JPS61121183A - Discrimination for discontinuous segment graphic - Google Patents

Discrimination for discontinuous segment graphic

Info

Publication number
JPS61121183A
JPS61121183A JP24236384A JP24236384A JPS61121183A JP S61121183 A JPS61121183 A JP S61121183A JP 24236384 A JP24236384 A JP 24236384A JP 24236384 A JP24236384 A JP 24236384A JP S61121183 A JPS61121183 A JP S61121183A
Authority
JP
Japan
Prior art keywords
graphics
discontinuous
plane
huff
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24236384A
Other languages
Japanese (ja)
Inventor
Toshio Matsuura
松浦 俊夫
Katsuhiko Nishikawa
克彦 西川
Tomomitsu Murano
朋光 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24236384A priority Critical patent/JPS61121183A/en
Publication of JPS61121183A publication Critical patent/JPS61121183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PURPOSE:To produce a histogram showing the features of each discontinuous segment pattern and discriminating automatically the type of each graphic, by applying the huff conversion to each of discontinuous segment graphics sorted into groups for each length of each element. CONSTITUTION:The coordinates on an X-Y plane of the start and end points ST and ED are detected for each element of discontinuous segment graphics alpha, beta and gamma. While the subject graphics are sorted into groups based on the length of each element. Then graphics alpha, beta and gamma are huff-converted onto a rho-theta plane, and the element of the largest length is extracted from each huff- converted graphic. Then each element which satisfies the prescribed conditions related to an angle is extracted again. Finally the elements excluded out of the huff-converted groups are neglected, and both start and end points of said graphics are calculated out of the points ST and ED of each element in each group. Then a histogram showing the number of features to the length of each element is produced for each group.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、破線、点線、鎖線等の不連続線分図形を認識
する方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for recognizing discontinuous line segment figures such as broken lines, dotted lines, and chain lines.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

一般に、図形中には連続線分だけでなく不連続線分が必
ず含まれている。
Generally, a figure always includes not only continuous line segments but also discontinuous line segments.

例えば、地図を表わす図形には、県境や等高線が描かれ
ているがこれらは他の地形とは異なって破線や一点鎖線
又は二点鎖線等の不連続線分が使用される。
For example, prefectural borders and contour lines are drawn in figures representing maps, but unlike other topographical features, discontinuous line segments such as dashed lines, dashed-dotted lines, and dashed-double-dotted lines are used for these.

従来、上記不連続線分図形をu@してデータベースへ格
納する場合、デジタイプにより各要素の座標を検出する
と共にキーボードからその各要素により構成された不連
続線分図形の種別、例えば破線、に関する情報を入力し
ていた。
Conventionally, when storing the above-mentioned discontinuous line segment figure as u@ in a database, the coordinates of each element are detected by digital type, and the type of the discontinuous line segment figure constituted by each element is input from the keyboard, for example, a broken line, I was entering information about.

しかし、不連続線分図形の識別を人手に委ねることは極
めて煩わしく図形処理効率低下の原因になるという問題
点があった。
However, there is a problem in that leaving the identification of discontinuous line segments to humans is extremely troublesome and causes a decrease in the efficiency of processing the graphics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消して自動的に不連続線分図
形を識別可能にする方式を提供するものであって、その
手段は、 X−Y平面上で表わせる不連続線分図形を各要素の長さ
寸法を基準に分類し、各分類された不連続線分図形を上
記X−Y平面の原点から各要素までの距離ρ及び角度θ
により定められるρ−θ平面上にハフ変換することによ
pρ及びθを基準に再分類し、更に各再分類された不連
続線分図形を各要素の長さ寸法に対する個数を示すヒス
トグラムで表示すると共に上記各ヒストグラムのピーク
の個数を検出し、上記ピーク個数により上記X−Y平面
上で表わせる不連続線分図形の種類を識別することを特
徴とする不連続線分図形識別方式によってなされる。
The present invention solves the above-mentioned problems and provides a method for automatically identifying discontinuous line segment figures. are classified based on the length dimension of each element, and each classified discontinuous line segment figure is determined by the distance ρ and angle θ from the origin of the XY plane to each element.
The Hough transform is performed on the ρ-θ plane defined by pρ and θ, and each reclassified discontinuous line segment figure is displayed as a histogram showing the number of pieces for the length dimension of each element. At the same time, the number of peaks in each of the histograms is detected, and the type of the discontinuous line segment figure that can be expressed on the X-Y plane is identified based on the number of peaks. Ru.

