド、冷华氎ずしお䜿
甚しおいる海氎の混入による塩化ナトリりム、塩
化カルシりムおよび塩化マグネシりム、床ドレン
氎䞭のカルシりムおよびマグネシりム化合物ある
いは補機冷华系統機噚の腐食抑制剀ずしお䜿甚し
おいる亜硝酞ナトリりムおよびクロム酞ナトリり
ム等が含たれおいる。したが぀お、安党性確保の
ためにこれらの廃液を廃液濃瞮噚に集めお加熱蒞
気により蒞発させお濃瞮枛容しお固圢化し、これ
をドラム猶に入れお埋没凊理するのが䞀般的であ
る。 しかしながら、䞊蚘廃液を濃瞮する際、液の濃
床が高たるに぀れお皮々の問題が生じおいる。そ
の぀は、濃瞮が進むに぀れお腐食因子である塩
玠むオンおよび硫酞むオン濃床が増倧しお濃瞮噚
を構成しおいるステンレス鋌に孔食、隙間腐食お
よび応力腐食割れが発生し濃瞮噚の皌動率が䜎䞋
する問題である。その぀は、濃瞮が進むに぀れ
おカルシりムおよびマグネシりム成分の溶解床が
䜎䞋しお、氎に難溶性の沈柱物であるスケヌル
CaSO4CaCO3及びMgOH2等ず鉄の酞化
物および氎酞化物が混入しお固着する問題であ
る。スケヌルが固着するず濃瞮噚の熱効率が䜎䞋
するずずもに、スケヌルず濃瞮噚の管壁に隙間が
圢成され、塩玠むオンの濃瞮によ぀お隙間腐食が
さらに助長される。 このような問題に察しお、埓来は防食の面から
クロム酞塩系防食剀を廃液に添加しおいたが、ク
ロム酞塩は塩玠むオンおよび硫酞むオンが倚く存
圚するず逆にステンレス鋌の腐食を促進する。た
た重合リン酞塩系防食剀は廃液䞭のカルシりムお
よびマグネシりムず反応しお氎に難溶性のオルト
リン酞カルシりムおよびマグネシりムを生成し、
これが猶壁に固着しおスケヌルを圢成し濃瞮噚の
熱効率を䜎䞋させるばかりでなく、濃瞮噚を構成
するステンレス鋌材に察しおは防食䜜甚を有しな
い。なお、最近はポリリン酞塩ず類䌌した特性を
有し、しかも高濃瞮埪環冷华氎系などにおける鉄
系材料の防食剀ずしお有機リン酞塩系防食剀ずし
おホスホン酞およびアミノホスホン酞が開発され
おいる。しかし、これらの防食剀は鉄には防食効
果を有するステンレス鋌に察しおはほずんど防食
効果を有しない。たた、スケヌル付着防匏剀ずし
おは、海氎淡氎化装眮においお高枩ブラむン郚に
析出する硫酞カルシりム及び氎酞化マグネシりム
スケヌルの陀去のためにポリマレむン酞が開発さ
れおいる。しかし、ポリマレむン酞はスケヌル防
止効果は有するが、廃液濃瞮噚甚ステンレス鋌に
察しおは防食効果を有しない。したが぀お、埓来
の腐食防止剀たたはスケヌル防止剀は、原子力プ
ラント廃液凊理蚭備のステンレス鋌材に察し、十
分な防食効果を有しないものであ぀た。このた
め、ステンレス鋌の孔食、隙間腐食および応力腐
食割れを完党に防止し埗ないものであ぀た。 本発明の目的は、原子力プラント廃液凊理装眮
の腐食ず装眮内におけるスケヌルの析出固着ずを
防止できる原子力プラント廃液の凊理方法を提䟛
するこずである。 本発明者らは、原子力プラント廃液凊理装眮、
特に濃瞮噚に䜿甚されおいるステンレス鋌材に察
する防食䜜甚を有する化孊物質に぀いお探玢した
結果、正リン酞塩が極めお有効であるこずを芋い
出した。特に、正リン酞塩ず、カルボキシル基を
有する有機化合物、―ハむドロオキシキノリン
およびホスホン酞又はこれらの氎溶性塩から遞ば
れる皮以䞊の成分ずを䜵甚するず、ステンレス
鋌材に察する腐食䜜甚ずずもに固着スケヌルの防
止䜜甚を有するこずを芋い出し、本発明に到達し
たものである。 本発明においお、原子力プラント廃液に添加さ
れる正リン酞塩は、PO4アルリ金属
のモル比〜の正リン酞塩、すなわち第䞉リン
酞塩、第二リン酞塩、第䞀リン酞塩である。これ
らの正リン酞塩のなかで、特に第リン酞ナトリ
りムがステンレス鋌材に察する防食䜜甚が優れお
いる。 正リン酞塩のステンレス鋌材に察する防食䜜甚
を詊隓䟋によ぀お瀺す 第衚に瀺した成分を含む暡擬廃液濃瞮液䞭に
おける垂販SUS316L鋌材のアノヌド分極曲線を
枬定した。
The present invention relates to a method for treating nuclear power plant waste liquid, and more particularly to a method for preventing corrosion and scaling of a nuclear power plant waste liquid treatment device made of stainless steel. Radioactive liquid waste discharged at a nuclear power plant cannot be discharged outside the plant, so it is treated in a waste liquid treatment facility provided within the plant. Radioactive waste liquids treated in this facility include recycled waste liquid of ion exchange resins, floor drains, and equipment drains. These waste liquids contain sodium sulfate generated from the sodium hydroxide and sulfuric acid used to regenerate the ion exchange resin, iron oxides (Fe 2 O 3 , Fe 3 O 4 ) and Suppressing corrosion of iron hydroxide (Fe(OH) 3 ) cladding, sodium chloride, calcium chloride, and magnesium chloride caused by contamination with seawater used as cooling water, calcium and magnesium compounds in floor drain water, or auxiliary cooling system equipment. Contains sodium nitrite and sodium chromate, which are used as agents. Therefore, in order to ensure safety, it is common practice to collect these waste liquids in a waste liquid concentrator, evaporate them with heated steam, concentrate and reduce the volume, solidify them, and then place them in drums for burial treatment. However, when concentrating the waste liquid, various problems arise as the concentration of the liquid increases. One problem is that as concentration progresses, the concentration of chlorine ions and sulfate ions, which are corrosion factors, increases, causing pitting corrosion, crevice corrosion, and stress corrosion cracking in the stainless steel that makes up the concentrator. This is a problem where the amount of energy decreases. Two of these are scales (CaSO 4 , CaCO 3 and Mg(OH) 2 , etc.), which are hardly water-soluble precipitates, and iron oxides and The problem is that hydroxide gets mixed in and