JPS61119713A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS61119713A
JPS61119713A JP23904584A JP23904584A JPS61119713A JP S61119713 A JPS61119713 A JP S61119713A JP 23904584 A JP23904584 A JP 23904584A JP 23904584 A JP23904584 A JP 23904584A JP S61119713 A JPS61119713 A JP S61119713A
Authority
JP
Japan
Prior art keywords
gas
fiber
hydrocarbons
fibers
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23904584A
Other languages
Japanese (ja)
Inventor
Yukinari Komatsu
小松 行成
Keisuke Uchiyama
圭介 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23904584A priority Critical patent/JPS61119713A/en
Publication of JPS61119713A publication Critical patent/JPS61119713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon fiber with high generation density, in which yield, by reacting a hydrocarbon (and a carrier medium) in the presence of a catalyst under heating, treating the reaction product with an inert gas or a mixture of inert gas and active gas, and then reacting under heating. CONSTITUTION:A hydrocarbon such as methane, benzene, naphthalene, etc. or a mixture of the hydrocarbon and a carrier medium is introduced into a reaction system, and reacted at 650-950 deg.C for >=0.5min in the presence of a metal (compound) having catalytic activity, e.g. zinc, etc., to form a fiber. The produced fiber is treated with an inert gas such as nitrogen gas or with a mixture of the inert gas and an active gas such as hydrogen, steam, etc., at 1,000-1,300 deg.C. The treated fiber is made to react at 1,000-1,300 deg.C to obtain the objective fiber. The above metal (compound) is preferably a transition metal (compound).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維の製造法に関し、さらに詳しくは炭化
水素類を原料とし、気相法によって高効率で炭素繊維を
製造する方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing carbon fiber, and more specifically to a method for producing carbon fiber with high efficiency by a gas phase method using hydrocarbons as raw materials. be.

炭素繊維は高強度、高弾性率などの優れた性質を有し、
各種複合材料として近年脚光を浴びている材料である。
Carbon fiber has excellent properties such as high strength and high modulus of elasticity.
It is a material that has been in the spotlight in recent years as a variety of composite materials.

従来、炭素繊維は有機繊維を炭化することによって主に
製造されているが、炭化水素類の熱分解および触媒反応
によって生成する炭素繊維も知られている。後者の気相
法炭素繊維は前者の炭素繊維に比べ、優れた結晶性、配
向性を有しているため、高強度、高弾性率を兼備する複
合材料として、多方面の用途が期待されている。
Conventionally, carbon fibers have been mainly produced by carbonizing organic fibers, but carbon fibers produced by thermal decomposition and catalytic reactions of hydrocarbons are also known. The latter type of vapor-grown carbon fiber has superior crystallinity and orientation compared to the former type of carbon fiber, so it is expected to be used in a variety of fields as a composite material that has both high strength and high modulus. There is.

(従来の技術) 気相法による炭素繊維の製造法は種々提案されているが
、一般的には鉄、ニッケル等の遷移金属単体またははそ
れらの合金からなる超微粒子を散布した繊維生成用基材
を電気炉の反応管内に設置し、不活性雰囲気にした後、
炉へvを所定温度まで上昇させて炭化水素と水素の混合
ガスを通気し、熱分解および触媒反応により前記基材上
に炭素繊維を生成させている。
(Prior art) Various methods have been proposed for producing carbon fibers using a vapor phase method, but generally a fiber-forming base is used, in which ultrafine particles of transition metals such as iron and nickel or their alloys are dispersed. After placing the material in the reaction tube of an electric furnace and creating an inert atmosphere,
A mixed gas of hydrocarbons and hydrogen is passed into the furnace by raising v to a predetermined temperature, and carbon fibers are produced on the base material by thermal decomposition and catalytic reaction.

(発明が解決しよう吉する問題点) しかしながら、この方法は、繊維の発生密度が充分では
なく、かつ繊維生成の再現性が非常に悪く、繊維がほと
んど生成しない場合もしばしば起こり、未だ工業生産の
段階には到っていないのが現状である。一般に触媒とし
て用いられる超微粒子状金属は一次粒子が多数連結した
二次粒子を形成しており、1゛ケの金属超微粒子(一般
的には粒径0.1μm以下)を核として生成する気相法
炭素繊維の製造では、昇温過程で凝集粒子を生したり、
焼結を起こしたりするために、触媒存在量に対して生成
する炭素繊維が極めて少ないのが現状である。特に繊維
の成長速度が大きい1000〜1300°Cにおいては
微粒子状金属が焼結し易いため、繊維の発生密度(暴利
単位面積あたりの発生本数)の向」−を著しく阻害して
いる。
(Problems to be solved by the invention) However, with this method, the density of fiber generation is not sufficient, the reproducibility of fiber generation is very poor, and there are often cases where almost no fiber is generated, and it is still difficult to produce industrially. The current situation is that we have not yet reached this stage. Ultrafine metal particles commonly used as catalysts form secondary particles in which a large number of primary particles are connected. In the production of phase-grown carbon fiber, agglomerated particles may be produced during the heating process,
Currently, the amount of carbon fiber produced is extremely small relative to the amount of catalyst present due to sintering. Particularly at temperatures of 1,000 to 1,300° C., where the growth rate of fibers is high, fine particulate metal is easily sintered, which significantly inhibits the fiber density (the number of fibers generated per unit area of profit).

本発明の目的は、上記従来の欠点を除去し、気相法によ
り、高発生密度で、かつ収率よく炭素繊維を製造する方
法を提供することにある。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide a method for producing carbon fibers with high generation density and good yield by a gas phase method.

