JPS61122193A - Epitaxial growth with molecular beam - Google Patents

Epitaxial growth with molecular beam

Info

Publication number
JPS61122193A
JPS61122193A JP24379084A JP24379084A JPS61122193A JP S61122193 A JPS61122193 A JP S61122193A JP 24379084 A JP24379084 A JP 24379084A JP 24379084 A JP24379084 A JP 24379084A JP S61122193 A JPS61122193 A JP S61122193A
Authority
JP
Japan
Prior art keywords
atomic layer
substrate
growth
base
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24379084A
Other languages
Japanese (ja)
Other versions
JPH042553B2 (en
Inventor
Shunichi Murakami
俊一 村上
Tetsuo Ishida
哲夫 石田
Sumio Sakai
酒井 純朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP24379084A priority Critical patent/JPS61122193A/en
Publication of JPS61122193A publication Critical patent/JPS61122193A/en
Publication of JPH042553B2 publication Critical patent/JPH042553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:Accurate control of crystal growth is effected by detecting the energy emitted from the base surface and adjusting the opening of the vessel containing the substances to be vaporized or the heating temperature depending on the change in the detected energy. CONSTITUTION:A temperature controller for heating the base is set in the ultravacuum chamber 1 and vessels 4, 5 for containing the substances to be vaporized is set beneath the base 2. Shutters 6, 7 are set above the vessels 4, 5 so that they can close or open the vessels 4, 5. A viewing port 8 is set on the vacuum chamber 1 and an infrared radiation thermometer is set outside the port to detect the infrared energy radiated from the surface of the base 2. The growth of the atomic layer is known from the detection to control the opening of the shutters and opening time. Or the heating temperature of the substances to be vaporized is adjusted. Thus, the epitaxial growth of compound semiconductor with molecular beams can be accurately controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、化合物半導体の結晶成長を制御する分子線
エピタキシャル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a molecular beam epitaxial growth method for controlling crystal growth of compound semiconductors.

(従来の技術) 従来から知られている分子線エピタキシャル成長方法は
、その分子線の強度を測定し、その強度が一定になるよ
うに加熱温度や蒸発源収納容器の開口時間等を調整して
、膜厚や一原子層成長を制御するようにしていた。
(Prior Art) In the conventionally known molecular beam epitaxial growth method, the intensity of the molecular beam is measured, and the heating temperature and the opening time of the evaporation source storage container are adjusted so that the intensity is constant. The film thickness and single atomic layer growth were controlled.

また、当該蒸発源収納容器の開口時間や開口径を、経験
的要素を基準にして制御することも実際には行なわれて
いる。
Furthermore, the opening time and opening diameter of the evaporation source storage container are actually controlled based on empirical factors.

さらに、一原子層成長を制御する方法として、当該成長
層に電子を飛ばしてそれを反射させ、その反射電子によ
って原子層の成長状況を把握する反射型高速電子線回折
を利用することも従来から知られている。
Furthermore, as a method to control the growth of a single atomic layer, reflection-type high-speed electron diffraction has traditionally been used, in which electrons are ejected into the growth layer and reflected, and the growth status of the atomic layer is determined by the reflected electrons. Are known.

(本発明が解決しようとする問題点) 上記のように分子線の強度を測定する従来の方法では、
当該基板に形成される結晶成長を直接制   御するの
ではなく、分子線の強度という間接的な要素を基にした
制御なので、どうしてもその正確性に欠けるという問題
があった。
(Problems to be solved by the present invention) In the conventional method of measuring the intensity of molecular beams as described above,
Since the crystal growth formed on the substrate is not directly controlled, but is controlled based on an indirect element such as the intensity of the molecular beam, there is a problem that it inevitably lacks accuracy.

また、蒸発源収納容器の開口径や開口時間を制御する方
法も、当該基板の表面の直接的な情報に基づいたMI御
ではなく、正確性という点で分子線強度を測定する場合
と同様の問題があった。
In addition, the method of controlling the opening diameter and opening time of the evaporation source storage container is not MI control based on direct information on the surface of the substrate, but is similar to that used for measuring molecular beam intensity in terms of accuracy. There was a problem.

さらに、反射型高速電子線回折を利用した場合には、電
子を基板に照射したとき、真空中に残留している微量の
炭素化合物を分解して、その基板上に炭素を付着させる
ので、当該原子層の純度を損ない、その原子層中に格子
欠陥を発生させる原因となる等、品質管理に問題を残す
ことが多かった。
Furthermore, when reflection-type high-speed electron diffraction is used, when the substrate is irradiated with electrons, trace amounts of carbon compounds remaining in the vacuum are decomposed and carbon is deposited on the substrate. This often left problems in quality control, such as impairing the purity of the atomic layer and causing lattice defects in the atomic layer.

