JPS61119864A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission

Info

Publication number
JPS61119864A
JPS61119864A JP24198384A JP24198384A JPS61119864A JP S61119864 A JPS61119864 A JP S61119864A JP 24198384 A JP24198384 A JP 24198384A JP 24198384 A JP24198384 A JP 24198384A JP S61119864 A JPS61119864 A JP S61119864A
Authority
JP
Japan
Prior art keywords
pressure
chamber
input torque
hydraulic
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24198384A
Other languages
Japanese (ja)
Other versions
JPH05580B2 (en
Inventor
Masao Shimamoto
雅夫 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP24198384A priority Critical patent/JPS61119864A/en
Publication of JPS61119864A publication Critical patent/JPS61119864A/en
Publication of JPH05580B2 publication Critical patent/JPH05580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To reduce a discharge loss, by a method wherein a back pressure in a hydraulic working chamber on the driving side is applied on the back pressure chamber of a regulator valve, and a device is formed so that a line pressure can be automatically regulated in proportion to input torque. CONSTITUTION:Since a hydraulic working chamber 17a on the driving side is communicated with a back pressure chamber 33 of a regulator valve 3, an increase in an oil pressure in the hydraulic working chamber 17a with the increase in input torque is transmitted to a back pressure chamber 33 of a regulator valve 3, and a spool 32 is pressed in a direction in which a port 37 is closed. As a result, a line pressure in an oil passage 61 is increased and a high oil pressure proportioning input torque is applied on the hydraulic working chamber 17a on the driving side, and this eliminates the need to maintain a line pressure at a value exceeding maximum input torque.

Description

【発明の詳細な説明】 発明の分野 本発明は入出力ディスク間にパワーローラを圧接状態で
配置し、このパワーローラの傾きを変えることによって
無段変速を行うことができるトロイダル形無R変速機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention provides a toroidal non-R transmission in which a power roller is placed in pressure contact between input and output disks, and which can perform stepless speed change by changing the inclination of the power roller. It is related to.

従来技術とその問題点 従来、特開昭58−54262号公報に記載のように、
パワーローラを回転自在に支持する支持体をそれ自身の
軸方向(パワーローラ軸と直交する方向)に作動させる
ことにより、パワーローラに作用する接線方向の力の方
向を変化させ、この接線方向の力の分力によってパワー
ローラの傾きを変えるようにしたトロイダル形無段変速
機が知られている。
Prior art and its problems As described in Japanese Patent Application Laid-Open No. 58-54262,
By operating the support that rotatably supports the power roller in its own axial direction (direction perpendicular to the power roller axis), the direction of the tangential force acting on the power roller is changed, and this tangential force is A toroidal continuously variable transmission is known that changes the inclination of a power roller depending on a force component.

この場合には、支持体の両端部に油圧作動室を設けると
ともに、油圧作動室と油圧供給源との間に制御弁を設け
、この制御弁により各油圧作動室への油路を切り換える
ことによって、油圧作動室に作用するライン圧をON、
0FPtallL、支持体を軸方向に作動させるのであ
る。
In this case, hydraulic chambers are provided at both ends of the support, a control valve is provided between the hydraulic chamber and the hydraulic pressure supply source, and the control valve switches the oil path to each hydraulic chamber. , turn on the line pressure acting on the hydraulic working chamber,
0FPtallL, the support is actuated in the axial direction.

ところで、人出力ディスクの回転に伴い、支持体は入力
ディスクの回転方向に付勢されるため、入力ディスクの
回転方向と対向する駆動側油圧作動室には大きな背圧が
作用し、しかもこの背圧は入力ディスクの入力トルクの
増大につれて増大する。したがって、支持体を所望の変
速位置に迅速に作動させるには、駆動側油圧作動室に作
用するライン圧を最大入力トルクを上回る値に設定しな
ければならない、しかしながら、ライン圧を高く設定す
ると、入力トルクが低い場合においても常に高いライン
圧が作用するため、オイルポンプの吐出損失が大きくな
り、その結果、燃費が悪くなるという問題がある。
By the way, as the human output disk rotates, the support body is urged in the rotational direction of the input disk, so a large back pressure acts on the drive side hydraulic chamber facing the rotation direction of the input disk. The pressure increases as the input torque on the input disk increases. Therefore, in order to quickly move the support to the desired shift position, the line pressure acting on the drive-side hydraulic chamber must be set to a value that exceeds the maximum input torque. However, if the line pressure is set high, Since a high line pressure always acts even when the input torque is low, there is a problem in that the discharge loss of the oil pump increases, resulting in poor fuel efficiency.