sticks. When scale adheres, the thermal efficiency of the concentrator decreases, and gaps are formed between the scale and the tube wall of the concentrator, and the concentration of chlorine ions further promotes crevice corrosion. To address this problem, chromate-based anticorrosive agents have traditionally been added to wastewater to prevent corrosion, but chromate actually accelerates corrosion of stainless steel when chlorine and sulfate ions are present in large quantities. do. In addition, polymerized phosphate-based corrosion inhibitors react with calcium and magnesium in the waste liquid to produce calcium and magnesium orthophosphates that are sparingly soluble in water.
This not only adheres to the can wall and forms scale, reducing the thermal efficiency of the concentrator, but also has no anti-corrosion effect on the stainless steel materials that constitute the concentrator. Recently, phosphonic acids and aminophosphonic acids have been developed as organophosphate corrosion inhibitors that have properties similar to polyphosphates and can be used as corrosion inhibitors for iron-based materials in highly concentrated circulating cooling water systems. However, these anticorrosive agents have almost no anticorrosive effect on stainless steel, although they have an anticorrosive effect on iron. Furthermore, as a scale adhesion prevention agent, polymaleic acid has been developed for removing calcium sulfate and magnesium hydroxide scales that precipitate in the high-temperature brine section of seawater desalination equipment. However, although polymaleic acid has a scale-preventing effect, it does not have a corrosion-preventing effect on stainless steel for waste liquid concentrators. Therefore, conventional corrosion inhibitors or scale inhibitors do not have a sufficient anticorrosive effect on stainless steel materials used in nuclear power plant waste liquid treatment equipment. For this reason, it has not been possible to completely prevent pitting corrosion, crevice corrosion and stress corrosion cracking of stainless steel. An object of the present invention is to provide a method for treating nuclear plant waste liquid that can prevent corrosion of a nuclear power plant waste liquid treatment apparatus and precipitation and fixation of scale within the apparatus. The present inventors have developed a nuclear power plant waste liquid treatment device,
In particular, as a result of searching for chemical substances that have an anticorrosion effect on stainless steel materials used in concentrators, we discovered that orthophosphate is extremely effective. In particular, when orthophosphate is used in combination with one or more components selected from organic compounds having a carboxyl group, 8-hydroxyquinoline, phosphonic acid, or water-soluble salts thereof, it has a corrosive effect on stainless steel materials and also causes fixed scale. The present invention has been achieved based on the discovery that it has a preventive action. In the present invention, the orthophosphate added to the nuclear power plant wastewater is M/PO 4 (M: allurimetal).
These are orthophosphates with a molar ratio of 1 to 3, that is, tertiary phosphate, secondary phosphate, and primary phosphate. Among these orthophosphates, dibasic sodium phosphate is particularly effective in preventing corrosion of stainless steel materials. The anticorrosion effect of orthophosphate on stainless steel materials is shown through test examples. The anode polarization curve of a commercially available SUS316L steel material in a simulated waste liquid concentrate containing the components shown in Table 1 was measured.