この発明は、当該基板上の条件を直接検出して、より正
確な制御を可能にした分子線エピタキシャル成長方法の
提供を目的にする。
The present invention aims to provide a molecular beam epitaxial growth method that enables more accurate control by directly detecting the conditions on the substrate.

(問題点を解決するための手段) この発明は、上記の目的を達成するために、超高真空室
に基板を設置するとともに、この基板の表面に成長させ
る原子層の蒸発源を収納する蒸発源収納容器を設け、こ
の容器内の物質を蒸発させて基板に原子層を成長させる
分子線エピタキシャル成長方法において、上記基板表面
から放射される赤外線エネルギーを検出し、この検出エ
ネルギーの変化に応じて蒸発源収納容器の開口径、開口
時間あるいは加熱温度等を調整して結晶成長を制御する
ようにしている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an evaporation chamber that installs a substrate in an ultra-high vacuum chamber and houses an evaporation source for an atomic layer to be grown on the surface of the substrate. In the molecular beam epitaxial growth method, in which a source storage container is provided and the material in the container is evaporated to grow an atomic layer on the substrate, infrared energy emitted from the substrate surface is detected, and the evaporation is performed according to changes in the detected energy. Crystal growth is controlled by adjusting the opening diameter, opening time, heating temperature, etc. of the source storage container.

(本発明の作用) 当該基板の最外原子層からの赤外線放射エネルギー量の
変動を検出して、一原子層結晶成長の制御をする。
(Action of the present invention) A change in the amount of infrared radiation energy from the outermost atomic layer of the substrate is detected to control single atomic layer crystal growth.

(本発明の効果) この発明によれば、当該基板の状態変化を直接検出して
、結晶成長を制御できるので、それだけ正確性が増すと
ともに、従来のように炭素が付着したりすることもなく
なる。
(Effects of the present invention) According to the present invention, crystal growth can be controlled by directly detecting changes in the state of the substrate, which increases accuracy and eliminates the problem of carbon adhesion as in the past. .

(本発明の実施例) 超高真空室1内には、GaAs基板2を加熱するための
温度制御器3を設けるとともに、GaAs基板2の下方
に蒸発源収納容器4.5を設けている。
(Embodiment of the present invention) Inside the ultra-high vacuum chamber 1, a temperature controller 3 for heating the GaAs substrate 2 is provided, and an evaporation source storage container 4.5 is provided below the GaAs substrate 2.

そして、一方の容器4にはガリウムGaを収納し、他方
の容器5にはヒ素Asを収納している。さらに、この容
器は図示していないヒータによって加熱し、蒸発源であ
るガリウムGa、ヒ素Asを蒸発させ、GaAs基板2
の表面に結晶成長させる。
One container 4 stores gallium Ga, and the other container 5 stores arsenic As. Furthermore, this container is heated by a heater (not shown) to evaporate gallium Ga and arsenic As, which are evaporation sources, and the GaAs substrate 2 is heated.
crystals grow on the surface of

上記のように蒸発源を収納した容器4.5の上方には、
その開口部を開閉するシャッター6.7を設けているが
、このシャッター6.7は、当該容器4.5の開口時間
を調整するとともに、その開口径も調整しうるようにし
ている。
Above the container 4.5 containing the evaporation source as described above,
A shutter 6.7 is provided to open and close the opening, and this shutter 6.7 can adjust the opening time of the container 4.5 and also adjust the opening diameter.

さらに、超高真空室1には、ビューイングポート8を設
けるとともに、このビューイングポート8の外方には赤
外線放射温度計9を設けている。
Further, the ultra-high vacuum chamber 1 is provided with a viewing port 8, and an infrared radiation thermometer 9 is provided outside the viewing port 8.

この赤外線放射温度計9は、GaAs基板2の表面から
放射される赤外線エネルギーを検出するためのものであ
る。
This infrared radiation thermometer 9 is for detecting infrared energy emitted from the surface of the GaAs substrate 2.

すなわち、どのような物質でも、絶対温度零度”  以
上であれば、自らの温度に対応した赤外線を放射してい
る。したがって、上記基板2の表面に所定の原子層が成
長すれば、その原子層に応じた赤外線を放射することに
なる。その赤外線放射エネルギー(W)は、絶対温度(
T’ K)の関数で、W=6σT4 ((は放射率、σ
はステファンポルツマン定数)で表わされる。
In other words, any material, if its temperature is above absolute zero, emits infrared radiation corresponding to its temperature. Therefore, if a predetermined atomic layer grows on the surface of the substrate 2, the atomic layer The infrared rays will be emitted according to the absolute temperature (W).
T' K), W=6σT4 ((is emissivity, σ
is expressed as Stefan Polzmann's constant).