〔作用〕[Effect]

本発明方式は、各要素の長さ寸法別にグループ分けした
不連続線分図形側のおのおのに原点から各不連続線分図
形までの距離と角度を以って表示するハフ変換を施すこ
とにより各不連続線分図形の特徴を示すヒストグラムを
作成することができるので、該特徴ヒストグラムから各
不連続線分図形の稲刈を人手を介さずに自動的に行うこ
とができる。
The method of the present invention performs a Hough transform to display the distance and angle from the origin to each discontinuous line segment figure on the side of each discontinuous line segment figure, which is grouped according to the length dimension of each element. Since a histogram showing the characteristics of a discontinuous line segment figure can be created, rice harvesting for each discontinuous line segment figure can be automatically performed from the feature histogram without human intervention.

〔実施例〕〔Example〕

以下、本発明を実施例により龜付図面を参照して説明す
る@ 第1図(、A)は、本発明方式の対象となる図形の一例
であシ、αは破線、βは一点鎖線、rは二点鎖線をそれ
ぞれ示す。
Hereinafter, the present invention will be explained by way of examples with reference to the attached drawings. @ Fig. 1 (A) is an example of a figure to which the method of the present invention is applied, α is a broken line, β is a dashed-dotted line, r indicates a chain double-dashed line.

先ず、第1図(Nに示された不連続線分図形α。First, the discontinuous line segment figure α shown in FIG. 1 (N).

β、rの各要素の最初の点であるスタート点STと最後
の点であるエンド点EDのX−Y平面上でって測定して
おく。
Measurements are taken on the X-Y plane between the start point ST, which is the first point of each element of β and r, and the end point ED, which is the last point.

上記式において、Llは第1番目の要素の長さ寸法、”
s i s”@l 、7g l ’Fe Lは、各添字
から明らかなように、それぞれST、EDにおけるX座
標y座標を示す。
In the above formula, Ll is the length dimension of the first element, "
As is clear from the subscripts, s i s"@l and 7g l 'Fe L indicate the X and y coordinates in ST and ED, respectively.

次に、上記測定された長さ寸法を基準に対象図形(第1
図(A))をグループに分類する。この−例を第1表に
示す。
Next, the target figure (first
Figure (A)) is classified into groups. An example of this is shown in Table 1.

上記第1表において、グループが1.I[及び■の3つ
に大別される。各グループの表は各要素の番号(第1図
(A))に対しBTとEDの座標(第2図)、長さ寸法
tを表示している。
In Table 1 above, group 1. It is roughly divided into three types: I [and ■]. The table for each group displays the coordinates of BT and ED (FIG. 2) and length t for each element number (FIG. 1(A)).

グループ■は、各寸法11.12・・・がto  以上
で一種類の長さ寸法範囲にあり、これは第1図■の破線
グループαに対応することが容易にわかる。
Group (2) has each dimension 11, 12, .

しかし、グループの■と■はそれぞれが更にaとbのグ
ループに分かれ、二種類の長さ寸法範囲(ta−Lb、
Lb〜1. )にある。
However, groups ■ and ■ are each further divided into groups a and b, and two types of length dimension ranges (ta-Lb,
Lb~1. )It is in.

しかし、この■と■だけのグループ分けだけでは、単に
鎖線であることが判明したに過ぎず、■と■がいずれル
一点鎖線又は二点鎖線であるかの識別はできない。
However, by grouping only ■ and ■, it is only revealed that they are chain lines, and it is not possible to identify whether ■ and ■ are chain lines or chain double-dot lines.

そこで、第1図囚のX−Y平面上の図形α、β。Therefore, the figures α and β on the X-Y plane of the prisoner in Figure 1.

γをρ−θ平面上へと7・フ変換する(第1図(B))
Transform γ onto the ρ-θ plane (Figure 1 (B))
.

ここで、−・フ変換とは、第2図に示すように。Here, the −·fu conversion is as shown in FIG.

X−Y平面上で表わされるある図形要素eを原点0から
の距離ρと角度θで規定されるρ−θ平面上で表わせる
ようにすることをいう。
This means that a certain graphic element e expressed on the X-Y plane can be expressed on the ρ-θ plane defined by the distance ρ from the origin 0 and the angle θ.

