JPS61117929A - On-road equipment for radio communication between on-road equipments having vehicle detection radar function - Google Patents

On-road equipment for radio communication between on-road equipments having vehicle detection radar function

Info

Publication number
JPS61117929A
JPS61117929A JP59238126A JP23812684A JPS61117929A JP S61117929 A JPS61117929 A JP S61117929A JP 59238126 A JP59238126 A JP 59238126A JP 23812684 A JP23812684 A JP 23812684A JP S61117929 A JPS61117929 A JP S61117929A
Authority
JP
Japan
Prior art keywords
road
vehicle
circularly polarized
wave
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59238126A
Other languages
Japanese (ja)
Other versions
JPH058614B2 (en
Inventor
Yasuhiro Ishii
康博 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59238126A priority Critical patent/JPS61117929A/en
Publication of JPS61117929A publication Critical patent/JPS61117929A/en
Publication of JPH058614B2 publication Critical patent/JPH058614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/002Transmission systems not characterised by the medium used for transmission characterised by the use of a carrier modulation
    • H04B14/008Polarisation modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To attain simplicity and miniaturization by using a plane type print antenna for circularly polarized wave for two-terminal drive for both transmission and reception in common while a circularly polarized wave is used for all radio propagation in three operations of an on-road equipment so as to use a carrier oscillator in common in the three operations. CONSTITUTION:Two terminals A, B of the TEM two-terminal drive plane type circularly polarized wave print antenna 31 are connected to a hybrid circuit 32 and two terminals C, D of the hybrid circuit 32 are terminals from which circularly polarized waves having opposite rotatory directions are driven. A circulator 33 using the antenna in common for transmission/reception is connected to the drive terminal C and a radar wave receiver 34 is connected to the terminal D. A carrier oscillator 37 and a transmission modulator 36 are connected to a transmission port of the circulator 33, and an output of the carrier oscillator 37 is transmitted by pulse modulation by a transmission modulator 36 or by no modulation depending on the radar system. Further, the transmission port circuit is used entirely in common for two-way information communication between on-vehicle equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、路上を走行する車両を検知するレーダ機能を
有し路上の車間との間で無線通信を行なう路車間無線通
信用路上機に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a road device for road-to-vehicle wireless communication that has a radar function to detect vehicles running on the road and performs wireless communication with other vehicles on the road. .

〔従来の技術〕[Conventional technology]

近年のモータリゼーションの進展、高度情報化社会の発
展にともない、各種の交通、運輸情報システムおよび経
路誘導システムが出現している。
BACKGROUND OF THE INVENTION With the recent progress of motorization and the development of an advanced information society, various traffic and transportation information systems and route guidance systems have appeared.

これらのシステムにおいて、システムに共通的に撮供で
きる無線通信システムの構築が大きな課題となっている
In these systems, the construction of a wireless communication system that can commonly provide imaging to the systems has become a major issue.

第2図、第3[は、従来の移動車面に対する情報通信の
伝送形態の概略を示す図である。
FIGS. 2 and 3 are diagrams schematically showing the form of transmission of information communication to a conventional moving vehicle.

第2図(a)は、一般公衆電話網との接続を目的とした
自動車電話方式および特定の企業1機関の車両を対象と
したMCA方式での無線伝送形態であり、半径5〜25
Km程度の無線ゾーンを有する基地局(図示せず)と道
路1上を走行する車両2との間で通信を行うものである
。しかしこの無線伝送形態は非常に多くの無線チャンネ
ルを必要とし、チャンネル切替えに関連して基地局、車
載機共に高価な機器構成となる。さらに無線ゾーンの大
きさの関係から、移動車両2の位置に密着して精度の高
い交信を必要とする交通流制御システムへの拡張は本質
的に困難である。
Figure 2 (a) shows a wireless transmission form using the car telephone system for the purpose of connection to the general public telephone network and the MCA system targeting vehicles of one specific company.
Communication is carried out between a base station (not shown) having a wireless zone of approximately Km and a vehicle 2 traveling on a road 1. However, this wireless transmission form requires a very large number of wireless channels, and both the base station and the vehicle-mounted device require expensive equipment configurations in connection with channel switching. Furthermore, due to the size of the wireless zone, it is essentially difficult to extend this system to a traffic flow control system that requires close contact with the moving vehicle 2 and highly accurate communication.