【衚】 塩玠むオン濃床を〜10000ppm含む105℃、
pH7.0の廃液暡擬濃瞮液䞭でのSUS316Lのアノヌ
ド分極曲線は、第図に瀺すように、アノヌド電
流はCl-濃床が倚くなるにしたが぀お卑電䜍偎で
倧きくな぀おおり、SUS316Lの耐食性はCl-濃床
の増加ずずもに䜎䞋しおいるこずがわかる。第
図にCl-を1000ppm含有する第衚の廃液暡擬濃
瞮液にPO4 3-Na2HPO4を〜10000ppm添加し
た堎合のSUS316Lのアノヌド分極曲線を瀺す。
図から明らかなようにアノヌド電流が急激に増加
する電䜍は、PO4 3-の添加量が倚くなるにしたが
぀お貎電䜍偎に移行しおいるこずから、
SUS316Lの耐食性はPO4 3-の添加量が倚くなるほ
ど向䞊するこずがわかる。次にアノヌド分極曲線
から腐食皋床を比范するために良く採甚されおい
る孔食電䜍を算出した。孔食電䜍は腐食防食協䌚
のステンレス鋌局郚腐食分科䌚においお甚いられ
るアノヌド電流密床200Όcm2に察応する電䜍
ずした。そこで、第および第図のアノヌド分
極曲線から孔食電䜍を求め、これをPO4 3-濃床に
察しおプロツトするず第図のようになる。第
図から、Cl-を含たない堎合の孔食電䜍すなわち
SUS316Lに腐食が発生しない電䜍にするには、
Cl-を100ppm含む堎合にはPO4 3-を100ppm以䞊
添加する必芁がある。その他の堎合にはPO4 3-を
1000ppm以䞊添加する必芁があるこずがわか
る。以䞊のように、Cl-を含む廃液暡擬濃瞮液䞭
でのSUS316Lの耐食性はPO4 3-を添加すれば倧幅
に向䞊するこずがわかる。 因みにトリポリリン酞塩のような重合リン酞塩
で䞊蚘同様にしおアノヌド分極曲線を求めるず、
第図のようにトリポリリン酞塩の添加量が増加
しおもSUS316Lのアノヌド分極挙動はほが同じ
である。したが぀お重合リン酞塩の堎合、ステン
レス鋌材に察する防食䜜甚がないこずがわかる。 特に本発明においおは、原子力プラント廃液に
察し、正リン酞塩ず、カルボキシル基を有する有
機化合物、―ハむドロオキシキノリンおよびホ
スホン酞又はそれらの氎溶性塩から遞ばれる成分
ずが䜵甚添加される。 ここでカルボキシル基を有する有機化合物ずし
お、コハク酞、マロン酞、マレむン酞、シコり酞
などのカルボン酞、グルコン酞、ク゚ン酞、酒石
酞、リンゎ酞などのオキシカルボン酞、゚゚チレ
ンゞアミンテトラ酢酞EDTA、ニトロトリ酢
酞NTAなどのアミノポリカルボン酞を挙げ
るこずができる。たたこれらの氎溶性塩、䟋えば
ナトリりム塩、カリりム塩、アンモニりム塩など
を甚いるこずもできる。 ホスホン酞ずしおは、ニトリロトリメチルホス
ホン酞、アミノトリメチルホスホン酞などを挙げ
るこずができ、これらの氎溶性塩、䟋えばナトリ
りム塩、カリりム塩、アンモニりム塩などを甚い
るこずもできる。 正りん酞塩を原子力プラント廃液に単独に添加
した堎合、廃液䞭のカルシりムおよびマグネシり
ムず反応しおリン酞カルシりムおよびリン酞マグ
ネシりムを生成し、ステンレス鋌材の腐食は防止
されるが、固着スケヌルの析出を完党に防止する
こずができない。しかし正リン酞塩に、カルボキ
シ基を有する有機化合物、―ハむドロオキシキ
ノリン、ホスホン酞又はそれら氎溶性塩を䜵甚す
るず、本来、沈柱皮膜圢成型の防食剀である正リ
ン酞塩の欠点を解消し぀぀、固着スケヌルの析出
を防止でき、たた正リン酞塩の防食䜜甚を損うこ
ずもない。 第図、第図、第図および第図は、第
衚に瀺した暡擬濃瞮廃液にそれぞれク゚ン酞、マ
レむン酞、コハク酞およびEDTA―2Naを単独、
たたはリン酞ナトリりムずの䜵甚添加した堎合の
アノヌド分極曲線を瀺しおいる。これらの図によ
れば、ク゚ン酞、マレむン酞、コハク酞および
EDTA―2Naを単独に50ppm、又はPO4 3-を
100ppm組合せた堎合のアノヌド電流は卑電䜍偎
で急激に倧きくな぀おいる。しかし、ク゚ン酞、
マレむン酞、コハク酞およびEDTA―2Naを
50ppm又は1000ppmずPO4 3-を1000ppm組合せた
堎合、アノヌド電流の増倧は貎電䜍偎に移行しお
いる。さらに、ク゚ン酞、マレむン酞、コハク酞
およびEDTA濃床ず孔食電䜍の関係をプロツトす
るず第および図のようにな
り、PO4 3-を添加しない堎合の孔食電䜍は、0.4V
vsS.C.E皋床であるが、PO4 3-を1000ppmæ·»
加するず孔食電䜍は、0.8VvsS.C.Eず倧幅
に貎になり耐食性が向䞊するこずがわかる。 そしお䞊蚘孔食電䜍が、廃液䞭にCl-を含たな
い堎合ず同じであるこずから、カルボキシル基を
有する有機化合物は正リン酞塩ず䜵甚添加するこ
ずによ぀おSUS316LはCl-アタツクによる腐食を
受けるこずなく耐食性が向䞊するこずがわかる。 第図および第図は、第衚に瀺した暡
擬濃瞮廃液にそれぞれオキシン―ハむドロオ
キシキノリン、ホスホン酞アミノトリメチル
ホスホン酞を単独、たたはリン酞ナトリりムず
䜵甚添加した堎合のアノヌド分極曲線を瀺しおい
る。これらの図によれば、オキシン、ホスホン酞
においおもカルボキシル基を有する有機化合物の
堎合ずほが同様の挙動を瀺し、正リン酞塩ずの䜵
甚添加による防食効果を瀺しおいる。 たたオキシン、ホスホン酞の各濃床ず孔食電䜍
の関係をプロツトするず、第図および第
図のようになり、PO4 3-を添加しない堎合の孔食
電䜍は0.4V皋床であるが、PO4 3-を1000ppm添加
するず孔食電䜍は0.8Vず倧巟に貎になり耐食性
が向䞊するこずがわかる。 本発明においお、原子力プラント廃液䞭に添加
される正リン酞塩の量は、廃液䞭に含たれるCl-
濃床によるが50ppm皋床であれば十分であり、
たた過剰に加えおも匊害はない。さらに原子力プ
ラント廃液䞭に添加されるカルボキシル基を有す
る有機化合物、オキシン、ホスホン酞の量は廃液
䞭に含たれるカルシりム、マグネシりム、鉄化合
物等の量によ぀お異なるが、1000ppm皋床であ
れば十分であり、たた過剰に加えおも匊害はな
い。 実斜䟋  第衚に瀺すスケヌル圢成成分であるCa2+
Mg2+Fe3O4Fe2O3FeOH3ずCl-を含む
pH7.015Na2SO4廃液暡擬濃瞮液䞭にSUS316
補シヌスヒヌタを挿入しお沞隰条件䞋に100時間
攟眮した埌のスケヌル付着状況ず腐食発生状況に
぀いお調査した。その結果を第衚に瀺す。
[Table] 105℃ with chloride ion concentration of 0 to 10000ppm,
As shown in Figure 1, the anodic polarization curve of SUS316L in a simulated concentrated solution of pH 7.0 shows that as the Cl - concentration increases, the anodic current increases on the base potential side; It can be seen that the corrosion resistance decreases as the Cl - concentration increases. Second
The figure shows the anode polarization curve of SUS316L when 0 to 10,000 ppm of PO 4 3- (Na 2 HPO 4 ) is added to the waste liquid simulated concentrate shown in Table 1 containing 1,000 ppm of Cl - .