発明の目的 本発明はかかる従来の問題点に履みてなされたもので、
その目的は、ライン圧を入力トルクに見金うた必要最小
限に調圧でき、オイルポンプの吐出損失を極力低減てき
るトロイダル形無段変速機を提供することにある。
Purpose of the Invention The present invention has been made in view of the problems of the prior art.
The purpose is to provide a toroidal continuously variable transmission that can regulate line pressure to the minimum necessary in response to input torque and reduce oil pump discharge loss as much as possible.

発明の構成 上記目的を達成するために、本発明は、コントロールパ
ルプと油圧供給源との間にレギエレータバルプを設け、
入力ディスクの回転方向と対向する駆動側油圧作動室を
上記レギエレータバルプの背圧室に連通せしめたもので
ある。
Structure of the Invention In order to achieve the above object, the present invention provides a regierator valve between the control pulp and the hydraulic pressure supply source,
A drive side hydraulic chamber facing the rotational direction of the input disk is communicated with the back pressure chamber of the regierator valve.

すなわち、駆動側油圧作動室の背圧をレギエレータバル
プの背圧室にかけることにより、ライン圧を入力トルク
に比例して自動的に調圧することができるようにし、そ
の結果、入力トルクが低い場合にはライン圧も低く抑え
ることができ、吐出損失を極力低減てきる。
In other words, by applying the back pressure of the drive side hydraulic operation chamber to the back pressure chamber of the regierator valve, the line pressure can be automatically regulated in proportion to the input torque, and as a result, the input torque is reduced. When it is low, the line pressure can also be kept low, and discharge loss can be reduced as much as possible.

実施例の説明 第1図は本発明にかかるトロイダル形無段変速機の一例
を示し、lはトロイ、ダル変速部、2はコントロールパ
ルプ、3はレギエレータバルフ、4および5は油圧供給
源を構成するオイルタンクおよびオイルポンプである。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a toroidal continuously variable transmission according to the present invention, where l is a troy, a dull transmission section, 2 is a control pulp, 3 is a regiator valve, and 4 and 5 are hydraulic supply sources. This consists of an oil tank and an oil pump.

トロイダル変速部1の対向する入力ディスク11と出力
ディスク(図示せず)との間には、2個のパワーローラ
12が圧接状態で配置されており、それぞれのパワーロ
ーラ12は輪13を介して支持体14によって回転自在
に支持されている。
Two power rollers 12 are disposed in pressure contact between an input disk 11 and an output disk (not shown) facing each other in the toroidal transmission section 1, and each power roller 12 is connected to It is rotatably supported by a support body 14.

支持体14の両端部には、シリンダ16a、16b内を
摺動自在なピストン15a、15bが連設されており、
上記支持体14はピストンとともに軸方向(図中、上下
方向)に移動可能であり、かつ自身の軸の回りに回動可
能である。また、上記シリンダtea、16bの内部に
は油圧作動室17a、17bが形成されており、これら
油圧作動室のうち、入力ディスク110回転方向(図中
、矢印で示す)と対向する側が駆動側油圧作動117為
、これと反対側が非駆動側油圧作動1i17bとなりて
いる。
Pistons 15a and 15b, which are slidable in cylinders 16a and 16b, are connected to both ends of the support body 14.
The support body 14 is movable together with the piston in the axial direction (in the vertical direction in the figure) and is rotatable around its own axis. Further, hydraulic chambers 17a and 17b are formed inside the cylinders tea and 16b, and the side facing the rotation direction of the input disk 110 (indicated by an arrow in the figure) is the drive-side hydraulic chamber. Because of the operation 117, the opposite side is the non-drive side hydraulic operation 1i17b.