第21((b)は、バスロケ−シコンシステムあるいは
自動車総合管制システムで開発された極小シー・ンで無
線伝送形態であって、道路1に埋設した路面ループ3と
車両2に設けた車載機コイル4との間で無線結合による
通信を行なう通信方式である。この場合、路面ループコ
イル3の構造上搬送波周波数は300にHz以下に制限
され、伝送速度に大きな制約があり、路上車両と基地局
との間で画像情報を伝送することは全く不可能である。
No. 21 ((b) is an extremely small scene developed in a bus location control system or a comprehensive vehicle control system, and is a wireless transmission form, and includes a road surface loop 3 buried in the road 1 and an on-vehicle device coil installed in the vehicle 2. 4. In this case, due to the structure of the road surface loop coil 3, the carrier frequency is limited to 300 Hz or less, and there are significant restrictions on the transmission speed. It is completely impossible to transmit image information between the two.

第2図(ん)に示す伝送形態は、当初車両番号認識方式
として開発されたもので、路上機Sからマイクロ波帯の
搬送波を送り、車両2に設けた車載機6で該搬送波を受
信して車両番号コードで変調して路上機5に送り返す、
いわゆる質問応答型式の通信を行なうものであり、極め
て簡素化された低コストの車載機6で実現しつる点で大
きな特徴があるが、その反面、簡単なコード情報のみの
片方向通信となる。
The transmission form shown in Fig. 2(n) was originally developed as a vehicle number recognition system, and a carrier wave in the microwave band is sent from a roadside device S, and the carrier wave is received by an on-vehicle device 6 installed in a vehicle 2. modulated with the vehicle number code and sent back to the roadside device 5.
It performs so-called question-and-answer type communication, and has a great feature in that it can be realized by an extremely simple and low-cost vehicle-mounted device 6, but on the other hand, it is a one-way communication using only simple code information.

第3図は、前記第2図(C)の伝送形態のもとで。FIG. 3 is based on the transmission form of FIG. 2(C).

基地局と路上車両との間で時分割的に双方向通信を行な
うようにした自動車総合管制システムに用いるミリ波通
信方式における路上機および車載機の従来の構成を示す
ブロック図である。該自動車総合管制システムでは、基
地局と路上車両との間の両リンクに異なる搬送波を採用
し、路上機、車載機共に夫々ミリ波発振器11を有する
同じ回路構成とし、マジック−T12と1/4波長位相
器13の動作によりアンテナ14の送受信共用化を行な
うと共に、2個のミキサ・変調器15.16のベアによ
り中間波回路と接続するように構成される。
1 is a block diagram showing a conventional configuration of a road device and an on-vehicle device in a millimeter wave communication method used in a comprehensive vehicle control system that performs bidirectional communication between a base station and road vehicles in a time-sharing manner. FIG. In this comprehensive vehicle control system, different carrier waves are used for both links between the base station and the road vehicle, and both the road device and the vehicle-mounted device have the same circuit configuration each having a millimeter wave oscillator 11, and Magic-T12 and 1/4 The antenna 14 is used for both transmission and reception by the operation of the wavelength phase shifter 13, and is connected to an intermediate wave circuit by means of two mixer/modulators 15 and 16.

第4図は、従来の路上を移動する車両を検知する検知方
式の概略構成を示す図である。同図(a)は、超音波式
車両感知器であり、道路1上に設けられたスピーカ21
より超音波を送出してその反射時間を計測して車の通行
を検知するものであり。
FIG. 4 is a diagram showing a schematic configuration of a conventional detection method for detecting a vehicle moving on a road. FIG. 2(a) shows an ultrasonic vehicle sensor, and a speaker 21 installed on the road 1.
It detects the passing of cars by sending out ultrasonic waves and measuring the reflection time.

