JPS6111796B2 - - Google Patents

Info

Publication number
JPS6111796B2
JPS6111796B2 JP51084136A JP8413676A JPS6111796B2 JP S6111796 B2 JPS6111796 B2 JP S6111796B2 JP 51084136 A JP51084136 A JP 51084136A JP 8413676 A JP8413676 A JP 8413676A JP S6111796 B2 JPS6111796 B2 JP S6111796B2
Authority
JP
Japan
Prior art keywords
light
photothermal material
exposure
photothermal
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51084136A
Other languages
Japanese (ja)
Other versions
JPS539545A (en
Inventor
Takakuni Hasegawa
Masakazu Kaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riso Kagaku Corp
Original Assignee
Riso Kagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riso Kagaku Corp filed Critical Riso Kagaku Corp
Priority to JP8413676A priority Critical patent/JPS539545A/en
Publication of JPS539545A publication Critical patent/JPS539545A/en
Publication of JPS6111796B2 publication Critical patent/JPS6111796B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】 本発明は感熱複写法における露光方法に関し、
詳しくは、光透過部及び光不透過部よりなるパタ
ーンを有する原稿(以下単に「原稿」と称す)
と、光吸収性物質が付加されている感熱材(以下
単に「感光熱材」と称す)とを用い、前記原稿を
経て前記感光熱紙へ向けて光線を照射することに
より前記感光熱紙の前記原稿の光透過部に対応す
る変色、収縮等の熱変化を生ぜしめる感熱複写を
行う技術における露光方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exposure method in thermal copying,
Specifically, a document having a pattern consisting of a light-transmitting part and a light-opaque part (hereinafter simply referred to as "manuscript")
and a heat-sensitive material to which a light-absorbing substance has been added (hereinafter simply referred to as "photo-thermal material"), by irradiating the photo-sensitive thermal paper through the original with a light beam. The present invention relates to an exposure method in a technology for thermal copying that causes thermal changes such as discoloration and shrinkage in light-transmitting portions of the original.

従来、感光熱材としては、本件出願人と同一の
出願人により特願昭51−53084号(特開昭52−
136619号)に於て、光吸収性物質を付加されかつ
延伸された熱可塑性合成樹脂フイルムからなる孔
版原紙が、又特公昭51−15779号に於て、スクリ
ーンと、前記スクリーン上に張設された熱収縮性
フイルムと、前記熱収縮性フイルムに付加された
光吸収性微粒子とを含む穿孔式感熱複写用原紙
が、又今回特願昭51−84135号(特開昭53−9521
号)に於て、基体と、前記基体の一方の面に設け
られた転写層と、前記基体に付加された光吸収性
物質とを有する感光熱性転写シートが提案されて
いるが、これらの感光熱材に感熱複写を行うに
は、感光熱材と原稿とを重ね合せ、該原稿側から
赤外線に富む光線(以下単に「光線」と称す)を
直接照射する方法がとられている。その一例とし
て、特願昭46−81593号(特公昭51−15779号)に
は、原稿として銀塩写真法で作成した銀塩塗布フ
イルムを用い、感光熱材に光線を選択的に直接照
射する方法が記載されている。尚、感熱複写用の
光線としては、原稿に於ける光透過性部分の分布
に従つて感光熱紙上に与えられた熱の分布の形状
が感光熱紙の十分な熱変化を起こさせる前に感光
熱紙内に於ける熱の伝導によつて崩れることによ
り感熱複写の鮮明度が失われることを極力抑制
し、感光熱紙上に原稿に従つて与えられた熱分布
に正確に対応した熱変化が生ずることを確保すべ
く、近年多くは極く短時間のみ照射される閃光が
用いられており、赤外線に富む光線を閃光として
与えるためには、一般に電子閃光放電管が用いら
れている。かかる感熱複写のための電子閃光放電
管として適したものの一つはクセノンランプとし
て知られているものであり、これは通常0.7〜1.5
μの波長に富んだ光線を10-4〜10-2秒照射するも
のである。
Conventionally, as a photothermal material, Japanese Patent Application No. 51-53084 (Japanese Unexamined Patent Publication No. 52-52) was filed by the same applicant as the present applicant.
No. 136619), a stencil paper made of a thermoplastic synthetic resin film to which a light-absorbing substance has been added and stretched is provided with a screen, and in Japanese Patent Publication No. 51-15779, a stencil paper is made of a thermoplastic synthetic resin film which has been added with a light-absorbing substance and stretched. A perforated base paper for thermosensitive copying comprising a heat-shrinkable film and light-absorbing fine particles added to the heat-shrinkable film is disclosed in Japanese Patent Application No. 51-84135 (Japanese Patent Application Laid-open No. 53-9521).
No. 1) proposed a photothermal transfer sheet having a substrate, a transfer layer provided on one surface of the substrate, and a light-absorbing substance added to the substrate. To perform thermal copying on a photothermal material, a method is used in which the photothermal material and an original are placed one on top of the other, and a light beam rich in infrared rays (hereinafter simply referred to as "light beam") is directly irradiated from the original side. As an example, in Japanese Patent Application No. 46-81593 (Special Publication No. 51-15779), a silver salt coated film produced by silver salt photography is used as a manuscript, and a light beam is selectively and directly irradiated onto a photothermal material. The method is described. In addition, as for the light beam for thermal copying, the shape of the distribution of heat applied to the photosensitive thermal paper according to the distribution of the light-transmitting parts of the original is such that the light beam is not sensitive to the photosensitive thermal paper before it causes a sufficient thermal change. This minimizes the loss of sharpness of thermal copies due to disintegration due to heat conduction within the photothermal paper, and allows thermal changes to accurately correspond to the heat distribution given according to the original on the photothermal paper. In order to ensure that this occurs, in recent years many have used flashlights that are emitted for only a very short time, and electronic flash discharge tubes are generally used to provide flashes of light rich in infrared rays. One suitable electronic flash discharge tube for such thermal copying is what is known as a xenon lamp, which typically has a 0.7 to 1.5
It irradiates light beams rich in wavelengths of μ for 10 -4 to 10 -2 seconds.

