JPS6111853Y2 - - Google Patents

Info

Publication number
JPS6111853Y2
JPS6111853Y2 JP1980011442U JP1144280U JPS6111853Y2 JP S6111853 Y2 JPS6111853 Y2 JP S6111853Y2 JP 1980011442 U JP1980011442 U JP 1980011442U JP 1144280 U JP1144280 U JP 1144280U JP S6111853 Y2 JPS6111853 Y2 JP S6111853Y2
Authority
JP
Japan
Prior art keywords
capacitance
core wire
semiconductive
ignition
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980011442U
Other languages
Japanese (ja)
Other versions
JPS56112818U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980011442U priority Critical patent/JPS6111853Y2/ja
Publication of JPS56112818U publication Critical patent/JPS56112818U/ja
Application granted granted Critical
Publication of JPS6111853Y2 publication Critical patent/JPS6111853Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、自動車等の内燃機関において電気点
火に起因して発生する雑音電播が電線自体を介し
て空中に伝播することにより雑音障害が生じるの
を抑制する高圧抵抗電線(以后点火ケーブルと略
記)の改良に関する。 点火ケーブルのシース外周に塩分(寒冷地道路
凍結防止用)、汚泥等の導電性物質が付着し、こ
れがアース電位に対しインピーダンス化されると
抵抗導体芯線(以后芯線と略記)とシース外周と
の間の静電容量に応じて充電々流が流失する。 従つて静電容量が大きいと点火電圧の低下が大
きくなり点火不良の原因となる。こうした点火不
良を生じないためは静電容量が80PF/m以下程
度の低静電容量の点火ケーブルが必要とされてい
る。 一方外径を太くして静電容量を小さくすること
は点火ケーブルの外径は通常7mm又は8mmとなつ
ており従来品との互換性のなさ、スペース上の問
題などがあつて好ましくない。 外径一定のまゝで静電容量を小さくするために
は芯線径を細くする必要があるが単に従来品の芯
線を細くするだけでは種々の問題を生ずる。本考
案は芯線径を細くしたとにより生じる種々の問題
を解決し要求通りの低静電容量の且つ導電不良の
生じ難い点火ケーブルを得ることがねらいとした
ものである。以下本考案をその経緯と共に説明す
る。 点火ケーブルは点火放電によつて発生する電波
障害を防止するため16KΩ/m程度の抵抗値を芯
線に附与する必要がるあため一般にはガラス繊維
束にカーボン塗料を塗布含浸乾燥して芯線を形成
し1.8mmφ程度のものが使用されている。テンシ
ヨンメンバーとしてガラス繊維束を用いたまゝで
径を細くしようとすると絶縁、シースなどの押出
や加硫の工程で芯線が断線してしまい工業的生産
ラインにのらないという欠点を生ずる。 強度の強いアラミド繊維束を使用すればこの欠
点を改良することができた。例えば1500デニール
のアラミド繊維束を使用し、この上にカーボン塗
料を塗布含浸乾燥して外径0.6mmに仕上げ、半導
電性コンパウンドを押出被覆して1.0mmφとした
抵抗導体芯線を用いてその上に順次架橋ポリエチ
レン絶縁、ガラス編組及びエチレンプロピレンゴ
ム(EPゴム)又はシリコーンゴムシースをほど
こすことにより80PF/m程度の低静電容量の点
火ケーブルを得ることが出来た。 ところがこうして得られた低静電容量の点火ケ
ーブルは耐電圧が不安定で長期の使用には耐え得
ない欠点があることが判つた。即ち点火サイクル
を模擬して、DC30KVを繰り返し印加するイグニ
ツシヨンコイル耐電圧試験で耐電圧不良を生ずる
ことが判つた。 我々はこの耐電圧不良をも改良するため引続き
種々検討を続けた結果1500デニールのアラミド繊
維束を用いるかわりに400デニールのアラミド繊
維束3本を撚り合わせたものを用いると耐電圧が
向上し前述のイグニツシヨンコイル耐電圧試験良
好になるということを見出し、本考案を完成し
た。 即ち400デニールのアラミド繊維束3本を撚り
合わせその上に半導電性塗料及び剥離用塗料を塗
布含浸乾燥せしめて外径0.6mmφに仕上げた後、
半導電性コンパウンドを押出被覆して1.0mmφと
した抵抗導体芯線を作成し、その上に順次架橋ポ
リエチレン絶縁、ガラス編組及びEPゴム又はシ
リコーンゴムシースを施した点火ケーブルは静電
容量もほぼ80PF/mと低静電容量であり、しか
もイグニツシヨンコイル耐電圧試験でも不良を生
じないことが判つた。なお80PF/m以下という
目標を達成させるためには芯線外径を1.2mmφ以
下とすることが必要である。 第1図a,bは本考案の実施例及び比較例で用
いた抵抗導体芯線の断面図を示すものである。1
は半導電性コンパウンド例えばゴムプラスチツク
等にカーボンブラツク等の導電性物質を混入して
なる半導電性押出層である。2は半導電性塗料層
である。この半導電性塗料はゴムプラスチツク等
にカーボンブラツク、グラフアイト、又は銀粉等
の導電性物質を混入し溶剤にて溶解した塗料を後
に述べる様に繰り返し塗布含浸乾燥せしめたもの
で雑音防止の為に必要とされる高抵抗を得るため
のものである。又1と2との間には1の剥離を容
易に行うために導電性シリコーン塗料(例えばゴ
ム、プラスチツクにカーボン、グラフアイト、
銀、銅粉等の導電性物質を混入し溶剤等で溶解し
た半導電性塗料にシリコーンを混合したもの等よ
りなる)等剥離層8を設ける。又この剥離層の介
在により、それとその外側の被覆した半導電性コ
ンパウンドが、テンシヨンメンバーに張力が加わ
つた際生ずることのある、剥離層内側の塗布含浸
乾燥した半導電性塗料の長さ方向での切断が引き
起す導電不良を補い確保する。 3はアラミド繊維束であるが実施例(a)のものは
400デニールの繊維束を3箇撚りしたもの即ち3
本撚り合わせたものであり、比較例(b)のものは
1500デニールの繊維束を使用したものである。こ
の抵抗導体芯線7の上に第2図に示す如く架橋ポ
リエチレンよりなる絶縁体4を設けて更に補強層
例えばガラス編組5を設けその外周にEPゴム又
はシリコーンゴムシース6を押出被覆し第1表の
寸法にて低静電容量の点火ケーブルを作製した。 この様にして得られた点火ケーブルは第1表に
示す如くいずれも80PF/m以下の静電容量を示
した。静電容量の測定方法はJISC3004〜1975ゴ
ム絶縁電線試験法の静電容量試験方法により行つ
た。即ち接地した水に浸し導体と水の間の静電容
量を周波数1000Hzで交流ブリツジ法により測定し
線長1m当りに換算した。 しかる後本考案の実施例比較例各々のケーブル
を第3図に示すイグニツシヨンコイル耐電圧試験
に供した。この試験は規格等で定められたもので
はないが実用的であり有用な試験方法である。な
お第3図中11はフレーム、12はモータ、13
はコイル、14はイグナイター、15はデイスト