コントロールパルプ2は、パルプボデー21内に摺動自
在に挿入されたスリーブ22と、スリーブ22内に摺動
自在に挿入されたスプール23とを備えている。上記ス
リーブ22は変速比制御装置のアクチェエータ24によ
って軸方向に作動され、スプール23の左端部はブリシ
スカム25とスプリング26の付勢力により常時当接し
ている、このブリシスカム25は一方の支持体、例えば
左側の支持体14の上端部に連結されており、支持体1
4と一体に回転してスプール23を進退させる。
The control pulp 2 includes a sleeve 22 slidably inserted into a pulp body 21 and a spool 23 slidably inserted into the sleeve 22. The sleeve 22 is actuated in the axial direction by an actuator 24 of a speed ratio control device, and the left end of the spool 23 is constantly in contact with a brisis cam 25 by the biasing force of a spring 26. is connected to the upper end of the support 14 of the support 1
4 and moves the spool 23 forward and backward.

レギエレータバルブ3はバルブボデー31内に進退自在
に挿入されたスプール32ををしており、このスプール
32は背圧′M33に設けたスプリング34により右方
へ付勢されている。レギエレータバルプ3の中央のポー
ト35はオイルポンプ5の吐出側と接続されており、こ
のポート35と隣接するポート36はオイルポンプ5の
吸込側に接続されている。上記中央のポート35は油路
61を介してコントロールパルプ2の中央のポート27
に接続されており、上記油路61から分岐した油路62
はレギエレータバルブ3の右端のポート37に接続され
ている。レギエレータバルプ3の背圧室33は油路63
を介して・トロイダル変速部lの駆動側油圧作動室17
aに接続され、さらに油路63から分岐した油路64を
介してコントロールパルプ2の左側のポート28に接続
されている。一方、非駆動側油圧作動1t’rbは油路
65によってコントロールパルプ2の右側のポート29
に接続されている。
The regiator valve 3 has a spool 32 inserted into a valve body 31 so as to be freely advanced and retracted, and this spool 32 is biased to the right by a spring 34 provided at a back pressure 'M33. A central port 35 of the regierator valve 3 is connected to the discharge side of the oil pump 5, and a port 36 adjacent to this port 35 is connected to the suction side of the oil pump 5. The central port 35 is connected to the central port 27 of the control pulp 2 via an oil passage 61.
An oil passage 62 branched from the oil passage 61
is connected to the right end port 37 of the regierator valve 3. The back pressure chamber 33 of the regierator valve 3 is connected to the oil passage 63
Via the drive-side hydraulic chamber 17 of the toroidal transmission section l.
a, and further connected to the left port 28 of the control pulp 2 via an oil path 64 branched from the oil path 63. On the other hand, the non-drive side hydraulic operation 1t'rb is connected to the right port 29 of the control pulp 2 by the oil passage 65.
It is connected to the.

上記構成のトロイダル形無段変速機において、エンジン
を始動させるとオイルポンプ5が駆動すれ、オイルポン
プ5で発生した油圧はレギュレータパルプ3の中央のポ
ート35に送られる。そして、この油圧は油路62を介
してスプール32の右端に作用し、スプール32をスプ
リング34に抗して左方へ移動させる。これによ、てポ
ート35と36とが連通し、オイルポンプ5の吸込側ヘ
トレーンされる。したがうて、中央のポート35と接続
された油路61の油圧は、この油圧とスプリング34の
ばね力とが釣り合った状態(ライン圧)に保たれる。
In the toroidal continuously variable transmission configured as described above, when the engine is started, the oil pump 5 is driven, and the hydraulic pressure generated by the oil pump 5 is sent to the central port 35 of the regulator pulp 3. This oil pressure acts on the right end of the spool 32 through the oil passage 62, and moves the spool 32 to the left against the spring 34. As a result, the ports 35 and 36 communicate with each other, and are connected to the suction side of the oil pump 5. Therefore, the oil pressure in the oil passage 61 connected to the central port 35 is maintained in a state where this oil pressure and the spring force of the spring 34 are balanced (line pressure).