然るに原稿として銀塩塗布フイルムを用いる場
合、第1図に示す如く、感光熱材1と銀塩塗布フ
イルム2とをその光不透過部3を接して重ね合
せ、凹面の反射鏡5の焦点に配置されている光源
である電子閃光放電管4により光線6を照射する
と、銀塩塗布フイルム2の光不透過部3は銀粒子
を含むゼラチン層で構成されているため、銀粒子
が光線6を吸収し、熱を発生し、もしこの熱が適
当に除去されないときは、発生した熱は銀粒子を
含むゼラチン層を破壊すると同時に感光熱材1に
も好ましからざる熱変化を与え、原稿としての銀
塩塗布フイルム2の再使用ができなくなるだけで
はなく、感光熱材1にも目的とする銀塩塗布フイ
ルム2の画像に対応した忠実な複写画像を形成す
ることができないという問題がある。
However, when using a silver salt-coated film as a manuscript, as shown in FIG. When the light beam 6 is irradiated by the electronic flash discharge tube 4, which is the light source, the silver particles emit the light beam 6 because the light-opaque area 3 of the silver salt-coated film 2 is composed of a gelatin layer containing silver particles. If this heat is not removed properly, the generated heat will destroy the gelatin layer containing silver particles and at the same time cause undesirable thermal changes to the photothermal material 1, causing the silver to become There is a problem in that not only the salt-coated film 2 cannot be reused, but also a faithful copy image corresponding to the intended image on the silver-salt-coated film 2 cannot be formed on the photothermal material 1.

また、原稿としての銀塩塗布フイルム2の再使
用をする必要がない場合には、感光熱材1と銀塩
塗布フイルム2との間に距離を設けて、光線6の
照射により光不透過部3に発生する熱の感光熱材
1への伝導を防止する方法が提案されるが、この
場合、第2図に示す如く、感光熱材1と銀塩塗布
フイルム2との間に距離が設けられることによつ
て光源からの散乱光7により、感光熱材1に目的
とする銀塩塗布フイルム2の画像に対応した忠実
な複写画像を形成することができないという問題
を生ずる。そこで、銀塩塗布フイルム2の破壊を
防止する方法として、銀塩塗布フイルム2の表面
に例えば透明な水等の薄い層を設けて光線照射に
より銀粒子に発生する熱を上記の水等に吸収せし
める方法が提案されるが、原稿としての銀塩塗布
フイルム2に水等の薄い層を設けることは煩雑で
あり、かつ水等の層により光線エネルギの損失が
生じる等の別の欠点が生じてくる。
In addition, if it is not necessary to reuse the silver salt coated film 2 as a document, a distance is provided between the photothermal material 1 and the silver salt coated film 2, and the light opaque area is A method of preventing the heat generated in step 3 from being conducted to the photothermal material 1 is proposed, but in this case, as shown in FIG. 2, a distance is provided between the photothermal material 1 and the silver salt coated film 2. This causes a problem in that a faithful copy image corresponding to the intended image on the silver salt-coated film 2 cannot be formed on the photothermal material 1 due to the scattered light 7 from the light source. Therefore, as a method to prevent destruction of the silver salt coated film 2, a thin layer of transparent water or the like is provided on the surface of the silver salt coated film 2 so that the heat generated in the silver particles by light irradiation is absorbed by the water or the like. However, it is complicated to provide a thin layer of water or the like on the silver salt-coated film 2 as the manuscript, and there are other drawbacks such as loss of light energy due to the layer of water or the like. come.