本発明者らは、炭素析出能を有する炭化水素含有ガスを
電気炉の反応器内に通し、該ガスの熱分解および触媒反
応を行なう炭素繊維の製法について、種々の検討を行な
った結果、加熱温度およびガス処理法が重要な因子であ
ることを見出し、本発明に到達したものである。
The present inventors conducted various studies on a carbon fiber manufacturing method in which a hydrocarbon-containing gas having carbon-depositing ability is passed through a reactor of an electric furnace, and the gas is thermally decomposed and catalytically reacted. The present invention was achieved by discovering that temperature and gas treatment method are important factors.

すなわち、本発明は、炭化水素類または炭化水素類とl
l1i送媒体(例えばキャリヤガス)を反応器内に導入
し、触媒作用をする金属または金属化合物の存在下に炭
化水素類を炭化させる炭素繊維の製造法において、加熱
温度650〜950°Cで該炭化水素類を反応させる第
1工程、次いで加熱温度1000〜1300℃で不活性
ガス単独または不活性ガスと活性ガスとの混合ガスによ
って処理する第2工程、さらに加熱温度1000〜13
00℃で炭化水素類を反応させる第3工程からなること
を特徴としている。
That is, the present invention provides hydrocarbons or hydrocarbons and
A method for producing carbon fibers in which a transport medium (e.g., carrier gas) is introduced into a reactor and hydrocarbons are carbonized in the presence of a metal or metal compound that acts as a catalyst. A first step in which hydrocarbons are reacted, then a second step in which treatment is performed with an inert gas alone or a mixed gas of an inert gas and an active gas at a heating temperature of 1000 to 1300°C, and a further heating temperature of 1000 to 1300°C.
It is characterized by comprising a third step of reacting hydrocarbons at 00°C.

本発明において、第1工程の温度が650℃未満ではI
J、li維の発生がほとんどみられず、また950°C
を越えると金属微粒子の凝集が進行してミクロンサイズ
の粒子が多数生成し、有効な繊維が生成しない。加熱温
度を650〜950℃にすることにより繊維が高発生密
度で生成するが、この温度域のみの繊維の成長速度が極
めて小さく、生成繊維の径は0.01〜0.1μ、長さ
は数μ〜数十μ、アスペクト比としては高々数百−数千
であるので、例えば補強用繊維等として実用に供するこ
とはできない。
In the present invention, if the temperature in the first step is less than 650°C, I
Almost no J, li fibers were observed, and at 950°C
If it exceeds this limit, agglomeration of the metal fine particles will progress and a large number of micron-sized particles will be produced, and effective fibers will not be produced. By setting the heating temperature to 650 to 950°C, fibers are generated at a high density, but the growth rate of fibers only in this temperature range is extremely slow, and the diameter of the generated fibers is 0.01 to 0.1μ, and the length is Since the aspect ratio is several microns to several tens of microns, and the aspect ratio is several hundred to several thousand at most, it cannot be used practically as, for example, reinforcing fibers.

しかし、本発明者らは、驚くべきことに、第1工程で炭
化水素を反応させたのち、加熱温度1000〜1300
 ’Cで不活性ガス単独または不活性ガスと活性ガスと
の混合ガスと接触させることにより、第2工程で炭化水
素を供給しなくても極めて速い成長速度を有する繊維を
生成せしめることを見出した。さらに第3工程において
加熱温度1000〜1300℃で炭化水素を反応させる
ことにより、上述の繊維は高発生密度を維持して高成長
速度で成長し、炭素繊維を収率よく生成し得ることを見
出し、本発明に到達したものである。
However, the present inventors surprisingly found that after reacting the hydrocarbons in the first step, the heating temperature was 1000 to 1300.
We have discovered that by contacting 'C with an inert gas alone or a mixture of an inert gas and an active gas, fibers with an extremely fast growth rate can be produced without the need to supply hydrocarbons in the second step. . Furthermore, they discovered that by reacting hydrocarbons at a heating temperature of 1,000 to 1,300°C in the third step, the above-mentioned fibers can maintain a high generation density and grow at a high growth rate, producing carbon fibers with good yield. , the present invention has been achieved.

本発明で用いる炭化水素類(以下、単に炭化水素という
ことがある)は、炭素繊維の製造に使用できるものであ
れば特に限定されず、例えば脂肪族炭化水素類(例えば
メタン、エタン、プロパン、エチレン、プロピレン、ア
セチレンなど)、芳香族炭化水素類(例えばベンゼン、
トルエン、キシレンなど)、多環芳香族炭化水素類(例
えばナフタリン、アントラセン、フェナントレンなど)
、脂環族炭化水素類(例えばシクロヘキサン、シクロペ
ンタジェンなど)、その他炭化水素を主体とする原料な
どを用いることができる。
The hydrocarbons (hereinafter sometimes simply referred to as hydrocarbons) used in the present invention are not particularly limited as long as they can be used for manufacturing carbon fibers, and include, for example, aliphatic hydrocarbons (such as methane, ethane, propane, (ethylene, propylene, acetylene, etc.), aromatic hydrocarbons (such as benzene,
toluene, xylene, etc.), polycyclic aromatic hydrocarbons (e.g. naphthalene, anthracene, phenanthrene, etc.)
, alicyclic hydrocarbons (for example, cyclohexane, cyclopentadiene, etc.), and other raw materials mainly composed of hydrocarbons can be used.

上記炭化水素には、必要に応じて反応または調整する活
性ガス、不活性ガスおよび搬送媒体を添加することがで
きる。
An active gas, an inert gas, and a carrier medium can be added to the hydrocarbon to be reacted or adjusted as necessary.

活性ガスとしては水素、水蒸気、アンモニア、塩化水素
、塩素、酸素、−酸化炭素、−酸化窒素、硫、不活性ガ
スとしては、窒素、ヘリウム、ネオン、アルゴン等、ま
た搬送媒体(キャリヤガス)としては、水素、アルゴン
、窒素などが好ましく用いられる。
Active gases include hydrogen, water vapor, ammonia, hydrogen chloride, chlorine, oxygen, -carbon oxide, -nitrogen oxide, sulfur, and inert gases include nitrogen, helium, neon, argon, etc., and as a carrier gas. Hydrogen, argon, nitrogen, etc. are preferably used.