即ち、STとEDを端点に持つ要素eの延長線とそれと
交わる原点からの垂線OHの長さを要素eの距離ρと定
義する。
That is, the length of the extension line of element e having ST and ED as end points and the perpendicular line OH from the origin that intersects with it is defined as the distance ρ of element e.

また、X軸と上記ρとのなす角を、要素eの角度θと定
義する。尚、X、7とρ、θとの関係はρ: X Co
Sθ+y廊θである。
Further, the angle formed between the X axis and the above ρ is defined as the angle θ of the element e. In addition, the relationship between X, 7 and ρ, θ is ρ: X Co
Sθ+y-route θ.

このような定義のρとθにより規定されたρ−θ平面上
にハフ変換した結果が、第1図(B)に示されているの
である。破線円α、β、rはそれぞれ第1図(ロ)のα
、β+rK対応している。
The result of Hough transformation on the ρ-θ plane defined by ρ and θ defined in this way is shown in FIG. 1(B). The dashed circles α, β, and r are α in Figure 1 (b), respectively.
, β+rK are supported.

本来、第1図囚から明らかなように、数学的忙は一種類
の破線αはその各要素1.2,5,11・・・がすべて
同じ値のρとθを持っている筈である。
Originally, as is clear from Figure 1, mathematically, one type of broken line α should have the same values of ρ and θ for each element 1, 2, 5, 11, etc. .

しかし、実際の破線αは、第3図に示すように、各要素
1,2,5.11・・・が方向を異にしている。
However, in the actual broken line α, as shown in FIG. 3, each element 1, 2, 5, 11, . . . has a different direction.

従って、要素2については距離はρ2.角度はθ2であ
るが、要素5については距離はρ5.角度はθ5という
ように、同じ破線αの中でも要素によってρとθの値は
それぞれ異なる。
Therefore, for element 2, the distance is ρ2. The angle is θ2, but for element 5, the distance is ρ5. The angle is θ5, and the values of ρ and θ differ depending on the element even within the same broken line α.

そのために、ハブ変換した結果は、第1図(B)に示す
ように、ρとθによって表わされる各不連続線分図形α
、β、rが1点ではなく円によって囲まれる点の集合と
なるのである。
Therefore, as shown in FIG. 1(B), the result of the hub transformation is each discontinuous line segment figure α represented by ρ and θ
, β, and r are not a single point but a set of points surrounded by a circle.

このように、ハブ変換されたα、β、rの図形のそれぞ
れから、最大長さ寸法の要素全抽出する。
In this way, all elements of the maximum length dimension are extracted from each of the hub-transformed figures α, β, and r.

例えば、グループI(第1表)において、最大長さ寸法
’maxを有する要素をMとすると、そのMのρ=ρ 
、θ=θ を検出する。
For example, in Group I (Table 1), if M is the element with the maximum length dimension 'max, then ρ=ρ
, θ=θ is detected.

rn         m そして1ρ−ρ1≦Δρ、10m−θ11≦Δθを満足
するような各要素を再抽出し、新めて第1表に表わすよ
うに各グループに分ける。
rn m Then, each element satisfying 1ρ-ρ1≦Δρ and 10m-θ11≦Δθ is re-extracted and newly divided into each group as shown in Table 1.

この操作は、各グループにおいては最大長さ寸法の要素
力【各グループの中で最も信頼できる要素であるとの観
点から、上記ΔρとΔθからけずれる要素は除外する趣
旨により行う。
This operation is performed with the purpose of excluding elements that deviate from the above Δρ and Δθ from the viewpoint that the element force of the maximum length dimension in each group is the most reliable element in each group.

そして、最終的に上記ハフ変換されたグループから除外
され要素を無視して各グループの各要素のSTとFDの
中から、αのスタート点Saとエンド点に、 lβのス
タート点Sβとエンド点Eβ。
Finally, ignoring the elements excluded from the Hough-transformed groups, from ST and FD of each element in each group, start point Sa and end point of α, start point Sβ and end point of lβ Eβ.

γのスタート点S とエンド点Eをそれぞれ算出する。The start point S and end point E of γ are calculated respectively.