この原子層に応じた赤外線の温度を検出して、当該原子
層の成長状況を判断するのがこの上記赤外線放射温度計
9である。
The infrared radiation thermometer 9 detects the temperature of the infrared rays corresponding to the atomic layer and determines the growth status of the atomic layer.

そこで、上記基板2に結晶成長させるためには、先ず、
 GaAs基板2を温度制御器3で600℃程度に加熱
して、基板表面の酸化層を除去する。このように酸化層
を除去すると、基板2のヒ素が飛散するので、それを補
充するために十分なヒ素を照射する。
Therefore, in order to grow crystals on the substrate 2, first,
The GaAs substrate 2 is heated to about 600° C. by the temperature controller 3 to remove the oxide layer on the surface of the substrate. When the oxide layer is removed in this way, the arsenic on the substrate 2 is scattered, so sufficient arsenic is irradiated to replenish it.

このようにして酸化層が除去された基板2の表面の最外
原子層は、第2図(a)で示すように、ヒ素原子層lO
となる。
The outermost atomic layer on the surface of the substrate 2 from which the oxide layer has been removed in this way is an arsenic atomic layer lO, as shown in FIG. 2(a).
becomes.

次に、蒸発源収納容器4のシャッター6を開いてGaA
s成長を開始する。この場合にGa原子は、成長前の基
板2表面における最外原子層であるヒ素原子層10上に
飛来し、ガリウム原子層11を形成する。
Next, the shutter 6 of the evaporation source storage container 4 is opened and the GaA
s Start growth. In this case, Ga atoms fly onto the arsenic atomic layer 10, which is the outermost atomic layer on the surface of the substrate 2 before growth, and form a gallium atomic layer 11.

また、ガリウム原子層11が存在する場所にしかAs原
子が付着しないので、上記シャッター6.7を交互に開
閉することによって、第2図(a)〜(C)に示すよう
に、ヒ素原子層lO及びガリウム原子層11が交互に成
長することになる6そして、上記の成長過程において、
基板2の加熱温度は温度制御器3で一定に保たれている
。しかし、その表面の原子層が、ヒ素原子層lOあるい
はガリウム原子層11のいずれであるかによって、その
表面からの赤外線放射率が異なる。
In addition, since As atoms are attached only to the locations where the gallium atomic layer 11 exists, by alternately opening and closing the shutters 6.7, the arsenic atomic layer 11 is removed, as shown in FIGS. The lO and gallium atomic layers 11 will grow alternately 6 and in the above growth process,
The heating temperature of the substrate 2 is kept constant by a temperature controller 3. However, the infrared emissivity from the surface differs depending on whether the atomic layer on the surface is an arsenic atomic layer 10 or a gallium atomic layer 11.

したがって、この赤外線エネルギーを赤外線放射温度計
9で検出すれば、当該原子層の成長状況を把握すること
ができる。このようにして検出した原子層の成長状況を
勘案して、上記シャッター6.7の開口径、開口時間あ
るいは当該蒸発物質の加熱温度等を制御してその原子層
成長を制御できる。
Therefore, by detecting this infrared energy with the infrared radiation thermometer 9, it is possible to grasp the growth status of the atomic layer. The atomic layer growth can be controlled by controlling the aperture diameter and opening time of the shutter 6.7, the heating temperature of the evaporated substance, etc. in consideration of the growth state of the atomic layer detected in this way.

第3図は、実際の測定結果を示すもので、赤外線放射温
度計9の出力の変動周期が明らかにされている。この変
動周期の数から、成長した原子層の暦数を把握できる。
FIG. 3 shows actual measurement results, and the fluctuation period of the output of the infrared radiation thermometer 9 is clarified. From the number of these fluctuation cycles, it is possible to determine the number of atomic layers that have grown.

なお、上記実施例では、GaAs基板に原子層を成長さ
せる場合であるが、Zn5e、InPなどの全ての化合
物半導体についても、また異種金属についても上記方法
が適用できること自然である。
In the above embodiment, an atomic layer is grown on a GaAs substrate, but it is natural that the above method can be applied to all compound semiconductors such as Zn5e and InP, as well as to different metals.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すもので、第1図は分子線
エピタキシャル装置の概略図、第2図(a)〜(C)は
原子層が成長した基板の断面図、第3図は成&層の赤外
線放射エネルギーの強度変化を示すグラフである。 1・・・超高真空室、2・・・基板、4.5・・・蒸発
源収納容器、10.11・・・原子層。
The drawings show an embodiment of the present invention; FIG. 1 is a schematic diagram of a molecular beam epitaxial apparatus, FIGS. 2(a) to (C) are cross-sectional views of a substrate on which atomic layers have been grown, and FIG. It is a graph showing the intensity change of the infrared radiation energy of & layer. 1... Ultra-high vacuum chamber, 2... Substrate, 4.5... Evaporation source storage container, 10.11... Atomic layer.