また同図(b)は、道路1に埋設したループコイル22
上を金属体である車両2が通過する時のコイルのインダ
クタンスの変化を感知するものである。
In addition, the same figure (b) shows a loop coil 22 buried in the road 1.
It senses the change in the inductance of the coil when the vehicle 2, which is a metal body, passes over it.

また、走行車面の速度あるいは相対速度を検知するドツ
プラレーダ装置が開発されており、第4図(C)は、衝
突防止用のドツプラレーダ方式において、静止物体から
の反射波あるいは対向車線の走行車からの放射波の識別
を目的に、物標(前行車両の後面)に偏波変換器を付け
た特殊な反射器24を取付けてレーダ波装置23からの
送受波の偏波面を変える方式(特開昭49−51884
号公報、特開昭49−36294号公報)の例を示す。
In addition, a Doppler radar device that detects the speed or relative speed of a traveling vehicle has been developed. Figure 4 (C) shows a Doppler radar system for collision prevention that detects waves reflected from a stationary object or from a vehicle traveling in the oncoming lane. For the purpose of identifying the radiated waves of Kaisho 49-51884
(Japanese Unexamined Patent Publication No. 49-36294).

〔発明が解決しようする問題点〕[Problem that the invention aims to solve]

しかしながら上記従来の伝送形態でも上述のように種々
の欠点があり、第3図に示す路上機および車載機におい
ても、路車間通信の普及が進展した段階では、路上機と
比較して車載機の台数が遥かに多いことを考慮すると、
特に車載機側の低コスト化を図ることが必要であり、マ
ジック−T12のような導波管回路系でのみ構成可能な
方式では機器の低コスト化、小型化に大きな障害となる
欠点を有している。
However, even the above-mentioned conventional transmission forms have various drawbacks as mentioned above, and even in the roadside and in-vehicle devices shown in Figure 3, at the stage when road-to-vehicle communication has become widespread, the in-vehicle devices are less effective than the on-road devices. Considering that the number is much larger,
In particular, it is necessary to reduce the cost of in-vehicle equipment, and systems such as Magic-T12, which can be configured only with waveguide circuit systems, have drawbacks that are a major hindrance to reducing the cost and size of equipment. are doing.

また、第4図(a)、(b)、(e)に示す移動車両の
検知方式は、本質的には車両に対する情報通信機能を持
っていないという欠点を有している。これに対して、最
近、第2図(b)と第4図(b)に示す伝送形態の類似
性に着目して、路面に埋設したループコイルを車両感知
用と路車間情報通信用とに共用する方式が、例えば、信
学技報5ANE、83−46で提案されているが、この
方式も前記第2図(b)の説明で述べたようにループコ
イル方式の欠点をそのまま保有しており、高品質の路車
間情報通信は期待できないという欠点を有している。
Furthermore, the moving vehicle detection methods shown in FIGS. 4(a), 4(b), and 4(e) have the drawback that they essentially do not have an information communication function for the vehicle. In contrast, recently, focusing on the similarity of the transmission forms shown in Figures 2(b) and 4(b), loop coils buried in the road surface have been used for vehicle sensing and road-to-vehicle information communication. A common method has been proposed, for example, in IEICE Technical Report 5ANE, 83-46, but this method also has the disadvantages of the loop coil method as described in the explanation of Fig. 2(b) above. Therefore, it has the disadvantage that high-quality road-to-vehicle information communication cannot be expected.

本発明は上述の点にかんがみてなされたもので。The present invention has been made in view of the above points.