本発明において、触媒として用いる金属または金属化合
物は遷移金属または遷移金属化合物が好ましい。遷移金
属とは、原子番号21のScから30のZnまで、39
のYから48のCdまで、57のL aから80のHg
まで、89のAc以上の元素を言う。遷移金属化合物と
しては、硫酸塩、硝酸塩、酢酸塩、ギ酸塩、塩化物、硫
化物、水酸化物、酸化物、炭化物、窒化物、ケイ化物な
どの無機化合物、さらにフェロセン、ペンタカルボニル
鉄などの有機金属化合物などが挙げられる。
In the present invention, the metal or metal compound used as a catalyst is preferably a transition metal or a transition metal compound. Transition metals include atomic numbers ranging from Sc with atomic number 21 to Zn with 30, 39
From Y to 48 Cd, from 57 La to 80 Hg
up to 89 Ac or higher elements. Transition metal compounds include inorganic compounds such as sulfates, nitrates, acetates, formates, chlorides, sulfides, hydroxides, oxides, carbides, nitrides, and silicides, as well as ferrocene, pentacarbonyl iron, etc. Examples include organometallic compounds.

金属または金属化合物を反応系内に存在させる方法とし
ては、これらを水および/または有機溶媒に均一に熔解
、または分散させて繊維生成用基材に保持または、担持
させたものを反応器内に置くか、有機金属化合物、塩化
物などのような揮発性の高いものは、そのまま又はガス
状として反応器内に直接供給するか、または前記の有機
金属化合物、塩化物等が炭化水素に可溶なもの、または
金属が炭化水素に分散可能なものは、これらを含む液状
の炭化水素を直接反応器内にパイプ等で吹込んでもよい
。繊維生成用基材としては、一般にアルミナ質ムライト
質、石英、炭素質、黒鉛質炭化ケイ素質などのパイプ、
板、繊維、粒状物などが用いられる。また反応器および
ガス導入パイプ等の材質は、繊維成長温度1000〜1
300℃の温度範囲で耐えるものであればいかなるもの
も使用でき、例えばアルミナ質、ムライト質などのセラ
ミックスが用いられる。なお、金属および金属化合物と
炭化水素の両者を別々に吹き込んで反応器内で混合して
もよい。
A method for making metals or metal compounds present in the reaction system is to uniformly dissolve or disperse them in water and/or an organic solvent, hold or support them on a fiber-producing base material, and then place the mixture in a reactor. Highly volatile substances such as organometallic compounds, chlorides, etc. may be directly fed into the reactor as they are or in gaseous form, or the organometallic compounds, chlorides, etc. may be soluble in hydrocarbons. If the metal is dispersible in the hydrocarbon, the liquid hydrocarbon containing these may be directly blown into the reactor through a pipe or the like. The base materials for fiber production are generally pipes made of alumina, mullite, quartz, carbon, graphitic silicon carbide, etc.
Boards, fibers, granules, etc. are used. In addition, the materials of the reactor, gas introduction pipe, etc. should be adjusted to a fiber growth temperature of 1000 to 1.
Any material can be used as long as it can withstand a temperature range of 300° C. For example, ceramics such as alumina and mullite are used. Note that both the metal and metal compound and the hydrocarbon may be blown separately and mixed within the reactor.

これらの方法は何ら制限されるものではなく、所望の繊
維形態に応して任意に設定することができるが、繊維生
成用基材に該金属または該金属化合物を散布する場合は
、炭素繊維の発生密度の点から繊維生成用基材の単位面
積当たり0.1〜100m−mo7!/%が好ましく、
1〜10 m −m 。
These methods are not limited in any way and can be arbitrarily set depending on the desired fiber form, but when spraying the metal or metal compound on the fiber production substrate, it is necessary to From the viewpoint of generation density, it is 0.1 to 100 m-mo7 per unit area of the base material for fiber production! /% is preferable,
1-10 m-m.

l/ボがより好ましい。散布密度が高すぎると、金属微
粒子の重なりが多くなるため、昇温過程において凝集粒
子が生成し易くなる。一般に気相法炭素繊維は1ケの金
属超微粒子に1本の繊維が生成、成長するものであり、
金属超微粒子を繊維生成用基材に存在させる場合は、該
微粒子を基材上に孤立した状態で分散させることが好ま
しい(特願昭58−82815号)。
l/bo is more preferable. If the dispersion density is too high, the metal fine particles will overlap more often, making it easier to form aggregated particles during the temperature rising process. In general, vapor-grown carbon fiber is one in which one fiber is produced and grown in one ultrafine metal particle.
When ultrafine metal particles are present in a base material for fiber production, it is preferable to disperse the fine particles in an isolated state on the base material (Japanese Patent Application No. 82815/1982).

金属または金属化合物を反応器内に直接供給する方法に
おいては、流動床プロセスにより繊維の連続製造が可能
である。
In methods in which the metal or metal compound is fed directly into the reactor, continuous production of fibers is possible using a fluidized bed process.