Claims (1)

【特許請求の範囲】[Claims] 超高真空室に基板を設置するとともに、この基板の表面
に成長させる原子層の蒸発源を収納する蒸発源収納容器
を設け、この容器内の物質を蒸発させて基板に原子層を
成長させる分子線エピタキシャル成長方法において、上
記基板表面から放射される赤外線エネルギーを検出し、
この検出エネルギーの変化に応じて蒸発源収納容器の開
口径、開口時間あるいは加熱温度等を調整して結晶成長
を制御する分子線エピタキシャル成長方法。
A substrate is installed in an ultra-high vacuum chamber, and an evaporation source storage container is provided to store an evaporation source for an atomic layer to be grown on the surface of the substrate. In the line epitaxial growth method, detecting infrared energy emitted from the substrate surface,
A molecular beam epitaxial growth method that controls crystal growth by adjusting the opening diameter, opening time, heating temperature, etc. of the evaporation source storage container according to changes in detected energy.
JP24379084A 1984-11-19 1984-11-19 Epitaxial growth with molecular beam Granted JPS61122193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24379084A JPS61122193A (en) 1984-11-19 1984-11-19 Epitaxial growth with molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24379084A JPS61122193A (en) 1984-11-19 1984-11-19 Epitaxial growth with molecular beam

Publications (2)

Publication Number Publication Date
JPS61122193A true JPS61122193A (en) 1986-06-10
JPH042553B2 JPH042553B2 (en) 1992-01-20

Family

ID=17108994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24379084A Granted JPS61122193A (en) 1984-11-19 1984-11-19 Epitaxial growth with molecular beam

Country Status (1)

Country Link
JP (1) JPS61122193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308055A (en) * 1993-04-19 1994-11-04 Owens Brockway Glass Container Inc Container inspecting device with compound light transmitting device, compound light sensing device and swivel head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992998A (en) * 1982-11-19 1984-05-29 Agency Of Ind Science & Technol Method for growing crystal using molecular beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992998A (en) * 1982-11-19 1984-05-29 Agency Of Ind Science & Technol Method for growing crystal using molecular beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308055A (en) * 1993-04-19 1994-11-04 Owens Brockway Glass Container Inc Container inspecting device with compound light transmitting device, compound light sensing device and swivel head

Also Published As

Publication number Publication date
JPH042553B2 (en) 1992-01-20

Similar Documents

Publication Publication Date Title
JPH05139882A (en) Molecular beam source
KR20010023079A (en) Apparatus and method for in-situ thickness and stoichiometry measurement of thin films
JPS61122193A (en) Epitaxial growth with molecular beam
JPS5992998A (en) Method for growing crystal using molecular beam
Chatillon et al. Thermodynamic analysis of GaAs growth by molecular beam epitaxy at the surface structure transition from 3× 1 to 4× 2
JPH0547631B2 (en)
JP2688365B2 (en) Board holder
JPS61127695A (en) Molecular beam crystal growth device
JPH0429677A (en) Glass window for vacuum vessel
JPS61190920A (en) Molecular beam crystal growth device
Strite et al. Reliable substrate temperature measurements for high temperature AlGaAs molecular‐beam epitaxy growth
JPS62290122A (en) Device for measuring substrate temperature of molecular beam epitaxial device
JPS6142125A (en) Mbe substrate and method for measuring temperature thereof
JPH057253Y2 (en)
JPS6272113A (en) Molecular beam crystal growth device
JPS62211379A (en) Vapor deposition method
JPS62287616A (en) Shutter structure of molecular beam epitaxial apparatus
JPH067072B2 (en) Substrate temperature measurement method
JPS61263212A (en) Molecular beam epitaxy substrate holder
JPH0689860A (en) Method of semiconductor crystal growth and molecular beam epitaxy device
JPH07106251A (en) Molecular beam source cell, molecular-beam epitaxial growth device and molecular-beam epitaxial crowth
JPS5893320A (en) Method for measuring temperature of device for molecular beam epitaxial growth
JPH01176292A (en) Method for molecular-beam epitaxial growth and apparatus therefor
JPS6227038B2 (en)
JPH0554253B2 (en)