As is clear from the figure, the potential at which the anode current increases rapidly shifts to the noble potential side as the amount of PO 4 3- added increases.
It can be seen that the corrosion resistance of SUS316L improves as the amount of PO 4 3- added increases. Next, the pitting potential, which is often used to compare the degree of corrosion, was calculated from the anode polarization curve. The pitting corrosion potential was a potential corresponding to an anode current density of 200 ÎŒA/cm 2 used by the Stainless Steel Local Corrosion Subcommittee of the Corrosion Prevention Association. Therefore, when the pitting corrosion potential is determined from the anode polarization curves shown in FIGS. 1 and 2 and plotted against the PO 4 3- concentration, the result is as shown in FIG. 3. Third
From the figure, the pitting potential without Cl - , i.e.
To create a potential that does not cause corrosion on SUS316L,
When containing 100 ppm of Cl - , it is necessary to add 100 ppm or more of PO 4 3- . In other cases PO 4 3-
It can be seen that it is necessary to add 1000 ppm or more. As described above, it can be seen that the corrosion resistance of SUS316L in a waste liquid simulated concentrate containing Cl - is significantly improved by adding PO 4 3- . Incidentally, if you calculate the anodic polarization curve using a polymerized phosphate such as tripolyphosphate in the same manner as above,
As shown in Fig. 4, the anodic polarization behavior of SUS316L remains almost the same even if the amount of tripolyphosphate added increases. Therefore, it can be seen that polymerized phosphates have no anticorrosion effect on stainless steel materials. In particular, in the present invention, orthophosphate and a component selected from organic compounds having a carboxyl group, 8-hydroxyquinoline, and phosphonic acid or water-soluble salts thereof are added together to the nuclear power plant wastewater. Examples of organic compounds having a carboxyl group include carboxylic acids such as succinic acid, malonic acid, maleic acid, and sikolic acid; oxycarboxylic acids such as gluconic acid, citric acid, tartaric acid, and malic acid; ethylendiaminetetraacetic acid (EDTA); Mention may be made of aminopolycarboxylic acids such as nitrotriacetic acid (NTA). Further, water-soluble salts thereof such as sodium salts, potassium salts, ammonium salts, etc. can also be used. Examples of the phosphonic acid include nitrilotrimethylphosphonic acid and aminotrimethylphosphonic acid, and water-soluble salts thereof, such as sodium salts, potassium salts, and ammonium salts, can also be used. When orthophosphate is added alone to nuclear plant wastewater, it reacts with calcium and magnesium in the wastewater to produce calcium phosphate and magnesium phosphate, which prevents corrosion of stainless steel materials, but completely prevents the precipitation of fixed scale. cannot be prevented. However, when orthophosphate is used in combination with an organic compound having a carboxyl group, 8-hydroxyquinoline, phosphonic acid, or a water-soluble salt thereof, the drawbacks of orthophosphate, which is originally a precipitated film-forming anticorrosive agent, are overcome. At the same time, it is possible to prevent the precipitation of fixed scale, and the anticorrosion effect of orthophosphate is not impaired. Figures 5, 6, 7 and 8 are