また、上記の如き銀塩塗布フイルムを原稿とし
て用いる場合の光線の照射方法としては、従来原
稿と感光素材とを重ね合せて、原稿側からのみ光
線を照射する方法、すなわち、単一露光法がとら
れている。ところで、例えば拡大複写像を形成す
る場合について図によつて説明すると、第3図に
示す如く、原稿8の光透過部9を透過した電子閃
光放電管4からの光線6をレンズ10により感光
熱材1に拡大照射し、原稿8の拡大複写像を感光
熱材1に与えるのであるが、電子閃光放電管4に
より感光熱材1に照射される単位面積当りの光線
のエネルギは原稿8に照射される単位面積当りの
光線のエネルギに対して、原稿8の感光熱材1に
対する拡大倍率の自乗に反比例して減少する。こ
のように拡大複写像を形成する場合には、感光熱
材1に拡大複写像を与えるのに必要な光線6のエ
ネルギは拡大倍率が1の場合に感光熱材1に複写
像を与えることができる光線のエネルギに比し
て、拡大複写像の拡大倍率の自乗に比例して増大
する。しかし、電子閃光放電管4による光線6の
エネルギを拡大倍率の自乗に比例して大きくする
と、光源4の放射熱によるレンズ系等の劣化等の
問題が生じてくるため、かかる方法は技術的及び
実用的にその実施が極めて困難である。
Furthermore, when using a silver salt-coated film as described above as an original, the conventional method of irradiating the original with light is to overlap the original with a photosensitive material and apply the light only from the original side, that is, the single exposure method. It is taken. By the way, to explain the case of forming an enlarged copy image using a diagram, for example, as shown in FIG. The energy of the light per unit area irradiated onto the photothermal material 1 by the electronic flash discharge tube 4 is equal to the energy irradiated onto the original 8. The energy of the light beam per unit area decreases in inverse proportion to the square of the magnification of the document 8 relative to the photothermal material 1. When forming an enlarged copy image in this way, the energy of the light ray 6 required to give an enlarged copy image to the photothermal material 1 is such that the energy of the light ray 6 is sufficient to give a copy image to the photothermal material 1 when the magnification is 1. Compared to the energy of the produced light beam, it increases in proportion to the square of the magnification of the enlarged copy image. However, if the energy of the light beam 6 from the electronic flash discharge tube 4 is increased in proportion to the square of the magnification, problems such as deterioration of the lens system etc. due to the radiant heat of the light source 4 will arise, so such a method is technically difficult. Practical implementation is extremely difficult.

また、縮小された複写画像を得る場合において
は、照射光線のエネルギは小さくても良いが、原
稿としての銀塩塗布フイルム等を変形または損傷
することは前述と同様である。
Further, in the case of obtaining a reduced copy image, the energy of the irradiated light beam may be small, but it may deform or damage the silver salt-coated film or the like as the original, as described above.

さらに、本件出願人と同一の出願人による特願
昭50−145605号(特開昭52−78511号)には、第
4図に示す如く、一群の文字等の部分についての
み光透過性を有するよう構成された回動帯体11
を、電子閃光放電管4を用いた照射部12と光線
を照射されると自ら穿孔する感光熱性スクリーン
原板13との間で回転させ、上記光透過性文字等
の群の中から選択信号によつて選択された文字等
が照射部12を通過する瞬間に電子閃光放電管4
を極く短時間照射せしめ、感光熱性スクリーン原
板13に上記選択された文字等を穿孔させる装置
が記載されているが、この種の感光熱性スクリー
ン原板13の如き感光熱材に複写画像を形成する
装置においては、電子閃光放電管4の照射時間
は、回動帯体11の任意の光透過性を有する文字
等が照射部12を通過する時間に比してはるかに
短くなければならず、さもなくば感光熱材上に形
成される複写画像に「ブレ」が生じ、鮮明な複写
画像を得ることができない。また、印字画像形成
速度(文字数/sec)を上げるには回動帯体11
の速度を上げるとともに、電子閃光放電管4の照
射時間を極く短時に縮小しなければならない。す
なわち、速度V(mm/sec)で回転している光透過
性の文字群で構成された無端ベルトよりなる回動
帯体11の一つの文字を選択して、感光熱性スク
リーン原板13に該文字の複写画像を形成する場
合、該複写画像の許容される「ブレ」をd(mm)
とすると、光透過性の一つの文字が照射窓14を
通過する瞬間に於ける照射部12の電子閃光放電
管4の照射時間tはt≦d/v(sec)で定めら
れる。従つて回動帯体11の回転速度V(mm/se
c)を一定とすると、照射時間t(sec)を短く
すれば「ブレ」のd(mm)は小さくなる。また、
複写画像の解像力をΓとするとΓ∝1/tで与え
られるため、該解像力Γを向上せしめるために
は、照射時間t(sec)を短くすれば良い。
Furthermore, in Japanese Patent Application No. 50-145605 (Japanese Unexamined Patent Publication No. 52-78511) filed by the same applicant as the present applicant, as shown in Figure 4, only a group of characters etc. are transparent. Rotating band 11 configured as follows.
is rotated between an irradiation unit 12 using an electronic flash discharge tube 4 and a photothermal screen original plate 13 that perforates itself when irradiated with light, and a selection signal is used to select from among the above-mentioned group of light-transparent characters, etc. At the moment when the selected character, etc. passes through the irradiation section 12, the electronic flash discharge tube 4
An apparatus is described in which the photothermal screen original plate 13 is irradiated with the above-mentioned characters for a very short period of time to perforate the selected characters, etc. In the device, the irradiation time of the electronic flash discharge tube 4 must be much shorter than the time it takes for any light-transmitting characters, etc. on the rotating strip 11 to pass through the irradiation section 12; Otherwise, "blur" will occur in the copied image formed on the photothermal material, making it impossible to obtain a clear copied image. In addition, in order to increase the print image forming speed (number of characters/sec), the rotary band 11
In addition to increasing the speed, the irradiation time of the electronic flash discharge tube 4 must be reduced to an extremely short time. That is, one character is selected from the rotating band 11 made of an endless belt composed of a group of light-transmitting characters rotating at a speed V (mm/sec), and the character is printed on the photothermal screen original plate 13. When forming a copy image, the allowable "blur" of the copy image is d (mm)
Then, the irradiation time t of the electronic flash discharge tube 4 of the irradiation section 12 at the moment when one light-transmissive character passes through the irradiation window 14 is determined by t≦d/v (sec). Therefore, the rotational speed V (mm/se
Assuming that c) is constant, if the irradiation time t (sec) is shortened, the "shake" d (mm) will become smaller. Also,
Since the resolving power of the copied image is Γ, it is given by Γ∝1/t, so in order to improve the resolving power Γ, the irradiation time t (sec) may be shortened.