次いで、各グループごとに、各要素の長さ寸法に対する
個数を表わしたヒストグラムを作成する(第4図)。
Next, a histogram representing the number of elements relative to the length dimension is created for each group (FIG. 4).

上記ヒストグラムにおいて、一定のMiTH4=越える
ピークが唯1つelの場合が破線αを(第4図(A))
、ピークが同じelと62の場合が一点鎖綜βを(第4
図(B))、ピークがe、と・2の2つあるが@+>6
2の場合が二点鎖線を(第4図(C))を、それぞれ示
す。
In the above histogram, when the only peak exceeding a certain MiTH4 is el, the broken line α (Fig. 4 (A))
, if the peaks are the same el and 62, the single-point chain helix β (fourth
Figure (B)), there are two peaks, e and 2, @+>6
In case 2, the two-dot chain line (FIG. 4(C)) is shown.

一点鎖線は、短い線分と長い線分の2種類で構成される
が両者の数はほぼ等しいのに対し、二点鎖線は短い線分
のほうが長い線分より数が多いため、ピークe1と62
の分布に相異が生じるのである(第4図(B) 、 (
C) )。
A dashed-dotted line consists of two types of segments, short and long, but the number of both is almost equal, while a dashed-double line has more short segments than long segments, so the peak e1 62
This causes a difference in the distribution of (Figure 4 (B), (
C) ).

このようにして、各不連続線分図形α、β、γのNMを
識別し折りベクトルとして表わしたのが第5図である。
In this way, the NM of each discontinuous line segment figure α, β, γ is identified and expressed as a folding vector, as shown in FIG.

第5図において、αはS(XからE4までの破線(第4
図(A))、βはりからE、までの一点鎖線(第4図(
B))、rはS、からE、までの二点鎖線(第4図(C
))である。
In Figure 5, α is S (the broken line from X to E4 (the fourth
Figure (A)), a dashed-dotted line from β beam to E (Figure 4 (
B)), r is the chain double-dashed line from S to E (Figure 4 (C
)).

〔発明の効果〕〔Effect of the invention〕

上記本発明によれば、各要素の長さ寸法別にグループ分
けした不連続縮分図形別のおのおのに原点から各不連続
線分図形までの距離と角度を以って表示する・・フ変換
を施すことにより各不連続線分図形の特徴を示すヒスト
グラムを作成することができるので、該特徴ヒストグラ
ムから各不連続縮分図形の種別を人手を介さずに自動的
に識別することができる。
According to the present invention, the distance and angle from the origin to each discontinuous line segment figure are displayed for each discontinuous reduced figure grouped according to the length dimension of each element. By applying this method, a histogram showing the characteristics of each discontinuous line segment figure can be created, so that the type of each discontinuous reduced figure can be automatically identified from the feature histogram without human intervention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) 、 (B)は本発明方式の特徴を示す図
、第2図は本発明方式に使用されるハフ変換の説明図。 第3図は不連続線分図形とρ、θとの関係図、第4図囚
〜(C)は各不連続線分図形に対応するヒストグラム、
第5図は上記ヒストグラムによる識別結果を示す図であ
る。 1.2.3・・・不連続線分図形の各要素、α・・・破
線、β・・・一点鎖線、r・・・二点鎖線、el + 
82・・・ヒストダラムのピーク。
FIGS. 1A and 1B are diagrams showing the features of the system of the present invention, and FIG. 2 is an explanatory diagram of the Hough transform used in the system of the present invention. Figure 3 is a relationship diagram between discontinuous line figures and ρ and θ, Figure 4 (C) is a histogram corresponding to each discontinuous line figure,
FIG. 5 is a diagram showing the identification results using the above-mentioned histogram. 1.2.3... Each element of a discontinuous line segment figure, α... broken line, β... one-dot chain line, r... two-dot chain line, el +
82...Histodalam peak.