本発明において、加熱温度650〜950℃で反応させ
る第1工程において、炭化水素とキャリヤガスの混合ガ
スを用いる場合、該ガス中の炭化水素の濃度は0.1〜
10容量%が好ましく、0.5〜5容量%がより好まし
い。第1工程における反応時間は0.5分間以上が好ま
しく、0,5分以上の反応時間において、炭化水素が低
濃度の場合は処理時間を長くし、炭化水素が高濃度の場
合は処理時間を短かくする。好ましくは、例えば炭化水
素の濃度が0.5〜3容量%のときば処理時間を3〜3
0分間とすることにより、本発明の効果を顕著に発現す
ることができる。炭化水素の供給量が不足すると繊維の
生成が不充分となり、炭化水素を過剰に供給すると、第
2工程において成長する繊維が少なくなる。
In the present invention, when a mixed gas of hydrocarbon and carrier gas is used in the first step of reacting at a heating temperature of 650 to 950°C, the concentration of hydrocarbon in the gas is 0.1 to 950°C.
10% by volume is preferred, and 0.5-5% by volume is more preferred. The reaction time in the first step is preferably 0.5 minutes or more, and when the reaction time is 0.5 minutes or more, the treatment time is increased if the hydrocarbon concentration is low, and the treatment time is increased if the hydrocarbon concentration is high. Keep it short. Preferably, for example, when the concentration of hydrocarbons is 0.5 to 3% by volume, the treatment time is 3 to 3%.
By setting the time to 0 minutes, the effects of the present invention can be significantly exhibited. If the amount of hydrocarbon supplied is insufficient, fiber production will be insufficient, and if hydrocarbon is supplied in excess, fewer fibers will grow in the second step.

第1工程までの昇温ないし第1工程までに触媒活性の維
持のために金属化合物の還元処理を要する場合は、キャ
リヤガスとして水素ガス単独または大部分が水素ガスで
ある方が好ましい。
If a reduction treatment of the metal compound is required to raise the temperature up to the first step or to maintain the catalytic activity up to the first step, it is preferable that the carrier gas is hydrogen gas alone or mostly hydrogen gas.

本発明の第2工程において、加熱温度1000〜130
0℃で不活性ガス単独または不活性ガスと活性ガスとの
混合ガスによって処理することにより、第1工程におい
て繊維長が高々100μ程度のものが数龍〜数印長の繊
維に成長する。このように炭化水素を新たに供給しなく
ても繊維が成長する理由は明らかではないが、金属超微
粒子に過剰に析出した炭素もしくは中間体または未反応
の炭化水素が、活性を失っていない触媒粒子によって反
応し、高成長速度で成長するものと推定される。
In the second step of the present invention, the heating temperature is 1000 to 130
By treating with an inert gas alone or a mixed gas of an inert gas and an active gas at 0° C., in the first step, fibers with a length of at most about 100 μm grow into fibers with a length of several dragons to several marks. Although it is not clear why fibers grow even without a new supply of hydrocarbons, it is possible that excessive carbon or intermediates or unreacted hydrocarbons precipitated on ultrafine metal particles are a catalyst that has not lost its activity. It is assumed that the particles react and grow at a high growth rate.

第2工程における使用ガスは、繊維成長を有効に行なわ
せるために、不活性ガス単独または大部分が不活性ガス
のほうが好ましい。これらは触媒粒子、炭化水素条件等
により適宜設定することができるが、一般にガス中の活
性ガス濃度は30容量%以下が好ましく、特に工0容量
%以下が好ましい。該ガスの室温換算流速(反応器内の
加熱温度は1000〜1300°Cであるが、これを室
温に換算したときのガス流速値)は30〜300cm/
分が好ましく、50〜200cm/分が特に好ましい。
The gas used in the second step is preferably an inert gas alone or mostly an inert gas in order to effectively grow the fibers. Although these can be appropriately set depending on the catalyst particles, hydrocarbon conditions, etc., the active gas concentration in the gas is generally preferably 30% by volume or less, particularly preferably 0% by volume or less. The room temperature equivalent flow velocity of the gas (the heating temperature in the reactor is 1000 to 1300°C, but the gas flow velocity value when this is converted to room temperature) is 30 to 300 cm/
minutes is preferred, and 50 to 200 cm/min is particularly preferred.

また処理時間(J%留待時間は1分以上が好ましい。こ
の場合、ガス流速が高速では短時間処理、低速では長時
間処理が好ましい。
Further, the treatment time (J% residence time) is preferably 1 minute or more. In this case, when the gas flow rate is high, a short time treatment is preferred, and when the gas flow rate is low, a long time treatment is preferred.

本発明において、第1工稈で650〜950°Cに加熱
後の第2工程で所定のガス処理を終えた後1、  第3
工程で加熱温度1000〜1300°Cで繊維を成長さ
せるが、これらの工程でまず繊維の長ざ方向主体の成長
、続いて太さ方向の成長が段階的に起こる。その際、加
熱温度、炭化水素分圧、混合ガス流速および反応時間な
どを変化させることにより、繊維の長さ、太さを任意に
調整することができる。通常、長さ成長時における加熱
温度ば1050〜1150°C1キヤリヤガスに対する
炭化水素分圧を10容量%以下、混合ガス流速を1〜1
0cm/分(反応管内での室温換算値)、反応時間を1
5〜60分とするのが好ましい。また、太さ成長時にお
ける加熱温度、炭化水素分圧、混合ガス流速、反応時間
は所望の繊維径にするための適切な条件に設定されるべ
きであるが、太さ成長を効率的に行なわせるためには繊
維径の肥大と共に加熱温度は高くし、炭化水素分圧も高
くしていくことが好ましい。このため、加熱および炭化
水素分圧を段階的また連続的に高くして有効な繊維成長
を行なわせることができる。
In the present invention, after finishing the prescribed gas treatment in the second step after heating the first culm to 650 to 950°C,
The fibers are grown in the process at a heating temperature of 1000 to 1300°C, and in these steps, the fibers primarily grow in the longitudinal direction, and then grow in the thickness direction in stages. At that time, the length and thickness of the fibers can be adjusted arbitrarily by changing the heating temperature, hydrocarbon partial pressure, mixed gas flow rate, reaction time, etc. Usually, the heating temperature during length growth is 1,050 to 1,150°C, the hydrocarbon partial pressure to the carrier gas is 10% by volume or less, and the mixed gas flow rate is 1 to 1.
0 cm/min (calculated at room temperature in the reaction tube), reaction time 1
It is preferable to set it as 5 to 60 minutes. In addition, the heating temperature, hydrocarbon partial pressure, mixed gas flow rate, and reaction time during thickness growth should be set to appropriate conditions to achieve the desired fiber diameter, but it is necessary to efficiently grow the thickness. In order to achieve this, it is preferable to increase the heating temperature and increase the hydrocarbon partial pressure as the fiber diameter increases. Therefore, effective fiber growth can be achieved by increasing the heating and hydrocarbon partial pressure stepwise or continuously.