然るに感光熱性スクリーン原板13に鮮明な複
写画像を形成するために必要な光線のエネルギー
は、一定であるので回動帯体11の回転速度を上
げ、電子閃光放電管4による光線の照射時間が短
くなると、単位時間当りの照射光線のエネルギー
が増加されなければならない。感光熱性スクリー
ン原板13に鮮明な複写画像を形成するために必
要な照射光線のエネルギーW(J)は、電子閃光
放電管に接続されるコンデンサの容量C(F)と充電
電圧V(v)により、W=1/2・CV2で与えられ
る。また、照射時間t(sec)は、電子閃光放電
管の等価抵抗をρとすると、t∝ρcの関係式で
与えられる。従つて、コンデンサの容量C(F)を小
さくすれば照射時間t(sec)は短くなる。ま
た、理論的には照射光線のエネルギーW(J)
は、コンデンサの容量C(F)を小さくし、充電電圧
V(v)を大きくした場合と、コンデンサの容量
C(F)を大きくし、充電電圧V(v)を小さくした
場合とではCV2が同一である限り同一のエネルギ
ーであり、かつ感光熱材が光線照射時に発生する
温度TはT∝1/√の関係式で与えられ、同一
の光線エネルギーであれば、照射時間t(sec)
が短い程、感光熱材に発生する温度Tは高くなる
はずであり、また、印字画像形成速度を上げるた
めに電子閃光放電管の照射時間を短縮し、かつ該
短縮にともなう単位時間当りの照射光線のエネル
ギーを増加するためにはコンデンサの容量を小さ
くし、充電電圧を大きくする必要があるが、種々
実験をしてみると、コンデンサの容量C(F)を小さ
くし、充電電圧V(v)を高くした場合には、コ
ンデンサの容量C(F)を大きくし、充電電圧V
(v)を小さくした場場合に比べ、複写画像の形
成状態が劣ることが判明した。この原因は定かで
はないが、感光熱材自体に熱容量があるため、第
5図に示す如く最適な照射時間が存在すると思わ
れる。
However, since the energy of the light beam required to form a clear copy image on the photothermal screen original plate 13 is constant, the rotational speed of the rotating band 11 is increased, and the irradiation time of the light beam by the electronic flash discharge tube 4 is shortened. Then, the energy of the irradiation light per unit time must be increased. The energy W (J) of the irradiation light necessary to form a clear copy image on the photothermal screen original plate 13 is determined by the capacitance C (F) of the capacitor connected to the electronic flash discharge tube and the charging voltage V (v). , given by W=1/2・CV 2 . Further, the irradiation time t (sec) is given by the relational expression t∝ρc, where ρ is the equivalent resistance of the electronic flash discharge tube. Therefore, if the capacitance C(F) of the capacitor is reduced, the irradiation time t(sec) will be shortened. In addition, theoretically, the energy of the irradiated light W (J)
is CV 2 when the capacitance C(F) of the capacitor is decreased and the charging voltage V(v) is increased, and when the capacitor capacitance C(F) is increased and the charging voltage V(v) is decreased. The energy is the same as long as the energy is the same, and the temperature T generated when the photothermal material is irradiated with light is given by the relational expression T∝1/√, and if the energy of the light is the same, the irradiation time t (sec)
The shorter the temperature T generated in the photothermal material, the higher the temperature T generated in the photothermal material should be.In addition, in order to increase the print image formation speed, the irradiation time of the electronic flash discharge tube is shortened, and the irradiation time per unit time due to this shortening is reduced. In order to increase the energy of the light beam, it is necessary to reduce the capacitance of the capacitor and increase the charging voltage. However, various experiments have shown that the capacitor's capacitance C(F) can be reduced and the charging voltage V (v ), increase the capacitance C(F) and increase the charging voltage V
It has been found that the formed state of the copied image is inferior to that in the case where (v) is made smaller. The reason for this is not clear, but since the photothermal material itself has a heat capacity, it is thought that there is an optimum irradiation time as shown in FIG.