リビユーター(1000RPM)、16は駆動用ベル
ト、17,17′はアース、18,18′は点火ケ
ーブルを示し、点火ケーブルは表面を銀ペイント
等で処理しアース17としてあり、18′,1
7′間に30KV放電させる。試験結果を第2表に示
した。第2表により明らかな様に実施例1〜4に
示したアラミド繊維束400デニール×3本撚り合
わせたものをテンシヨンメンバーとしたものは比
較例1〜4に示したものと比較し、上記方法での
耐電圧試験方法において明らかに耐電圧特性が向
上している。 上記耐圧特性の向上は推察するに、芯線のしま
りがよく、絶縁体架橋時芯線表面がつぶされ芯線
表面が凸凹になるといつたことが起り難いためと
思われる。 この様にして得られた本考案の低静電容量の点
火ケーブルは特に寒冷地等における耐塩害防止用
として極めてすぐれたものである。 なお本考案に於いては、絶縁体層は架橋ポリエ
チレンだけでなくポリエチレンを含むブレンド物
(ポリエチレンとエチレンプロピレン、又はポリ
エチレンとエチレン−α−オレフイン共重合体
等)の架橋物であつてもよい。又補強層は編組の
ほか孔あきテープ等であつてもよく、この補強層
はシース層の内側のほか内外シース層の間に設け
あつてもよい。或いは補強層は設けなくてもよ
い。
This invention is a high-voltage resistance electric wire (hereinafter abbreviated as ignition cable) that suppresses the noise disturbance caused by the noise propagation generated by electric ignition in internal combustion engines such as automobiles and propagating into the air through the electric wire itself. ) related to improvements. Conductive substances such as salt (for preventing freezing on roads in cold regions) and sludge adhere to the outer periphery of the sheath of the ignition cable, and when this becomes an impedance to the ground potential, the resistance conductor core wire (hereinafter abbreviated as "core wire") and the outer periphery of the sheath The charging current is dissipated depending on the capacitance between the two. Therefore, if the capacitance is large, the ignition voltage will drop significantly, causing ignition failure. In order to prevent such ignition failures, an ignition cable with a low capacitance of about 80 PF/m or less is required. On the other hand, increasing the outer diameter to reduce the capacitance is not preferable because the outer diameter of the ignition cable is usually 7 mm or 8 mm, which causes problems such as lack of compatibility with conventional products and space problems. In order to reduce the capacitance while keeping the outer diameter constant, it is necessary to reduce the diameter of the core wire, but simply making the core wire of a conventional product thinner will cause various problems. The present invention aims to solve various problems caused by reducing the diameter of the core wire, and to obtain an ignition cable that has the required low capacitance and is less likely to cause poor conductivity. The present invention will be explained below along with its background. For ignition cables, it is necessary to add a resistance value of about 16KΩ/m to the core wire in order to prevent radio interference caused by ignition discharge, so generally carbon paint is applied to a glass fiber bundle, impregnated, and dried to form the core wire. The diameter of about 1.8mm is used. If an attempt is made to reduce the diameter while using a glass fiber bundle as a tension member, the core wire will break during the extrusion or vulcanization process for insulation, sheathing, etc., resulting in the disadvantage that it cannot be used on an industrial production line. This drawback could be overcome by using strong aramid fiber bundles. For example, use a 1500 denier aramid fiber bundle, coat it with carbon paint, impregnate it, dry it, finish it to an outer diameter of 0.6 mm, extrude coat it with a semiconductive compound, and use a resistance conductor core wire with a diameter of 1.0 mm. By sequentially applying cross-linked polyethylene insulation, glass