次に、本発明の気相法炭素繊維製造法に用いる装置およ
び操作の一例を第1図により説明する。
Next, an example of the apparatus and operation used in the vapor phase carbon fiber manufacturing method of the present invention will be explained with reference to FIG.

図示した装置は、発熱体を備えた電気炉1に反応管2を
設置し、長さ方向に仕切って第1炉、第2炉および第3
炉とし、反応管2の一端からガス1、ガス2およびガス
3の供給管10.20.30を挿入し、供給管10.2
0および30の先端ノズル(多孔部)がそれぞれ第1炉
、第2炉および第3炉に位置するように配置したものか
らなある。
The illustrated apparatus has a reaction tube 2 installed in an electric furnace 1 equipped with a heating element, and partitioned in the length direction into a first furnace, a second furnace, and a third furnace.
A furnace is used, and the supply pipes 10.20.30 for gas 1, gas 2, and gas 3 are inserted from one end of the reaction tube 2, and the supply pipes 10.2
No. 0 and 30 tip nozzles (porous portions) are arranged in the first furnace, second furnace, and third furnace, respectively.

第1炉、第2炉および第3炉には、それぞれ温度調節計
(TIC)14、I5.16が設置されている。供給管
10.20および30には、それぞれ三方コック3を介
して恒温槽4.4A’、4Bに収容された原料(炭化水
素)の蒸発器5.5A、5Bおよびバイパス管8.8A
、8Bが連結されており、ガス1、ガス2およびガス3
のみ、またはこれらのガスに同体させて所定量の原料を
反応器に供給できるようになっている。繊維用基材7は
、タングステン線17を連結し、速度調節用モータ18
により間欠的または連続的に移動できるようになってい
る。
Temperature controllers (TIC) 14 and I5.16 are installed in the first furnace, second furnace, and third furnace, respectively. Supply pipes 10.20 and 30 are connected to evaporators 5.5A and 5B for raw materials (hydrocarbons) housed in thermostats 4.4A' and 4B via three-way cocks 3, respectively, and a bypass pipe 8.8A.
, 8B are connected, gas 1, gas 2 and gas 3
A predetermined amount of raw materials can be supplied to the reactor either alone or in combination with these gases. The fiber base material 7 connects the tungsten wire 17 and connects the speed adjustment motor 18.
It allows for intermittent or continuous movement.

この装置において、予め金属または金属化合物を分散さ
せた繊維生成用基材7が第1炉内に配置される。次に三
方コック3およびバイパス管8を経てキャリヤガス1の
みを供給管10から反応管2内に導入する。第1炉を6
50〜950℃、第2炉を1000〜1150℃、第3
炉を1150〜1300℃に設定し、キャリヤガス1の
みを流しながら、該所定温度まで昇温する。昇温後、三
方コック3を回してキャリヤガスを恒温槽4中の蒸発器
5内に入れ、所定濃度の炭化水素6を所定時間キャリヤ
ガスと共に 供給し、前記基材7上に繊維を生成させる
。次いで該基材7を繊維成長帯域(第2炉および第3炉
)側に連続的または間欠的に移動せしめる。第2炉にお
いては、三方コック3Aを操作し、連続的または間欠的
に不活性ガス単独または活性ガスとの混合ガス2を供給
し、1000〜1150℃、室温換算流速30〜300
cm/分で3分以上処理し、前記基材7に生成した繊維
の主に長さ方向の成長を行なわせる。次いで第3炉にお
いては、三方コック3Bを操作し、連続的または間欠的
に炭化水素を供給し、繊維の太さ方向の成長を行なわせ
る。なお、第2炉において、不活性ガスによる加熱処理
の終了後、三方コック3Aを操作し、炭化水素を導入し
、第2炉の段階から太さ方向の成長を開始してもよい。
In this apparatus, a fiber-producing base material 7 in which a metal or a metal compound is dispersed in advance is placed in a first furnace. Next, only the carrier gas 1 is introduced from the supply pipe 10 into the reaction tube 2 via the three-way cock 3 and the bypass pipe 8. The first furnace is 6
50-950℃, second furnace 1000-1150℃, third furnace
The furnace is set at 1150 to 1300° C., and the temperature is raised to the predetermined temperature while only carrier gas 1 is flowing. After the temperature is raised, the carrier gas is introduced into the evaporator 5 in the constant temperature bath 4 by turning the three-way cock 3, and the hydrocarbon 6 of a predetermined concentration is supplied together with the carrier gas for a predetermined time to generate fibers on the base material 7. . Next, the base material 7 is moved continuously or intermittently to the fiber growth zone (second furnace and third furnace). In the second furnace, the three-way cock 3A is operated to continuously or intermittently supply an inert gas alone or a mixed gas 2 with an active gas at a temperature of 1000 to 1150°C and a room temperature equivalent flow rate of 30 to 300.
cm/min for 3 minutes or more to cause the fibers formed on the base material 7 to grow mainly in the longitudinal direction. Next, in the third furnace, the three-way cock 3B is operated to supply hydrocarbons continuously or intermittently to grow the fibers in the thickness direction. In addition, in the second furnace, after the heat treatment with inert gas is completed, the three-way cock 3A may be operated to introduce hydrocarbons, and growth in the thickness direction may be started from the stage of the second furnace.