以上の如くこの種の単一露光による装置では、
電子閃光放電管の照射時間を短縮し、印字画像形
成速度を上げることには限界があり、小容積内で
極度に高い入力エネルギーにて繰返し放電を行う
場合、照射部の熱による劣化及び電子閃光放電管
とコンデンサの劣化等の問題が生じる。
As mentioned above, in this type of single exposure device,
There is a limit to shortening the irradiation time of an electronic flash discharge tube and increasing the printing image formation speed, and when repeatedly discharging with extremely high input energy in a small volume, the irradiation part may deteriorate due to heat and the electronic flash may Problems such as deterioration of the discharge tube and capacitor arise.

本発明者らは鋭意研究の結果、感光熱材に複写
画像を形成するに当つて、原稿側からの光線照射
と同時に感光熱材側から実質的に該感光熱材に熱
変化を与えない程度のエネルギーを有する光線を
照射することにより、上記の如き困難を解決する
ことができることを見出した。
As a result of intensive research, the present inventors have found that when forming a copied image on a photothermal material, at the same time as the light irradiation from the original side, the photothermal material side does not substantially cause a thermal change to the photothermal material. It has been found that the above-mentioned difficulties can be solved by irradiating a light beam with an energy of .

以下に添付の第6図〜第9図を参照して本発明
を詳しく説明する。
The present invention will be described in detail below with reference to the accompanying FIGS. 6 to 9.

第6図〜第9図の説明においては、以下の如き
(1)及び(2)の条件が満足されているものとする。
In the explanation of Figures 6 to 9, the following
It is assumed that conditions (1) and (2) are satisfied.

(1) 第一露光光線15のエネルギーをEaとし、
原稿8が損傷されるエネルギーをEdとする
と、Ea<Edである。
(1) Let the energy of the first exposure light beam 15 be Ea,
If the energy that damages the original 8 is Ed, then Ea<Ed.

(2) 第二露光光線19のエネルギーをEbとし、
感光熱材1に複写画像を形成せしめることがで
きるエネルギーをEcとすると、 Ea+Eb>Ec、Eb<Ec 第6図は本発明の一例であるが両面閃光露光に
よる複写方法の解図的断面図である。
(2) Let the energy of the second exposure beam 19 be Eb,
Assuming that the energy that can form a copied image on the photothermal material 1 is Ec, Ea + Eb > Ec, Eb < Ec Figure 6 is an example of the present invention, and is a schematic cross-sectional view of a copying method using double-sided flash exposure. be.

第一露光として電子閃光放電管16を断面が放
物線である凹面反射鏡5の焦点に配置し、反射鏡
5の上部に透明板17を設け、第二露光として電
子閃光放電管18を断面が放物線である凹面反射
鏡5の焦点に配置し、反射鏡5の下部に透明密着
板20を設ける。原稿8と感光熱材1とを重ね合
わせ、透明板17と原稿8とが接するように透明
板17と透明密着板20との間に挿入し、原稿8
側より第一露光用電子閃光放電管16によりEa
のエネルギーを有する第一露光光線15を閃光照
射し、同時に感光熱材1側より第二露光用電子閃
光放電管18によりEbのエネルギーを有する第
二露光光線19を閃光照射する。原稿8の光透過
部9を透過した第一露光光線15と同時に感光熱
材1に照射された第二露光光線19は第7図に示
す如く、感光熱材1に、光透過部9に対応した
Ea+Ebのエネルギーを与え、瞬時に複写画像を
形成せしめる。
For the first exposure, the electronic flash discharge tube 16 is placed at the focal point of the concave reflecting mirror 5 having a parabolic cross section, a transparent plate 17 is provided on the upper part of the reflecting mirror 5, and for the second exposure, the electronic flash discharge tube 18 is placed at the focal point of the concave reflecting mirror 5 having a parabolic cross section. It is placed at the focal point of a concave reflecting mirror 5, and a transparent contact plate 20 is provided at the bottom of the reflecting mirror 5. The original 8 and the photothermal material 1 are overlapped, and the original 8 is inserted between the transparent plate 17 and the transparent contact plate 20 so that the transparent plate 17 and the original 8 are in contact with each other.
Ea from the side by the first exposure electronic flash discharge tube 16
A first exposure light beam 15 having an energy of Eb is flashed, and at the same time a second exposure light beam 19 having an energy of Eb is flashed from the photothermal material 1 side using a second exposure electronic flash discharge tube 18. As shown in FIG. 7, the first exposure light beam 15 transmitted through the light-transmitting portion 9 of the original 8 and the second exposure light beam 19 irradiated onto the photothermal material 1 correspond to the light-transmitting portion 9 on the photothermal material 1, as shown in FIG. did
Gives energy of Ea + Eb to instantly form a copy image.