ここで、トロイダル変速部1の変速比を変える場合には
、アクチェエータ24によりコントロールパルプ2のス
リーブ22を例えば図中右側へ作動させる。これにより
ポート27と2Bとが連通し、ライン圧は油路61およ
び64を介して駆動側油圧作動!171に作用するとと
もに、非駆動側油圧作動1i17bと油路65を介して
連通したポート29は、スプール23に設゛けた孔23
aを介してドレーンされる。したがって、駆動側油圧作
動室17aの油圧が高くなり、左側の支持体14は上方
へ、右側の支持体14は下方へそれぞれ移動する。これ
に伴ってパワーローラ12に加わる接線方向の力の向き
が変わるので、左側のパワーローラ12と支持体14と
は右回り方向に回動し、右側のパワーローラ12と支持
体14とは左回り方向に回動する。すなわち、トロイダ
ル変速部!は増速側へ移行する。そして、上記左側の支
持体14と一体に回動するブリシスカム25は左回り方
向に回動し、スプール23をポート2Bが閉じられるま
で右方へ押す、上記のようにしてトロイダル変速部1は
所望の変速比まで制御され、かつこの変速比で維持され
る。なお、上記の動作は、前述の特開昭58−5426
2号公報に記載のものと同様である。
Here, when changing the gear ratio of the toroidal transmission section 1, the actuator 24 moves the sleeve 22 of the control pulp 2, for example, to the right in the figure. As a result, the ports 27 and 2B are communicated, and the line pressure is activated via the oil passages 61 and 64 on the drive side! 171 and communicated with the non-drive side hydraulic actuation 1i17b via the oil passage 65, the port 29 is connected to the hole 23 provided in the spool 23.
drained through a. Therefore, the hydraulic pressure in the drive-side hydraulic chamber 17a increases, and the left support 14 moves upward, and the right support 14 moves downward. Along with this, the direction of the tangential force applied to the power roller 12 changes, so the left power roller 12 and support 14 rotate clockwise, and the right power roller 12 and support 14 rotate to the left. Rotate in the rotational direction. In other words, a toroidal transmission! shifts to the speed increasing side. Then, the Brisis cam 25, which rotates together with the left support 14, rotates counterclockwise and pushes the spool 23 to the right until the port 2B is closed. The gear ratio is controlled up to and maintained at this gear ratio. The above operation is described in the above-mentioned Japanese Patent Application Laid-Open No. 58-5426.
This is the same as that described in Publication No. 2.

上記変速動作の途中において入力ディスク11に加わる
入力トルクが増大すると、支持体’14は上記動作とは
反対側、すなわち左側の支持体14は下方へ、右側の支
持体14は上方へそれぞれ押されるため、所望の変速比
に達するまで時間がかかりたり、あるいはこの変速位置
を維持し得なくなる。そのため、適業はライン圧を最大
入力トルクがかかった場合でも動作に支障がない程度の
大きな値に維持する必要があり、オイルポンプの吐出損
失の原因となつている。
When the input torque applied to the input disk 11 increases during the above-mentioned speed-changing operation, the support '14 is pushed to the opposite side to the above-mentioned operation, that is, the left support 14 is pushed downward, and the right support 14 is pushed upward. Therefore, it takes time to reach the desired gear ratio, or it becomes impossible to maintain this gear ratio. Therefore, it is necessary to maintain the line pressure at a high value that does not hinder operation even when the maximum input torque is applied, which is a cause of oil pump discharge loss.