第1図においては、繊維生成用基材7をタングステン線
17により糸引して移動させ、半連続または連続式に気
相法炭素繊維を製造する態様が示されているが、ta維
生成用基材7を使用せずに、金属または金属化合物を炭
化水素と共に反応器内に導入し、流動床プロセスとして
連続的に繊維を製造することも可能である。
In FIG. 1, an embodiment is shown in which the fiber production base material 7 is pulled and moved by a tungsten wire 17 to produce vapor-grown carbon fiber in a semi-continuous or continuous manner. It is also possible to introduce the metal or metal compound together with the hydrocarbon into the reactor without using the material 7, and to produce the fibers continuously as a fluidized bed process.

(発明の効果) 本発明方法によれば、高発生密度で、繊維長が長く、か
つ所望の太さの気相法炭素繊維を収率よく製造すること
ができ、工業的に極めて有利である。得られた炭素繊維
は、従来法に比べて、優れた繊維物性および高アスペク
ト比を有し、例えば補強用繊維等として有用である。
(Effects of the Invention) According to the method of the present invention, vapor-grown carbon fibers having a high generation density, a long fiber length, and a desired thickness can be produced with a high yield, which is extremely advantageous industrially. . The obtained carbon fibers have excellent fiber physical properties and a high aspect ratio compared to conventional methods, and are useful as, for example, reinforcing fibers.

(実施例) 以下、具体的実施例により本発明の態様を詳しく説明す
る。
(Examples) Hereinafter, aspects of the present invention will be explained in detail using specific examples.

実施例1 平均粒径100人の鉄粉(Fe)(真空冶金株式会社製
)の表面層にオレイン酸イオンを吸着させたのち、イソ
オクタン中に均一分散させ、該分散液をスプレーにて黒
鉛質基材(内径50mm、長さ200mmの筒状材料を
長さ方向に2分割してトイ状にしたもの)の凹部にFe
6■を存在させた。該基材をムライト質反応管(内径5
21111.長さ1500mm)内の中央部に装入し、
該反応管内をアルゴンガスで置換後、水素ガス100c
c/分(室温換算流速4.7Cm/分)を通気しながら
800℃まで昇温した。昇温後ベンゼン1.5容■%を
10分間通気し、前記基材上に炭素繊維を生成せしめた
く第1工程)。このとき生成した繊維は繊維径0.01
〜0.05μ、長さ1〜10μ程度であった。その後ベ
ンゼンの通気を一旦停止し、さらに1100°Cまで昇
温した。昇温後、窒素ガス1000cc/分(室温換算
流速47印/分)を10分間通気した(第2工程)。そ
の後ベンゼン3容量%を含む水素とアルゴンの混合ガス
(H2/Ar−1/4)100cc/分を30分間通気
シテ主に繊維の長さ成長を行なわせた。さらに150分
かけて加熱温度を1100°Cから1250℃に、かつ
ベンゼン濃度を3容量%から33容量%まで徐々に上げ
ながら繊維の太さ成長を行なわせたく第3工程)。
Example 1 After adsorbing oleate ions on the surface layer of iron powder (Fe) (manufactured by Shinku Yakini Co., Ltd.) with an average particle size of 100, it was uniformly dispersed in isooctane, and the dispersion was sprayed to form graphite. Fe was added to the concave part of the base material (a cylindrical material with an inner diameter of 50 mm and a length of 200 mm divided into two in the length direction to form a toy shape).
6■ was made to exist. The base material was placed in a mullite reaction tube (inner diameter 5
21111. (Length 1500mm)
After replacing the inside of the reaction tube with argon gas, hydrogen gas 100c
The temperature was raised to 800° C. while venting at a flow rate of c/min (room temperature equivalent flow rate: 4.7 Cm/min). After raising the temperature, 1.5% by volume of benzene was aerated for 10 minutes to form carbon fibers on the substrate (first step). The fibers produced at this time have a fiber diameter of 0.01
~0.05μ, length approximately 1-10μ. Thereafter, the supply of benzene was temporarily stopped, and the temperature was further raised to 1100°C. After raising the temperature, nitrogen gas was passed through at 1000 cc/min (room temperature conversion flow rate 47 marks/min) for 10 minutes (second step). Thereafter, 100 cc/min of a mixed gas of hydrogen and argon (H2/Ar-1/4) containing 3% by volume of benzene was aerated for 30 minutes to mainly grow the fiber length. The thickness of the fibers was grown by gradually raising the heating temperature from 1100°C to 1250°C and the benzene concentration from 3% by volume to 33% by volume over a further 150 minutes (3rd step).

その後、反応管内のガスをアルゴンに置換して冷却し、
炉内から繊維生成用基材を取出し、生成した炭素繊維の
生成量、繊維径、繊維長を測定し、繊維発生密度を算出
した。その結果を第1表に示す。
After that, the gas in the reaction tube was replaced with argon and cooled.
The base material for fiber production was taken out of the furnace, the amount of produced carbon fibers, the fiber diameter, and the fiber length were measured, and the fiber generation density was calculated. The results are shown in Table 1.

比較例1 800℃でベンゼンを通気しない以外は実施例1と同様
にして炭素繊維を生成させた。その結果を第1表に示す
Comparative Example 1 Carbon fibers were produced in the same manner as in Example 1 except that benzene was not aerated at 800°C. The results are shown in Table 1.

実施例2 800℃で通気するベンゼン量を0.25容量%とし、
該温度での通気時間を180分間とした以外は全て実施
例1と同様の方法にて炭素繊維を生成させた。その結果
を第1表に示す。
Example 2 The amount of benzene vented at 800°C was 0.25% by volume,
Carbon fibers were produced in the same manner as in Example 1 except that the ventilation time at this temperature was 180 minutes. The results are shown in Table 1.

比較例2〜3 第1工程の加熱温度を600°C(比較例2)および1
000℃(比較例3)とする以外は実施例1と同様にし
て炭素繊維を生成させた。その結果を第1表に示す。
Comparative Examples 2 to 3 The heating temperature in the first step was 600°C (Comparative Example 2) and 1
Carbon fibers were produced in the same manner as in Example 1 except that the temperature was 000°C (Comparative Example 3). The results are shown in Table 1.