Citric acid, maleic acid, succinic acid and EDTA-2Na were added alone to the simulated concentrated waste liquid shown in the table.
Or the anodic polarization curve when added in combination with sodium phosphate is shown. According to these figures, citric acid, maleic acid, succinic acid and
50ppm of EDTA-2Na alone or PO 4 3-
When combined with 100 ppm, the anode current increases rapidly on the base potential side. However, citric acid,
Maleic acid, succinic acid and EDTA-2Na
When 50ppm or 1000ppm is combined with 1000ppm of PO 4 3- , the increase in anode current shifts to the noble potential side. Furthermore, when plotting the relationship between citric acid, maleic acid, succinic acid, and EDTA concentrations and pitting corrosion potential, the results are as shown in Figures 9, 10, 11, and 12, and the pitting potential when PO 4 3- is not added is: 0.4V
(vs, SCE), but when 1000 ppm of PO 4 3- is added, the pitting potential becomes significantly nobler to 0.8V (vs, SCE), indicating that corrosion resistance is improved. Since the above pitting corrosion potential is the same as when the waste liquid does not contain Cl - , by adding an organic compound with a carboxyl group together with orthophosphate, SUS316L can prevent corrosion due to Cl - attack. It can be seen that the corrosion resistance is improved without any damage. Figures 13 and 14 show the results when oxine (8-hydroxyquinoline) and phosphonic acid (aminotrimethylphosphonic acid) were added alone or in combination with sodium phosphate to the simulated concentrated waste liquid shown in Table 1. The anodic polarization curve is shown. According to these figures, oxine and phosphonic acid exhibit almost the same behavior as organic compounds having a carboxyl group, indicating the anticorrosive effect of their combined addition with orthophosphate. In addition, when the relationship between the concentrations of oxine and phosphonic acid and the pitting corrosion potential is plotted, Figures 15 and 16 show
As shown in the figure, the pitting potential is about 0.4V when PO 4 3- is not added, but when 1000 ppm of PO 4 3- is added, the pitting potential becomes significantly nobler to 0.8V, improving corrosion resistance. I understand that. In the present invention, the amount of orthophosphate added to the nuclear power plant wastewater is determined by the amount of Cl - contained in the wastewater.
It depends on the concentration, but around 50ppm is sufficient.
There is no harm in adding too much. Furthermore, the amount of carboxyl group-containing organic compounds, oxins, and phosphonic acids added to nuclear plant wastewater varies depending on the amount of calcium, magnesium, iron compounds, etc. contained in the wastewater, but around 1000 ppm is sufficient. Yes, and there is no harm in adding too much. Example 1 Ca 2+ , which is a scale forming component shown in Table 2,
Contains Mg 2+ , Fe 3 O 4 , Fe 2 O 3 , Fe(OH) 3 and Cl -
pH7.0, 15% Na 2 SO 4 SUS316 in waste liquid simulated concentrate
We investigated the scale adhesion and corrosion occurrence after a manufactured sheath heater was inserted and left under boiling conditions for 100 hours. The results are shown in Table 3.