この場合、感光熱材1の種類によつて、第一露
光用電子閃光放電管16と第二露光用電子閃光放
電管18の照射時間、すなわち光パルス波形は任
意に選択でき、上記放電管16,18の光パルス
波形は同一でも良いが、第8図に示す如く、第一
露光用電子閃光放電管16をAの光パルス波形
に、また、第二露光用電子閃光放電管18をピー
クbのより低いBの光パルス波形に近づける方
が、感光熱材1に熱変化を与えにくいため、より
好ましい。尚、第二露光用電子閃光放電管18の
光パルス波形Bのピークbを低くするために、第
二露光としてタングステン白熱ランプを用いるこ
とも考えられるが、各照射光線のエネルギーは時
間軸tと各光パルス波形とに囲まれた面積で表わ
され、タングステン白熱ランプの光パルス波形C
は第8図に示す如く低すぎて、第一露光と第二露
光とによる光線エネルギーの和が感光熱材1に複
写画像を形成するのに必要なエネルギーに達しな
い恐れがあり、不適当である。
In this case, depending on the type of photothermal material 1, the irradiation time of the first exposure electronic flash discharge tube 16 and the second exposure electronic flash discharge tube 18, that is, the light pulse waveform, can be arbitrarily selected. , 18 may be the same, but as shown in FIG. It is more preferable to approximate the optical pulse waveform of B, which is lower than B, because it is difficult to cause thermal changes to the photothermal material 1. In addition, in order to lower the peak b of the optical pulse waveform B of the electronic flash discharge tube 18 for second exposure, it is possible to use a tungsten incandescent lamp for the second exposure, but the energy of each irradiation light is different from the time axis t. The light pulse waveform C of the tungsten incandescent lamp is expressed by the area surrounded by each light pulse waveform.
is too low as shown in FIG. 8, and there is a risk that the sum of the light energy from the first exposure and the second exposure will not reach the energy necessary to form a copied image on the photothermal material 1, which is inappropriate. be.

また、感光熱材1として感光熱性スクリーン原
板を使用する場合は、第一露光と第二露光による
光線を同時に照射する両面露光前に、第一露光の
みの光線照射をすることにより、上記スクリーン
原板の熱収縮性フイルムに原稿のパターンに対応
した部分にてのみ予備収縮を与え、次いで、上記
両面露光を行なうことが提案される。これは穿孔
画像部に於けるフイルムの残渣を低減し、また両
面露光時の第二露光光線のエネルギーを実質的に
低下せしめる効果を有する。
In addition, when a photothermal screen original plate is used as the photothermal material 1, the screen original plate is irradiated with only the first exposure light before double-sided exposure in which the first exposure and the second exposure light are simultaneously irradiated. It is proposed that the heat-shrinkable film is subjected to preliminary shrinkage only in the portion corresponding to the pattern of the original, and then the above-mentioned double-sided exposure is performed. This has the effect of reducing film residue in the perforated image areas and also substantially lowering the energy of the second exposure beam during double-sided exposure.

第9図は本発明の両面閃光露光法を拡大複写に
適用した例を示す解図的断面図である。
FIG. 9 is an illustrative cross-sectional view showing an example in which the double-sided flash exposure method of the present invention is applied to enlarged copying.