比較例4 加熱温度1100℃において窒素ガス1000cc/分
で処理する第2工程を実施しない以外は実施例1と同様
にして炭素繊維を生成させた。その結果を第1表に示す
Comparative Example 4 Carbon fibers were produced in the same manner as in Example 1, except that the second step of processing with nitrogen gas at 1000 cc/min at a heating temperature of 1100° C. was not performed. The results are shown in Table 1.

実施例3 平均粒径300人の鉄−ニソケル合金粉(Fe−N i
 ) 、 (真空冶金株式会社製)の表面層にオレイン
酸イオンを吸着させたのち、ヘキサンに均一分散させ、
実施例1と同様の黒鉛質基材の凹部にFe−Ni1O■
を収容した。該基材を3組連結したものをムライト質反
応管(内径52mφ、長さ2200+n)内に装入し、
第1図に示されるようにガス出口側に該基材を移動でき
るように設置した。反応管内を窒素ガスで置換後、ガス
供給管10にガス1として水素ガス1QQcc/分を通
気しながら第1炉を800°C1第2炉を1100°C
1第3炉を1250℃(ここで各炉長は400+I+1
)に昇温した。昇温後、該基材を0.5cm/分の速度
でガス出口側に移動しながら基材進行方向の先頭基材が
第1炉の中心を通過するときに三方コック3を操作し、
蒸発器5からベンゼン2.0容量%を8分間通気した。
Example 3 Iron-Nisokel alloy powder (Fe-Ni) with an average particle size of 300
), (manufactured by Shinku Yakini Co., Ltd.), oleate ions are adsorbed on the surface layer, and then uniformly dispersed in hexane.
Fe-Ni1O■
was accommodated. Three sets of connected base materials were charged into a mullite reaction tube (inner diameter 52 mφ, length 2200+n),
As shown in FIG. 1, the base material was installed so as to be movable on the gas outlet side. After replacing the inside of the reaction tube with nitrogen gas, the first furnace is heated to 800°C and the second furnace is heated to 1100°C while passing 1QQcc/min of hydrogen gas as gas 1 into the gas supply pipe 10.
1 The third furnace is heated to 1250℃ (here, each furnace length is 400+I+1
). After raising the temperature, while moving the substrate at a speed of 0.5 cm/min to the gas outlet side, operate the three-way cock 3 when the leading substrate in the substrate advancing direction passes through the center of the first furnace,
2.0% by volume of benzene was bubbled through the evaporator 5 for 8 minutes.

次いで先頭基材が第2炉に入るとき、供給管10から窒
素ガスのみを100Qcc/分で2分間通気した(その
後も供給管10から間欠的に10分間隔で窒素ガス10
00cc/分を2分間ずつ通気した)。次いで、第2炉
に入った先頭基材に供給管20からベンゼン5容量%を
含む水素/窒素混合ガス(H7/ N 2 = 1 /
 1)100cc/分を通気することにより、繊維の長
さ成長を行なわせた。さらに先頭基材が第3炉に入ると
き、供給管30からベンゼン18容量%を含む窒素ガス
200CC/分を通気して繊維の太さ成長を行なわせた
。2番目、3番目の基材についても先頭基材と同様に操
作して3番目の基材が第3炉を出ると同時にベンゼン通
気を停止し、冷却した。
Next, when the first substrate entered the second furnace, only nitrogen gas was passed through the supply pipe 10 at 100 Qcc/min for 2 minutes (after that, nitrogen gas was passed intermittently from the supply pipe 10 at 10 minute intervals).
00cc/min for 2 minutes). Next, a hydrogen/nitrogen mixed gas containing 5% by volume of benzene (H7/N 2 = 1 /
1) Fiber length growth was performed by aerating at 100 cc/min. Further, when the first base material entered the third furnace, 200 cc/min of nitrogen gas containing 18% by volume of benzene was passed through the supply pipe 30 to grow the thickness of the fiber. The second and third base materials were operated in the same manner as the first base material, and at the same time as the third base material exited the third furnace, benzene ventilation was stopped and cooled.

冷却後、繊維生成用基材を取出し生成した炭素繊維の生
成量、繊維径、繊維長を測定し、繊維発生密度を算出し
た。その結果を第1表に示す。生成した繊維の物性は、
引張強度が42 T o n / crA、引張弾性率
が4700Ton/c♂であった。
After cooling, the base material for fiber production was taken out, and the amount, fiber diameter, and fiber length of the produced carbon fibers were measured, and the fiber generation density was calculated. The results are shown in Table 1. The physical properties of the produced fibers are
The tensile strength was 42 T on / crA, and the tensile modulus was 4700 T on / c♂.

比較例5 第1炉の反応管内にベンゼンを通気しない以外は実施例
2と同様にして炭素繊維を生成させた。
Comparative Example 5 Carbon fibers were produced in the same manner as in Example 2, except that benzene was not passed into the reaction tube of the first furnace.

その結果を第1表に示す。生成した繊維の物性は引張強
度が17 T o n /ca、引張弾性率が1900
7 o n /−であった。
The results are shown in Table 1. The physical properties of the produced fibers include a tensile strength of 17 T on /ca and a tensile modulus of 1900.
It was 7 on/-.