交通流情報収集のための車両検知用レーダ動作、路上機
から車載機へおよび車載機から路上機への情報通信の三
動作を実現する簡単な構成で、しかも小型化された路上
機を低コストで提供することにある。
A simple configuration that realizes three operations: radar operation for vehicle detection to collect traffic flow information, information communication from on-road equipment to on-vehicle equipment, and from on-board equipment to on-road equipment, and a small and low-cost on-road equipment. The goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明は、車両検知用レー
ダ動作、路上機から車載機へおよび車載機から路上機へ
の情報通信動作の三動作を時分割で行なう路車間無線通
信用の路上機において、該三動作に共通に使用する搬送
波発振器と送信変調器とを設け、該送信変調器を制御し
て車両検知用レーダ動作時にはパルス変調あるいは無変
調とし。
In order to solve the above-mentioned problems, the present invention provides an on-road system for road-to-vehicle wireless communication that performs three operations in a time-sharing manner: radar operation for vehicle detection, information communication operation from on-road device to on-vehicle device, and from on-vehicle device to on-road device. The machine is provided with a carrier wave oscillator and a transmission modulator that are commonly used for the three operations, and the transmission modulator is controlled to perform pulse modulation or no modulation during vehicle detection radar operation.

路上機から車載機への情報通信時には情報信号で変調し
、車載機から路上機への情報通信時には無変調とし、三
動作での電波伝播をすべて円偏波として二端子駆動の平
面形の円偏波用プリントアンシ アを送受信共用のアンテナとし、車両検知用のレーダ送
信波の円偏波の旋回方向と車載機から路上機への情報通
信時に路上機から送信する無変調搬送波の円偏波の旋回
方向とを同じとし、路上機からの該無変調波を受信して
情報信号で変調し該無変調搬送波の円偏波の旋回方向と
同じ旋回方向で送信する車載機からの送信波を受信する
受信機と、レーダ送信波の円偏波と反対の旋回方向のレ
ーダ反射を受信するパルスレーダ形あるいはドツプラレ
ーダ形の受信器とを設け、路上機から車載機への情報通
信時の送信波の円偏波の旋回方向を車載機から路上機へ
の情報通信時に路上機から送信する無変調搬送波の円偏
波の旋回方向と同じかあるいは反対とするように構成し
た。
When communicating information from the on-road device to the on-vehicle device, the information signal is modulated, and when communicating from the on-board device to the on-road device, it is not modulated, and all radio wave propagation in the three operations is circularly polarized. A printed antenna for polarization is used as an antenna for both transmitting and receiving, and the rotation direction of the circularly polarized wave of the radar transmission wave for vehicle detection and the circularly polarized wave of the unmodulated carrier wave transmitted from the on-road device when transmitting information from the on-vehicle device to the road device are Receiving a transmission wave from an on-vehicle device that receives the unmodulated wave from the on-road device, modulates it with an information signal, and transmits it in the same turning direction as the circularly polarized wave of the unmodulated carrier wave. and a pulse radar type or Doppler radar type receiver that receives radar reflections in a direction opposite to the circularly polarized wave of the radar transmitted wave. The rotating direction of the circularly polarized wave is configured to be the same as or opposite to the rotating direction of the circularly polarized wave of the unmodulated carrier wave transmitted from the on-road device during information communication from the on-vehicle device to the on-road device.

〔作用〕[Effect]

上記のように路上機を構成することにより、路上機の三
動作における電波伝播をすべて円偏波として二端子駆動
の平面形の円偏波用プリントアンテナを送受信共用とし
、各洞察時での円偏波の旋回方向を夫々最適に選定し、
三動作での搬送波発振器を共通化できるから、路上機の
構成が簡素化、小型化された低コストの多目的の路上機
が得られる。
By configuring the roadside unit as described above, the radio wave propagation in the three operations of the roadside unit is all circularly polarized, and the two-terminal drive planar printed antenna for circularly polarized waves is used for both transmission and reception. The direction of rotation of the polarized waves is optimally selected,
Since the carrier wave oscillator for three operations can be shared, it is possible to obtain a low-cost, multi-purpose road device with a simplified and compact configuration.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図(a)は、本発明の一実施例をなす路上機の構成
を示すブロック図、同図(b)は、該路上機に対応して
適用される車載機の構成を示すブロック図である。
FIG. 1(a) is a block diagram showing the configuration of a road device that is an embodiment of the present invention, and FIG. 1(b) is a block diagram showing the structure of an on-vehicle device applied to the road device. It is.