【衚】【table】

【衚】【table】

【衚】 第衚に瀺すように埓来方法の堎合、加熱源で
あるSUS316のシヌスヒヌタ衚面にCaSO4
CaCO3MgOH2Fe3O4Fe2O3の混合物か
らなる固着スケヌルが厚く付着し、特に気液の沞
隰界面の固着スケヌルが倚か぀た。たた孔食が発
生しおいた。 䞀方、本発明による方法で腐食状況を認めるこ
ずができず、たた固着スケヌルの析出量も少ない
ものであ぀た。特にマレむン酞、コハク酞、
EDTA―2Naの堎合、固着スケヌルの析出量が少
なか぀た。 実斜䟋  実斜䟋におけるカルボキシル基を有する有機
化合物の代りに、オキシン、ホスホン酞を甚いた
他は実斜䟋同様にしおスケヌル付着量ず腐食状
況ずを調べた。その結果を第衚に瀺す。
[Table] As shown in Table 3, in the case of the conventional method, CaSO 4 ,
Fixed scale consisting of a mixture of CaCO 3 , Mg(OH) 2 , Fe 3 O 4 , and Fe 2 O 3 was thickly adhered, and there was particularly a large amount of fixed scale at the gas-liquid boiling interface. Pitting corrosion also occurred. On the other hand, with the method according to the present invention, no corrosion was observed and the amount of deposited scale was small. Especially maleic acid, succinic acid,
In the case of EDTA-2Na, the amount of fixed scale precipitated was small. Example 2 The amount of scale deposited and the state of corrosion were investigated in the same manner as in Example 1, except that oxine and phosphonic acid were used instead of the organic compound having a carboxyl group in Example 1. The results are shown in Table 4.