第一露光として電子閃光放電管16を反射鏡5
の焦点に配置し、該放電管16と透明板17との
間に拡大レンズ10を設ける。第二露光は第1図
と同様である。原稿8を拡大レンズと第一露光用
電子閃光放電管16の間に配置し、拡大レンズ1
0による原稿8の拡大画像の焦点の合う位置で感
光熱材1を透明板17と透明密着板20との間に
配置する。この場合、感光熱材1に光線照射によ
り発生した熱が透明板17及び透明密着板20に
拡散するのを防止するために、感光熱材1は熱絶
縁材21により保護されていてもよい。第一露光
用電子閃光放電管16から照射されたEaのエネ
ルギーを有する第一露光光線15は原稿8の光透
過部9を透過し、拡大レンズ10により光透過部
9の拡大画像に相当する光線パターンを感光熱材
1に照射し、同時に第二露光用電子閃光放電管1
8はEbのエネルギーを有する第二露光光線を感
光熱材1に照射する。感光熱材1の両面に同時に
照射された光線は第7図に示す如く感光熱材1に
拡大レンズ10により拡大された光透過部9のパ
ターンに対応したEa+Ebのエネルギーを与え、
瞬時に拡大複写画像を形成せしめる。この場合、
熱絶縁材21としては、光透過性で、かつ感光熱
材1に発生した熱を透明板17及び透明密着板2
0へ拡散させないものであればよく、紗、不織
布、紙等が使用できる。また、第10図に示す如
く透明板もしくは透明密着板の代わりに可撓性の
ある合成樹脂シート22等感光熱材の周りに覆
せ、コンプレツサー23により、空気を抜いて、
感光熱材1を支持することもできる。
The electronic flash discharge tube 16 is used as the first exposure to the reflecting mirror 5.
A magnifying lens 10 is provided between the discharge tube 16 and the transparent plate 17. The second exposure is the same as in FIG. The original 8 is placed between the magnifying lens and the first exposure electronic flash discharge tube 16, and the magnifying lens 1
The photothermal material 1 is placed between the transparent plate 17 and the transparent contact plate 20 at a position where the enlarged image of the original 8 by 0 is in focus. In this case, the photothermal material 1 may be protected by a heat insulating material 21 in order to prevent the heat generated by the irradiation of the photothermal material 1 from diffusing into the transparent plate 17 and the transparent adhesive plate 20. The first exposure light beam 15 having energy of Ea emitted from the first exposure electronic flash discharge tube 16 is transmitted through the light transmitting part 9 of the document 8, and is passed through the magnifying lens 10 to produce a light beam corresponding to an enlarged image of the light transmitting part 9. The pattern is irradiated onto the photothermal material 1, and at the same time an electronic flash discharge tube 1 for second exposure is used.
8 irradiates the photothermal material 1 with a second exposure light beam having energy of Eb. The light rays irradiated on both sides of the photothermal material 1 at the same time give the photothermal material 1 energy of Ea+Eb corresponding to the pattern of the light transmitting part 9 magnified by the magnifying lens 10, as shown in FIG.
To instantly form an enlarged copy image. in this case,
The heat insulating material 21 is light-transmissive and transfers the heat generated in the photothermal material 1 to the transparent plate 17 and the transparent adhesive plate 2.
Any material that does not diffuse to zero may be used, and gauze, nonwoven fabric, paper, etc. can be used. In addition, as shown in FIG. 10, instead of the transparent plate or transparent adhesive plate, a flexible synthetic resin sheet 22 or the like can be placed around the photothermal material, and air is removed by a compressor 23.
The photothermal material 1 can also be supported.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原稿として銀塩塗布フイルムを用い
て、感光熱材に選択的に光線を照射する要領を示
す解図的断面図、第2図は銀塩塗布フイルムと感
光熱材との間に距離を設けて選択的に光線を照射
する要領を示す解図的断面図、第3図は、感光熱
材に拡大複写画像を形成する要領を示す解図的断
面図、第4図は回動する原稿から感光熱材に複写
画像を形成する要領を示す解図的断面図、第5図
は感光熱材に複写画像を形成するのに最適な照射
時間が存在することを示す略図、第6図は本発明
の両面閃光露光法による複写要領を示す解図的断
面図、第7図は第一露光光線と第二露光光線によ
り感光熱材に与えられるエネルギーレベルを示す
略図、第8図は照射光線の光パルス波形を示す略
図、第9図は本発明の両面閃光露光法を拡大複写
に適用する要領を示す解図的断面図、第10図
は、本発明の両面閃光露光法における感光熱材の
支持構造の一つの変形例を示す解図的断面図。 1〜感光熱材、2〜銀塩塗布フイルム、3〜光
不透過部、4〜電子閃光放電管、5〜反射鏡、6
〜光線、7〜散乱光、8〜原稿、9〜光透過部、
10〜レンズ、11〜回動帯体、12〜照射部、
13〜感光熱性スクリーン原板、14〜照射窓、
15〜第一露光光線、16〜第一露光用電子閃光
放電管、17〜透明板、18〜第二露光用電子閃
光放電管、19〜第二露光光線、20〜透明密着
板、21〜熱絶縁材、22〜可撓性のある合成樹
脂シート、23〜コンプレツサー。
Figure 1 is an illustrative cross-sectional view showing how to selectively irradiate a photothermal material with a light beam using a silver salt coated film as an original, and Figure 2 shows the gap between the silver salt coated film and the photothermal material. Fig. 3 is an illustrative sectional view showing how to selectively irradiate a light beam at a distance; Fig. 3 is an illustrative sectional view showing how to form an enlarged copy image on a photothermal material; Fig. 4 is a rotating FIG. 5 is a schematic cross-sectional view showing the procedure for forming a copied image on a photothermal material from an original document; FIG. The figure is an illustrative cross-sectional view showing the procedure for copying by the double-sided flash exposure method of the present invention, FIG. 7 is a schematic diagram showing the energy level given to the photothermal material by the first exposure light beam and the second exposure light beam, and FIG. FIG. 9 is an illustrative sectional view showing how the double-sided flash exposure method of the present invention is applied to enlarged copying. FIG. 10 is a schematic diagram showing the optical pulse waveform of the irradiation light beam. FIG. 7 is an illustrative cross-sectional view showing one modification of a support structure for a light and heat material. 1 - Photothermal material, 2 - Silver salt coated film, 3 - Light-opaque part, 4 - Electronic flash discharge tube, 5 - Reflector, 6
~Light ray, 7~Scattered light, 8~Document, 9~Light transmission part,
10 - Lens, 11 - Rotating band, 12 - Irradiation section,
13 - Photothermal screen original plate, 14 - Irradiation window,
15-first exposure light beam, 16-electronic flash discharge tube for first exposure, 17-transparent plate, 18-electronic flash discharge tube for second exposure, 19-second exposure light beam, 20-transparent contact plate, 21-heat Insulating material, 22 - flexible synthetic resin sheet, 23 - compressor.