第1図(a)において、31はTEM二端子駆動の平面
形の円偏波用プリントアンテナであり、該円偏波用プリ
ントアンテナ31の二端子AとBはハイブリット回路3
2に接続され、該ハイブリット回路32の二端子CとD
は互いに旋回方向が反対の円偏波を駆動する端子となる
。駆動端子Cにはアンテナを送受信共同にするためのサ
ーキュレータ33が接続されている。路車間の両リンク
の電波および車両検知用レーダの送信波は端子Cを駆動
端子とする同じ旋回方向の円偏波を当て、該円偏波と反
対の旋回方向のレーダ反射波を受信するために端子りに
レーダ波受信器34が接続されている。車両検知用レー
ダ方式としては、電波の往復時間から物標を検知するパ
ルス方式と、ドツプラ効果による周波数の変化を検知し
て物標の速度を計測するCW方式があり、本実施例では
これらの何れの方式も適用できる。サーキュレータ33
の送信ボートには搬送波発振1137と送信変調器36
とが接続されており、レーダ動作時には、上述のレーダ
方式に相応して、搬送波発振1137の出力は送信変調
器36によりパルス変調あるいは無変調のままで送信さ
れる。また、該送信ボートの回路は路車間での双方向情
報通信時にも全く共通に使用され“るものであり、路上
機から車載機への情報通信時には車載機への情報信号で
変調して送信し、車載機から路上機への情報通信時には
路上機から車載機に無変調搬送波を供給して車載機の構
成を簡素化することに役立っている。サーキュレータ3
3の受信ポートには車載機からの送信波を受信するため
の受信1I35が接続されている。
In FIG. 1(a), numeral 31 is a planar printed antenna for circularly polarized waves driven by two terminals of TEM, and two terminals A and B of the printed antenna for circularly polarized waves 31 are connected to a hybrid circuit 3.
2, and the two terminals C and D of the hybrid circuit 32
serve as terminals that drive circularly polarized waves whose rotation directions are opposite to each other. A circulator 33 is connected to the drive terminal C for making the antenna both transmitting and receiving. The radio waves of both road-vehicle links and the transmission waves of the vehicle detection radar are circularly polarized waves in the same turning direction using terminal C as the drive terminal, and the radar reflected waves in the opposite turning direction to the circularly polarized waves are received. A radar wave receiver 34 is connected to the terminal. Vehicle detection radar methods include the pulse method, which detects targets based on the round-trip time of radio waves, and the CW method, which measures the speed of targets by detecting changes in frequency due to the Doppler effect. Either method can be applied. Circulator 33
The transmission boat includes a carrier wave oscillation 1137 and a transmission modulator 36.
During radar operation, the output of the carrier wave oscillation 1137 is transmitted by the transmission modulator 36 without pulse modulation or without modulation, corresponding to the above-mentioned radar system. In addition, the circuit of the transmission boat is used in common for two-way information communication between road and vehicle, and when transmitting information from roadside equipment to onboard equipment, it is modulated with the information signal to the onboard equipment and transmitted. However, when communicating information from the on-vehicle device to the on-road device, it supplies an unmodulated carrier wave from the on-road device to the on-vehicle device, which is useful for simplifying the configuration of the on-vehicle device.Circulator 3
A receiving port 3 is connected to a receiving port 1I35 for receiving transmission waves from the vehicle-mounted device.