【衚】 第衚は、正リン酞塩ずずもにオキシン、たた
はホスホン酞を䜵甚するず腐食防止ずずもに固着
スケヌルの防止効果があるこずを瀺しおいる。 実斜䟋  原子力発電所のむオン亀換暹脂再生廃液およ
び床ドレン廃液を濃瞮枛容するSUS316L補濃瞮
噚にマレむン酞50ppmずPO4 3-Na2HPO4を
1000ppm添加しお玄幎間実機テストを実斜し
た。その結果、スケヌルの付着もほずんど認めら
れず、たた腐食の発生もなく健党であ぀た。これ
に比范しお、埓来方法である䜕にも添加しいで䜿
甚しおいた濃瞮噚には玄半幎で孔食、隙間腐食お
よび溶接郚に応力腐食割れが発生しおいた。 以䞊のように、本発明によれば、原子力プラン
トの廃液凊理装眮の腐食およびスケヌル付着を防
止するこずができる。 特に、原子力プラントにおいおは、スケヌルも
攟射化されるので、スケヌル付着を防止できるこ
ずは、䜜業員の被爆䜎枛等に倧きな効果がある。
[Table] Table 4 shows that the combination of oxine or phosphonic acid with orthophosphate has the effect of preventing corrosion and fixed scale. Example 3 50 ppm of maleic acid and PO 4 3- (Na 2 HPO 4 ) were added to a SUS316L concentrator that condenses and reduces the volume of ion exchange resin regeneration waste liquid and floor drain waste liquid from A nuclear power plant.
We added 1000ppm and conducted actual tests for about one year. As a result, almost no scale adhesion was observed, and there was no occurrence of corrosion and the product was sound. In comparison, pitting corrosion, crevice corrosion, and stress corrosion cracking in welds occurred in the concentrator used in the conventional method, which did not contain any additives, after about six months. As described above, according to the present invention, it is possible to prevent corrosion and scaling of a waste liquid treatment device of a nuclear power plant. In particular, in nuclear power plants, scale is also radioactive, so being able to prevent scale adhesion has a great effect on reducing the radiation exposure of workers.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は廃液䞭のCl-添加量の倉化による
SUS316Lのアノヌド分極曲線を瀺す図、第図
は廃液䞭のPO4 3-添加量の倉化によるSUS316Lの
アノヌド分極曲線を瀺す図、第図はSUS316L
の孔食電䜍ずPO4 3-濃床ずの関係を瀺す図、第
図は廃液䞭のトリポリリン酞塩の添加量の倉化に
よるSUS316Lのアノヌド分極曲線を瀺す図、第
図は、ク゚ン酞ずPO4 3-添加廃液䞭での
SUS316Lのアノヌド分極曲線を瀺す図、第図
は、マレむン酞ずPO4 3-添加廃液䞭でのSUS316L
のアノヌド分極曲線を瀺す図、第図は、コハク
酞ずPO4 -添加廃液䞭でのSUS316Lのアノヌド分
極曲線を瀺す図、第図は、EDTA―2Naず
PO4 3-添加廃液䞭でのSUS316Lのアノヌド分極曲
線を瀺す図、第図は、SUS316Lの孔食電䜍ず
ク゚ン酞濃床の関係を瀺す図、第図は、
SUS316Lの孔食電䜍ずマレむン酞濃床の関係を
瀺す図、第図は、SUS316Lの孔食電䜍ずコ
ハク酞濃床の関係を瀺す図、第図は、
SUS316Lの孔食䜍ずEDTA―2Na濃床の関係を瀺
す図、第図はオキシンずPO4 3-添加廃液䞭で
のSUS316Lのアノヌド分極曲線を瀺す図、第
図はホスホン酞ずPO4 3-添加廃液䞭での
SUS316Lのアノヌド分極曲線を瀺す図、第
図はSUS316Lの孔食電䜍ずオキシン濃床の関係
を瀺す図、第図はSUS316Lの孔食電䜍ずホ
スホン酞濃床の関係を瀺す図である。
Figure 1 shows changes in the amount of Cl - added to the waste liquid.
Figure 2 shows the anode polarization curve of SUS316L. Figure 2 shows the anode polarization curve of SUS316L depending on the amount of PO 4 3 added in the waste liquid. Figure 3 shows the anode polarization curve of SUS316L.
Diagram showing the relationship between pitting potential and PO 4 3- concentration, 4th
The figure shows the anodic polarization curve of SUS316L depending on the amount of tripolyphosphate added in the waste liquid.
A diagram showing the anode polarization curve of SUS316L, Figure 6 shows SUS316L in maleic acid and PO 4 3- added waste liquid.
Figure 7 shows the anodic polarization curve of SUS316L in succinic acid and PO 4 -added waste liquid, Figure 8 shows the anodic polarization curve of SUS316L in succinic acid and PO 4
Figure 9 shows the anodic polarization curve of SUS316L in PO 4 3- added waste liquid, Figure 9 shows the relationship between pitting potential of SUS316L and citric acid concentration, Figure 10 shows the
Figure 11 is a diagram showing the relationship between the pitting potential of SUS316L and maleic acid concentration. Figure 12 is a diagram showing the relationship between the pitting potential and succinic acid concentration of SUS316L.
Figure 13 shows the relationship between the pitting corrosion level of SUS316L and EDTA - 2Na concentration.
Figure 4 shows the relationship between phosphonic acid and PO 4 3- added waste liquid.
Diagram showing the anode polarization curve of SUS316L, No. 15
The figure shows the relationship between the pitting corrosion potential of SUS316L and the oxine concentration, and FIG. 16 shows the relationship between the pitting corrosion potential of SUS316L and the phosphonic acid concentration.