Claims (1)

【特許請求の範囲】 1 感光熱材にその一方の側より光透過部及び光
不透過部よりなるパターンを有する原稿を通して
第一の電子閃光放電管による閃光光線を選択的に
閃光照射すると同時瞬間に、前記感光熱材の他方
の側よりそれ単独にては前記感光熱材に実質的な
熱変化を生ぜしめない第二の電子閃光放電管によ
る閃光光線を実質的に均一に閃光照射し、前記第
一及び第二の光線のエネルギの和が前記感光熱材
に所要の熱変化を生ぜしめることを特徴とする両
面閃光露光法。 2 特許請求の範囲第1項の両面閃光露光法に於
て、前記第一の光線は原稿に実質的に損傷を与え
ないエネルギを有する光線であることを特徴とす
る両面閃光露光法。
[Scope of Claims] 1. At the same moment when a flash beam from a first electronic flash discharge tube is selectively irradiated from one side of a photothermal material through an original having a pattern of light-transmitting areas and non-light-transmitting areas; , substantially uniformly irradiating the photothermal material with a flash beam from the other side of the photothermal material from a second electronic flash discharge tube that does not cause a substantial thermal change in the photothermal material by itself; A double-sided flash exposure method, characterized in that the sum of the energies of said first and second light beams produces the required thermal change in said photothermal material. 2. The double-sided flash exposure method according to claim 1, wherein the first light beam is a light beam having energy that does not substantially damage the original.
JP8413676A 1976-07-15 1976-07-15 Method of and apparatus for both sides flash exposure Granted JPS539545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8413676A JPS539545A (en) 1976-07-15 1976-07-15 Method of and apparatus for both sides flash exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8413676A JPS539545A (en) 1976-07-15 1976-07-15 Method of and apparatus for both sides flash exposure

Publications (2)

Publication Number Publication Date
JPS539545A JPS539545A (en) 1978-01-28
JPS6111796B2 true JPS6111796B2 (en) 1986-04-04

Family

ID=13822070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8413676A Granted JPS539545A (en) 1976-07-15 1976-07-15 Method of and apparatus for both sides flash exposure

Country Status (1)

Country Link
JP (1) JPS539545A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114566U (en) * 1974-03-01 1975-09-18

Also Published As

Publication number Publication date
JPS539545A (en) 1978-01-28

Similar Documents

Publication Publication Date Title
KR0144735B1 (en) Plate Making of Concave Plates
ES2608411T3 (en) Method to make a relief image
US3811773A (en) Thermographic copying
JP3510505B2 (en) Exposure equipment
US3073953A (en) Process for producing images
JPS6111796B2 (en)
JPS5826009B2 (en) Microfilm camera that uses instantaneous imaging film
US3924533A (en) Resolution thermal spirit masters method
US3503681A (en) Illuminating device for reproduction purposes
JPS634174B2 (en)
US3200730A (en) Lithographic exposure apparatus and method
US3924530A (en) Resolution thermal spirit masters apparatus
JPS615271A (en) Flash fixing device
JPH02291542A (en) Original exposing apparatus
JPS58128895A (en) Heat-sensitive copying method
JPS595860Y2 (en) electrostatic recording device
JPS59127033A (en) Thermal copying machine
US3232760A (en) Photographic registration and compositing method for preparing resists for etching gravure cylinders
JPS6253887A (en) Thermal transfer copying method
JPS6346433A (en) Copying device
JPS58219573A (en) Printing device
JPH0462066B2 (en)
JPH01202740A (en) Thermal copying device
JPH03137629A (en) Image forming device
JPS61284490A (en) Method for making thermal screen printing stencil paper