braid, and ethylene propylene rubber (EP rubber) or silicone rubber sheath to the cable, an ignition cable with a low capacitance of about 80 PF/m could be obtained. However, it has been found that the low capacitance ignition cable thus obtained has an unstable withstand voltage and cannot withstand long-term use. That is, it was found that an ignition coil withstand voltage test in which 30KV DC was repeatedly applied to simulate an ignition cycle caused a withstand voltage failure. We continued various studies to improve this defective withstand voltage, and found that instead of using a 1500 denier aramid fiber bundle, we used a strand of three 400 denier aramid fiber bundles to improve the withstand voltage, as mentioned above. The present invention was completed after discovering that the ignition coil withstanding voltage test was good. That is, three 400-denier aramid fiber bundles are twisted together, semi-conductive paint and peeling paint are applied on top of the bundle, impregnated and dried, and finished to an outer diameter of 0.6 mmφ.
The ignition cable has a capacitance of approximately 80 PF/cm, which is made by extrusion coating a semiconductive compound to create a resistance conductor core wire with a diameter of 1.0 mm, and then sequentially applying cross-linked polyethylene insulation, glass braiding, and EP rubber or silicone rubber sheathing. It was found that the capacitance was as low as m, and it did not cause any defects even in the ignition coil withstand voltage test. In order to achieve the target of 80PF/m or less, it is necessary to make the core wire outer diameter 1.2mmφ or less. FIGS. 1a and 1b show cross-sectional views of the resistance conductor core wires used in the examples and comparative examples of the present invention. 1
is a semiconductive extruded layer made of a semiconductive compound such as rubber plastic mixed with a conductive substance such as carbon black. 2 is a semiconductive paint layer. This semiconductive paint is made by mixing conductive substances such as carbon black, graphite, or silver powder into rubber plastic, etc., and dissolving it in a solvent.The paint is repeatedly coated, impregnated, and dried as described later, and is used to prevent noise. This is to obtain the required high resistance. In addition, between 1 and 2, conductive silicone paint (e.g. rubber, plastic, carbon, graphite,
A release layer 8 is provided, which is made of a semi-conductive paint mixed with a conductive substance such as silver or copper powder and dissolved in a solvent or the like, mixed with silicone, or the like. The presence of this release layer also allows it and the semiconducting compound coated on the outside to prevent the coating and impregnation of the dried semiconductive paint on the inside of the release layer from occurring in the longitudinal direction, which may occur when tension is applied to the tension member. Compensate for and ensure poor conductivity caused by cutting. 3 is an aramid fiber bundle, but the one in Example (a) is
Three strands of 400 denier fiber bundles, i.e. 3
Comparative example (b) is a real twisted one.