本発明では、駆動側油圧作動IE17aを油路63を介
してレギエレータバルブ3の背圧3433に連通せしめ
ているので、入力トルクの増大に伴う駆動側油圧作動室
17mの油圧の増大は、瞬時にレギエレータバルブ3の
背圧室33に伝えられ、スプール32を右方、すなわち
ポート37を閉じる方向に押圧する。その結果、油路6
1内のライン圧は上昇し、駆動側油圧作動* l 7 
aには人力トルクに比例した高い油圧がかけられる。つ
まり、レギエレータバルブ3の背圧室33の作用によっ
て、ライン圧は常に入力トルクを上回るように調圧され
るので、ライン圧を常に最大入力トルクを上回る値に維
持しておく必要がない。
In the present invention, since the drive-side hydraulic IE 17a is communicated with the back pressure 3433 of the regierator valve 3 via the oil passage 63, an increase in the oil pressure in the drive-side hydraulic chamber 17m due to an increase in input torque is caused by The pressure is instantaneously transmitted to the back pressure chamber 33 of the regierator valve 3, pushing the spool 32 to the right, that is, in the direction of closing the port 37. As a result, oil line 6
The line pressure in 1 increases, and the drive side hydraulic operation* l 7
A high hydraulic pressure proportional to the human torque is applied to a. In other words, the line pressure is regulated to always exceed the input torque due to the action of the back pressure chamber 33 of the regierator valve 3, so there is no need to maintain the line pressure at a value that always exceeds the maximum input torque. .

第2図は上記レギュレータパルプ3の調圧動作を示す図
であり、実線Aは駆動側油圧作動117−に作用する入
力トルクによる背圧の変化を示し、一点鎖線Bはライン
圧の変化を示している。そして、実線Aと一点鎖線Bと
の油圧差はレギュレータパルプ3のスプリング34のば
ね力によって与えられる。このように、入力トルクが変
化しても、ライン圧は人力トルクによる背圧より常に高
く調圧されるため、トロイダル変速部1の制御に何ら支
障をきたさないとともに、入力トルクが小さいときには
ライン圧も低く抑えることができるので、オイルポンプ
の吐出損失を極力低減できる。
FIG. 2 is a diagram showing the pressure regulating operation of the regulator pulp 3, where the solid line A shows the change in back pressure due to the input torque acting on the drive side hydraulic actuation 117-, and the dashed line B shows the change in line pressure. ing. The hydraulic pressure difference between the solid line A and the dashed line B is given by the spring force of the spring 34 of the regulator pulp 3. In this way, even if the input torque changes, the line pressure is always regulated higher than the back pressure caused by the manual torque, so there is no problem in controlling the toroidal transmission section 1, and when the input torque is small, the line pressure Since the discharge loss of the oil pump can be kept low, the discharge loss of the oil pump can be reduced as much as possible.

なお、第2m中破線Cはレギュレータパルプ3の背圧!
!33の面積を他部より小とした場合であり、高速側へ
移行するにつれて実線Aとの油圧差を小さくしている。
In addition, the broken line C in the second m is the back pressure of the regulator pulp 3!
! This is a case where the area of 33 is made smaller than other parts, and the oil pressure difference with the solid line A becomes smaller as the speed moves toward the high speed side.

このようにすれば、高速走行時における損失をさらに低
減できる。
In this way, losses during high-speed running can be further reduced.

発明の効果 以上の説明で明らかなように、本発明によれば駆動側油
圧作動室の背圧をレギュレータパルプの背圧室にかけた
ので、ライン圧を入力トルクに比例して自動的に調圧す
ることができ、オイルポンプの吐出損失を極力低減でき
る。
Effects of the Invention As is clear from the above explanation, according to the present invention, the back pressure of the drive side hydraulic working chamber is applied to the back pressure chamber of the regulator pulp, so the line pressure is automatically regulated in proportion to the input torque. This allows the discharge loss of the oil pump to be reduced as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるトロイダル形無段変速機の構成
図、第2mはレギエレータバルブの調圧動作を示す図で
ある。 1・・・トロイダル変速部、11・・・入力ディスク、
12・・・パワーローラ、14・・・支持体、17a・
・・駆動側油圧作動室、2・・・コントロールパルプ、
3・・・レギエレータバルブ、33・・・背圧室、34
・・・スプリング、5・・・オイルポンプ、63・・・
油路。
FIG. 1 is a block diagram of the toroidal continuously variable transmission according to the present invention, and FIG. 2m is a diagram showing the pressure regulating operation of the regiator valve. 1... Toroidal transmission section, 11... Input disk,
12... Power roller, 14... Support body, 17a.
... Drive side hydraulic working chamber, 2... Control pulp,
3...Regierator valve, 33...Back pressure chamber, 34
...Spring, 5...Oil pump, 63...
Oil road.