Claims (1)

【特蚱請求の範囲】[Claims]  内壁面の少なくずも䞀郚がステンレス鋌で圢
成された装眮内に䟛絊される原子力プラントに察
し、PO4アルカリ金属のモル比〜
の正リン酞ず、カルボキシル基を有する有機化
合物、―ハむドロオキシキノリン、およびホス
ホン酞、又はこれらの氎溶性塩から遞ばれる皮
以䞊の成分ずを䜵甚添加するこずを特城ずする原
子力プラント廃液の凊理方法。
1 For a nuclear power plant supplied in a device in which at least a portion of the inner wall surface is formed of stainless steel, the molar ratio of M/PO 4 (M: alkali metal) is 1 to 1.
A nuclear power plant characterized in that orthophosphoric acid of No. 3 is added together with one or more components selected from an organic compound having a carboxyl group, 8-hydroxyquinoline, phosphonic acid, or a water-soluble salt thereof. How to treat waste liquid.
JP3650381A 1981-03-16 1981-03-16 Method of processing liquid waste of atomic power plant Granted JPS57151899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3650381A JPS57151899A (en) 1981-03-16 1981-03-16 Method of processing liquid waste of atomic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3650381A JPS57151899A (en) 1981-03-16 1981-03-16 Method of processing liquid waste of atomic power plant

Publications (2)

Publication Number Publication Date
JPS57151899A JPS57151899A (en) 1982-09-20
JPS6112239B2 true JPS6112239B2 (en) 1986-04-07

Family

ID=12471622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3650381A Granted JPS57151899A (en) 1981-03-16 1981-03-16 Method of processing liquid waste of atomic power plant

Country Status (1)

Country Link
JP (1) JPS57151899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335712U (en) * 1986-08-25 1988-03-08

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839998A (en) * 1981-09-03 1983-03-08 石川島播磚重工業株匏䌚瀟 Method of protecting scale adhesion.corrosion in radioactive liquid waste condensation system
JP4131814B2 (en) * 2002-11-21 2008-08-13 株匏䌚瀟東芝 Method and apparatus for chemical decontamination of activated parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335712U (en) * 1986-08-25 1988-03-08

Also Published As

Publication number Publication date
JPS57151899A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US3890228A (en) Polyacrylate-polyphosphonic acid treatment in aqueous systems
US3711246A (en) Inhibition of corrosion in cooling water systems with mixtures of gluconate salts and silicate salts
US4409121A (en) Corrosion inhibitors
US4443340A (en) Control of iron induced fouling in water systems
EP0460797B1 (en) Methods of controlling scale formation in aqueous systems
US4303568A (en) Corrosion inhibition treatments and method
US3837803A (en) Orthophosphate corrosion inhibitors and their use
EP0599485B1 (en) Method of inhibiting corrosion in aqueous systems
JPS585264B2 (en) corrosion inhibitor
US4387027A (en) Control of iron induced fouling in water systems
US5192447A (en) Use of molybdate as a cooling water corrosion inhibitor at higher temperatures
EP0510989A1 (en) Synergistic combination of sodium silicate and orthophosphate for controlling carbon steel corrosion, inhibiting precipitation of dissolved manganese and iron and reducing soluble lead in potable water
JPH0141705B2 (en)
US3714067A (en) Methods of inhibiting corrosion with condensed polyalkylenepolyamine phosphonates
US4671934A (en) Aminophosphonic acid/phosphate mixtures for controlling corrosion of metal and inhibiting calcium phosphate precipitation
JPS6112239B2 (en)
Murray A corrosion inhibitor process for domestic water
EP0006065A2 (en) Composition and method for inhibiting corrosion
JPS6296683A (en) Anticorrosive in common use as scale inhibitor of metal in aqueous system
JPH1129885A (en) Preventing method of pitting corrosion of metal in water system
JPS6099396A (en) Obstruction preventive agent of water system
JPS6038464B2 (en) Rust prevention treatment method for steel materials
KR101072435B1 (en) Method for preventing corrosion caused by water of seawater reverse osmosis
JPH062170A (en) Use of cationic alkyl phosphonium salt as corrosion inhibitor in open recirculative system
Beecher et al. Corrosion inhibition with sodium nitrite