It uses 1500 denier fiber bundles. As shown in FIG. 2, an insulator 4 made of cross-linked polyethylene is provided on the resistance conductor core wire 7, and a reinforcing layer such as a glass braid 5 is further provided, and an EP rubber or silicone rubber sheath 6 is extruded around the outer periphery of the insulator 4, as shown in Table 1. A low capacitance ignition cable was fabricated with dimensions of . As shown in Table 1, the ignition cables thus obtained all exhibited a capacitance of 80 PF/m or less. The capacitance was measured using the capacitance test method of JISC3004-1975 Rubber Insulated Wire Test Method. That is, the conductor was immersed in grounded water, and the capacitance between the conductor and the water was measured using the AC bridge method at a frequency of 1000 Hz, and the capacitance was calculated per 1 m of wire length. Thereafter, the cables of the embodiments and comparative examples of the present invention were subjected to an ignition coil withstand voltage test as shown in FIG. Although this test is not prescribed by any standards, it is a practical and useful test method. In Fig. 3, 11 is a frame, 12 is a motor, and 13 is a frame.
is the coil, 14 is the igniter, 15 is the distributor (1000RPM), 16 is the drive belt, 17, 17' is the ground, 18, 18' is the ignition cable, the surface of the ignition cable is treated with silver paint etc. and ground 17, 18', 1
Discharge 30KV for 7'. The test results are shown in Table 2. As is clear from Table 2, the tension members made of three 400 denier aramid fiber bundles shown in Examples 1 to 4 were compared with those shown in Comparative Examples 1 to 4. The withstand voltage characteristics are clearly improved in the withstand voltage test method. The above-mentioned improvement in the withstand voltage characteristics is presumably due to the fact that the core wire is well-tightened, and it is difficult for the core wire surface to be crushed and become uneven when the insulator is crosslinked. The low capacitance ignition cable of the present invention thus obtained is extremely excellent for preventing salt damage, especially in cold regions. In the present invention, the insulating layer may be a crosslinked product of not only crosslinked polyethylene but also a blend containing polyethylene (such as polyethylene and ethylene propylene, or polyethylene and ethylene-α-olefin copolymer, etc.). In addition to braiding, the reinforcing layer may be a perforated tape or the like, and this reinforcing layer may be provided not only inside the sheath layer but also between the inner and outer sheath layers. Alternatively, the reinforcing layer may not be provided.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は抵抗導体芯線の断面図で、図aは本考
案の実施例のもの、図bは比較例のもの、第2図
は第1図の抵抗導体芯線を用いた点火ケーブルの
斜視図、第3図はイグニツシヨンコイル耐電圧試
験方法の説明図を夫々例示している。 1……半導電性押出層、2……半導電性塗料
層、3……アラミド繊維束、4……絶縁体、5…
…補強層、6……シース、7……抵抗導体芯線。
Figure 1 is a cross-sectional view of the resistance conductor core wire, Figure a is an example of the present invention, Figure b is a comparative example, and Figure 2 is a perspective view of an ignition cable using the resistance conductor core wire of Figure 1. , and FIG. 3 respectively illustrate explanatory diagrams of the ignition coil withstand voltage test method. DESCRIPTION OF SYMBOLS 1... Semi-conductive extrusion layer, 2... Semi-conductive paint layer, 3... Aramid fiber bundle, 4... Insulator, 5...
...Reinforcement layer, 6... Sheath, 7... Resistance conductor core wire.