Claims (1)

【特許請求の範囲】[Claims] (1)入出力ディスクと、入出力ディスク間に圧接状態
で配置されたパワーローラと、パワーローラを回転自在
に支持し、軸方向に可動でかつ軸回りに回動可能な支持
体と、支持体の両端部に連設され、支持体を軸方向に作
動させるための油圧作動室と、油圧作動室への油圧を制
御するコントロールバルブとを備えたトロイダル形無段
変速機において、上記コントロールバルブと油圧供給源
との間にレギュレータバルブを設け、入力ディスクの回
転方向と対向する駆動側油圧作動室を上記レギュレータ
バルブの背圧室に連通せしめたことを特徴とするトロイ
ダル形無段変速機。
(1) An input/output disk, a power roller placed in pressure contact between the input/output disks, a support that rotatably supports the power roller, is movable in the axial direction and rotatable around the axis, and a support In a toroidal continuously variable transmission, which is connected to both ends of the body and includes a hydraulic chamber for operating the support body in the axial direction, and a control valve that controls hydraulic pressure to the hydraulic chamber, the control valve 1. A toroidal continuously variable transmission characterized in that a regulator valve is provided between the input disc and a hydraulic pressure supply source, and a drive-side hydraulic operating chamber facing the rotational direction of the input disk is communicated with a back pressure chamber of the regulator valve.
JP24198384A 1984-11-15 1984-11-15 Toroidal type continuously variable transmission Granted JPS61119864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24198384A JPS61119864A (en) 1984-11-15 1984-11-15 Toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24198384A JPS61119864A (en) 1984-11-15 1984-11-15 Toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS61119864A true JPS61119864A (en) 1986-06-07
JPH05580B2 JPH05580B2 (en) 1993-01-06

Family

ID=17082496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24198384A Granted JPS61119864A (en) 1984-11-15 1984-11-15 Toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS61119864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052236A (en) * 1988-12-16 1991-10-01 Nissan Motor Co., Ltd. Forward and reverse hydraulic control for toroidal continuously variable transmission
US5099710A (en) * 1988-12-16 1992-03-31 Nissan Motor Co., Ltd. Continuously variable transmission system having parallel drive paths with fluid control valve including pressure equalization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052236A (en) * 1988-12-16 1991-10-01 Nissan Motor Co., Ltd. Forward and reverse hydraulic control for toroidal continuously variable transmission
US5099710A (en) * 1988-12-16 1992-03-31 Nissan Motor Co., Ltd. Continuously variable transmission system having parallel drive paths with fluid control valve including pressure equalization

Also Published As

Publication number Publication date
JPH05580B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
JP2790627B2 (en) Control method and control device for belt continuously variable transmission
JP2748511B2 (en) Transmission control device
JP4048625B2 (en) Shift control device for continuously variable transmission with infinite gear ratio
JPH0554576B2 (en)
JPS6058338B2 (en) Construction machinery engine control device
JP2636581B2 (en) Transmission control device for toroidal continuously variable transmission
JPS61119864A (en) Toroidal type continuously variable transmission
US4895552A (en) Control system for transmission
JP4712701B2 (en) Hydraulic pressure controller
JPH05581B2 (en)
JP3265882B2 (en) Transmission control device for belt type CVT
JPS63214562A (en) Hydraulic drive circuit
JP2662565B2 (en) Toroidal continuously variable transmission
JP2699344B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JP2649267B2 (en) Transmission clutch control device
JP2636582B2 (en) Control device for toroidal continuously variable transmission
JP2002295666A (en) Automatic transmission and driving method therefor
JPH01116367A (en) Toroidal type continuously variable transmission
JPH0617716B2 (en) Hydraulic controller for toroidal type continuously variable transmission
JP2788633B2 (en) Belt continuously variable transmission
JP2501951Y2 (en) Capacity control device for hydraulic pump for automatic transmission
JPH0429883B2 (en)
JPS6188064A (en) Hydraulic control device for belt stepless speed change gear
JPH0638215Y2 (en) Shift control device for continuously variable transmission
JP2637751B2 (en) Toroidal type continuously variable transmission