Claims (1)

【特許請求の範囲】[Claims] X−Y平面上で表わせる不連続線分図形を各要素の長さ
寸法を基準に分類し、各分類された不連続線分図形を上
記X−Y平面の原点から各要素までの距離ρ及び角度θ
により定められるρ−θ平面上にハフ変換することによ
りρ及びθを基準に再分類し、更に各再分類された不連
続線分図形を各要素の長さ寸法に対する個数を示すヒス
トグラムで表示すると共に上記各ヒストグラムのピーク
の個数を検出し、上記ピーク個数により上記X−Y平面
上で表わせる不連続線分図形の種類を識別することを特
徴とする不連続線分図形識別方式。
Discontinuous line segment figures that can be expressed on the X-Y plane are classified based on the length dimension of each element, and each classified discontinuous line segment figure is calculated by the distance ρ from the origin of the X-Y plane to each element. and angle θ
By performing Hough transform on the ρ-θ plane defined by and detecting the number of peaks in each of the histograms, and identifying the type of the discontinuous line segment figure represented on the XY plane based on the number of peaks.
JP24236384A 1984-11-19 1984-11-19 Discrimination for discontinuous segment graphic Pending JPS61121183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24236384A JPS61121183A (en) 1984-11-19 1984-11-19 Discrimination for discontinuous segment graphic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24236384A JPS61121183A (en) 1984-11-19 1984-11-19 Discrimination for discontinuous segment graphic

Publications (1)

Publication Number Publication Date
JPS61121183A true JPS61121183A (en) 1986-06-09

Family

ID=17088065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24236384A Pending JPS61121183A (en) 1984-11-19 1984-11-19 Discrimination for discontinuous segment graphic

Country Status (1)

Country Link
JP (1) JPS61121183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188280A (en) * 1987-01-30 1988-08-03 Rozefu:Kk Detecting system for straight line of image
JPH01175678A (en) * 1987-12-29 1989-07-12 Rozefu Technol:Kk Method for detecting high speed straight line group by simplified hough transformation
JPH01239683A (en) * 1988-03-22 1989-09-25 Nippon Steel Corp Method for describing line segment
JPH07129773A (en) * 1993-11-02 1995-05-19 Nec Corp Method and device for image pr0cessing
JP2005346385A (en) * 2004-06-02 2005-12-15 Toyota Motor Corp Line graphic processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188280A (en) * 1987-01-30 1988-08-03 Rozefu:Kk Detecting system for straight line of image
JPH01175678A (en) * 1987-12-29 1989-07-12 Rozefu Technol:Kk Method for detecting high speed straight line group by simplified hough transformation
JPH01239683A (en) * 1988-03-22 1989-09-25 Nippon Steel Corp Method for describing line segment
JPH07129773A (en) * 1993-11-02 1995-05-19 Nec Corp Method and device for image pr0cessing
JP2005346385A (en) * 2004-06-02 2005-12-15 Toyota Motor Corp Line graphic processing device

Similar Documents

Publication Publication Date Title
CN108806059A (en) The text filed localization method of the bill alignment and eight neighborhood connected component offset correction of feature based point
CN106845710A (en) Mission area automatic division method and system, flight course planning method and system
US5369734A (en) Method for processing and displaying hidden-line graphic images
CN102165487A (en) Foreground area extracting program, foreground area extracting apparatus and foreground area extracting method
JPS61121183A (en) Discrimination for discontinuous segment graphic
US6728407B1 (en) Method for automatically determining trackers along contour and storage medium storing program for implementing the same
KR101910453B1 (en) Apparatus and method for extracting salient-line informative signs
CN109993695A (en) A kind of the images fragment joining method and system of irregular figure mark
CN102938156B (en) Planar note configuration method based on integral images
US6512998B1 (en) Sputter profile simulation method
JPH07225843A (en) Method for measuring center position of circle
CN111522896A (en) Method and system for determining concave-convex points of plane polygon
JPS6282468A (en) Conversational graphic recognition processing system
JPH0634237B2 (en) Image clipping method
JP3626793B2 (en) Conversion method from 2D CAD diagram to 3D CAD diagram
CN116757025B (en) Automatic ship cabin pattern pickup method based on DXF format
KR100491446B1 (en) Road Extraction from images using Template Matching
CN111160177B (en) Method for detecting contour line intersection of weather facsimile image based on convolution
JPH08263647A (en) Area division device
JP2002150270A (en) Three-dimensional model formation method and device, and record medium recording execution program of the method
JP3284768B2 (en) How to recognize circles and arcs
JPS613287A (en) Graphic form input system
JP2968028B2 (en) Figure input processing method
CN114049647A (en) PCB multi-primitive identification method based on variable threshold
CN113919023A (en) Subway line diagram integrated data processing method