Claims (1)

【実用新案登録請求の範囲】 (1) 抵抗導体芯線、絶縁体層、シースを備える電
線に於いて、抵抗導体芯線が、アラミド繊維束
を複数本撚り合わせたテンシヨンメンバーに半
導電性塗料を塗布含浸乾燥した上に半導電性剥
離層を介して半導電性コンパウンドを被覆して
外径1.2mmφ以下に作成してなることを特徴と
する低静電容量の高圧抵抗電線。 (2) 撚り合わせる複数本が3本である実用新案登
録請求の範囲第(1)項記載の低静電容量の高圧抵
抗電線。 (3) 絶縁体層がポリエチレン又はポリエチレンを
含むブレンド物の架橋されたものよりなる層で
ある実用新案登録請求の範囲第(1)項記載の低静
電容量の高圧抵抗電線。
[Scope of Claim for Utility Model Registration] (1) In an electric wire comprising a resistive conductor core wire, an insulating layer, and a sheath, the resistive conductor core wire is coated with semiconductive paint on a tension member made of a plurality of aramid fiber bundles twisted together. A low capacitance high voltage resistance electric wire characterized by being coated, impregnated and dried, and coated with a semiconductive compound via a semiconductive peeling layer to have an outer diameter of 1.2 mmφ or less. (2) The low-capacitance, high-voltage resistance wire according to claim (1) of the utility model registration claim, in which the number of twisted wires is three. (3) The low-capacitance, high-voltage resistance electric wire according to claim (1), wherein the insulating layer is a layer made of polyethylene or a crosslinked blend containing polyethylene.
JP1980011442U 1980-01-31 1980-01-31 Expired JPS6111853Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980011442U JPS6111853Y2 (en) 1980-01-31 1980-01-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980011442U JPS6111853Y2 (en) 1980-01-31 1980-01-31

Publications (2)

Publication Number Publication Date
JPS56112818U JPS56112818U (en) 1981-08-31
JPS6111853Y2 true JPS6111853Y2 (en) 1986-04-14

Family

ID=29608054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980011442U Expired JPS6111853Y2 (en) 1980-01-31 1980-01-31

Country Status (1)

Country Link
JP (1) JPS6111853Y2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522659Y2 (en) * 1974-05-10 1980-05-29
JPS5629854Y2 (en) * 1976-03-16 1981-07-16
JPS54110783U (en) * 1978-01-24 1979-08-03

Also Published As

Publication number Publication date
JPS56112818U (en) 1981-08-31

Similar Documents

Publication Publication Date Title
JPS641702Y2 (en)
JPS6111854Y2 (en)
US5034719A (en) Radio frequency interference suppression ignition cable having a semiconductive polyolefin conductive core
JPS6111852Y2 (en)
US2090510A (en) Electrical conductor and method of manufacture
JPS6111853Y2 (en)
JPS6054727B2 (en) High voltage resistance wire for noise prevention
JPS5882414A (en) High pressure cable
JPH06295622A (en) Winding type high voltage resistance electric wire for preventing generation of noise
CN112331395A (en) Motor lead cable and preparation method and application thereof
JPH0620530A (en) Water tree resistant cable
JPH0845354A (en) Wire-wound noise-suppressing high tension resistance wire
JP7498040B2 (en) cable
JPH0429448Y2 (en)
JPH0126003Y2 (en)
JP3534354B2 (en) High voltage resistance wire for noise prevention
JPH0530258Y2 (en)
JPS6023854Y2 (en) Rubber, plastic insulated power cable
JPS5925063Y2 (en) Crosslinked polyethylene insulated cable
JPH07153318A (en) Coiled type noise preventive high voltage resistor electric cable
JPS629613Y2 (en)
JPH0541464Y2 (en)
JPS5924085Y2 (en) Rubber, plastic insulated power cable
JPH0243048Y2 (en)
JPH0393115A (en) Production of cable for high voltage electric appliance