比較例6 第1炉の反応管内にベンゼンを通気せず、かつ第2炉に
おける窒素ガス処理(1000,cc/分での2分間の
間欠通気処理)を実施しない以外は実施例2と同様にし
て炭素繊維を生成させた。その結果を第1表に示す。生
成した繊維の物性ば引張強度が15 T o n /c
l、引張弾性率が1600To n / clであった
Comparative Example 6 Same as Example 2 except that benzene was not vented into the reaction tube of the first furnace and nitrogen gas treatment (intermittent aeration treatment for 2 minutes at 1000 cc/min) was not performed in the second furnace. carbon fiber was produced. The results are shown in Table 1. Physical properties of the produced fibers include tensile strength of 15 T on /c
1, and the tensile modulus was 1600 Ton/cl.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す炭素繊維製造装置の
縦断面略図である。 1・・・電気炉、2・・・反応管、3・・・三方コック
、4.4A、4B・・・恒温槽、5.5A、5B・・・
炭化水素化合物の蒸発器、6.6A、6B・・・炭化水
素化合物、7・・・繊維生成用基材、8.8A、8B・
・・バイパス管、10,20.30・・・ガス供給管。 代理人 弁理士 川 北 武 長 手続補正書
FIG. 1 is a schematic vertical cross-sectional view of a carbon fiber manufacturing apparatus showing an embodiment of the present invention. 1... Electric furnace, 2... Reaction tube, 3... Three-way cock, 4.4A, 4B... Constant temperature chamber, 5.5A, 5B...
Hydrocarbon compound evaporator, 6.6A, 6B... Hydrocarbon compound, 7... Base material for fiber production, 8.8A, 8B.
...Bypass pipe, 10,20.30...Gas supply pipe. Agent Patent Attorney Takeshi Kawakita Long Procedural Amendment

Claims (4)

【特許請求の範囲】[Claims] (1)炭化水素類または炭化水素類と搬送媒体を反応系
内に導入し、触媒作用を有する金属または金属化合物の
存在下に炭化させる炭素繊維の製造法において、加熱温
度650〜950℃で該炭化水素類を反応させる第1工
程、次いで加熱温度1000〜1300℃で不活性ガス
単独または不活性ガスと活性ガスとの混合ガスによって
処理する第2工程、さらに加熱温度1000〜1300
℃で炭化水素類を反応させる第3工程とを含むことを特
徴とする炭素繊維の製造法。
(1) A carbon fiber production method in which hydrocarbons or hydrocarbons and a carrier medium are introduced into a reaction system and carbonized in the presence of a catalytic metal or metal compound, at a heating temperature of 650 to 950°C. A first step of reacting hydrocarbons, then a second step of treating with an inert gas alone or a mixed gas of an inert gas and an active gas at a heating temperature of 1000 to 1300°C, and a further heating temperature of 1000 to 1300°C.
A method for producing carbon fibers, comprising a third step of reacting hydrocarbons at °C.
(2)前記金属または金属化合物が遷移金属または遷移
金属化合物であることを特徴とする特許請求の範囲第1
項記載の炭素繊維の製造法。
(2) Claim 1, wherein the metal or metal compound is a transition metal or a transition metal compound.
The method for manufacturing carbon fiber described in Section 1.
(3)前記第1工程における気相中の炭化水素類の濃度
が0.1〜10容量%であり、かつその反応時間が0.
5分間以上であることを特徴とする特許請求の範囲第1
項記載の炭素繊維の製造法。
(3) The concentration of hydrocarbons in the gas phase in the first step is 0.1 to 10% by volume, and the reaction time is 0.1% to 10% by volume.
Claim 1 characterized in that the duration is 5 minutes or more.
The method for manufacturing carbon fiber described in Section 1.
(4)前記第2工程における気相中の活性ガス濃度が3
0容量%以下であり、かつ該ガスの室温換算流速が30
〜300cm/分であり、かつ処理時間が1分以上であ
ることを特徴とする特許請求の範囲第1項記載の炭素繊
維の製造法。
(4) The active gas concentration in the gas phase in the second step is 3
0% by volume or less, and the room temperature equivalent flow rate of the gas is 30
300 cm/min and the processing time is 1 minute or more.
JP23904584A 1984-11-13 1984-11-13 Production of carbon fiber Pending JPS61119713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23904584A JPS61119713A (en) 1984-11-13 1984-11-13 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23904584A JPS61119713A (en) 1984-11-13 1984-11-13 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS61119713A true JPS61119713A (en) 1986-06-06

Family

ID=17039051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23904584A Pending JPS61119713A (en) 1984-11-13 1984-11-13 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS61119713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144906A (en) * 2001-11-16 2003-05-20 National Institute Of Advanced Industrial & Technology Method for removing carbonaceous substance bonded to wall surface
JP2009174093A (en) * 2008-01-25 2009-08-06 Sonac Kk Method for producing carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144906A (en) * 2001-11-16 2003-05-20 National Institute Of Advanced Industrial & Technology Method for removing carbonaceous substance bonded to wall surface
JP2009174093A (en) * 2008-01-25 2009-08-06 Sonac Kk Method for producing carbon fiber

Similar Documents

Publication Publication Date Title
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
JPS6249363B2 (en)
KR100688138B1 (en) Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
KR20080111534A (en) Method for the production of carbon nanotubes in a fluidized bed
JPH0424320B2 (en)
US7390475B2 (en) Process for producing vapor-grown carbon fibers
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JP4010974B2 (en) Method for producing vapor grown carbon fiber
JPS61119713A (en) Production of carbon fiber
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JPS61119715A (en) Production of carbon fiber
JPH0246691B2 (en)
JPS61119714A (en) Production of carbon fiber
WO2022047600A1 (en) Method for preparing multi-walled carbon nanotubes
JPH062222A (en) Production of carbon fiber by gaseous phase growth
JP2002293524A (en) Production method of vapor phase growth carbon nanotube and its apparatus
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process
KR101155057B1 (en) Process for preparing carbon nano-tube
JPS60252720A (en) Production of carbon fiber by vapor phase method
JP3927455B2 (en) Method and apparatus for producing vapor grown carbon fiber
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS62162699A (en) Production of carbonaceous whisker
JPS6262914A (en) Production of carbonaceous fiber
JPS6249364B2 (en)