第1図(b)において、38はTEM一端子駆動の平面
層円偏波用プリントアンテナであって、端子C′は第1
図(a)の端子Cと同じ旋回方向の円偏波は駆動するよ
うに構成されている。39は車載機アンテナ38を送受
信共用にするためのサーキュレータであって、該サーキ
ュレータ39の受信ポートには高周波ダイオードスイッ
チ回路からなる回線切換@40が接続され、さらに該回
線切換器40には車載機受信機41が接続される。また
、サーキュレータ39の送信ボートには車載機送信変調
4I42が接続される。路上機から車載機への情報通信
時には回線切換器40により車載機受信機41に接続さ
れて路上機からの情報信号が受信され、車載機から路上
機への情報通信時には路上機から送信された無変調搬送
波を受信して該回線切換器40により車載機送信変調器
42に接続され、車載機からの情報信号で変調してサー
キュレータ39の送信ボートを経て送信されるように構
成されている。
In FIG. 1(b), numeral 38 is a plane layer circularly polarized printed antenna driven by one terminal of TEM, and the terminal C' is the first one.
It is configured to drive circularly polarized waves in the same direction of rotation as terminal C in Figure (a). Reference numeral 39 is a circulator for making the on-vehicle device antenna 38 shared for transmitting and receiving, and a line switch @40 consisting of a high frequency diode switch circuit is connected to the receiving port of the circulator 39, and the line switch 40 is connected to the on-vehicle device antenna 38. A receiver 41 is connected. Furthermore, an on-vehicle transmitter modulator 4I42 is connected to the transmitter port of the circulator 39. When communicating information from the on-road device to the on-vehicle device, the line switching device 40 connects to the on-vehicle device receiver 41 to receive information signals from the on-road device, and when communicating information from the on-vehicle device to the on-road device, the information signals are transmitted from the on-road device. It is configured to receive an unmodulated carrier wave, connect it to an on-board equipment transmission modulator 42 via the line switch 40, modulate it with an information signal from the on-board equipment, and transmit it via a transmission port of a circulator 39.

第5図(a)は本発明の他の実施例をなす路上機の構成
を示すブロック図、同図(b)は該路上機に対応して適
用される車載機の一実施例図である。
FIG. 5(a) is a block diagram showing the configuration of a road device which is another embodiment of the present invention, and FIG. 5(b) is a diagram showing an embodiment of an on-vehicle device applied to the road device. .

第5図、(a)において、51はTEM二端子駆動の平
面形の円偏波用プリントアンテナであり、該円偏波用プ
リントアンテナ51の二端子AとBはハイブリット回路
52に接続され、該ハイブリット回路52の二端子Cと
Dは互いに旋回方向が反対の円偏波を駆動する端子とな
る点は、第1図(a)の路上機と同じである。しかしな
がら、第5図(a)の場合には、二端子CおよびDに夫
々サーキュレータ53および54を接続し、夫々の受信
ポートに車載機からの通信情報を受信する受信器55お
よびレーダ波受信器56が接続される。また、前記路上
機の三動作姿態で共通に使用する搬送波発振器59と送
信変調器58は、回線切換器57によりレーダ動作時お
よび車載機から路上機への情報通信時には駆動端子C例
のサーキュレータ53の送信ボートへ、路上機から車載
機への情報通信時には駆動端子り例のサーキュレータ5
4の送信ボートへ夫々接続されるように構成される。
In FIG. 5, (a), 51 is a planar circularly polarized printed antenna driven by TEM two terminals, and the two terminals A and B of the circularly polarized printed antenna 51 are connected to a hybrid circuit 52. The two terminals C and D of the hybrid circuit 52 are the same as the road machine shown in FIG. 1(a) in that they serve as terminals for driving circularly polarized waves with opposite directions of rotation. However, in the case of FIG. 5(a), circulators 53 and 54 are connected to two terminals C and D, respectively, and a receiver 55 and a radar wave receiver that receive communication information from an on-vehicle device are connected to respective receiving ports. 56 are connected. Further, a carrier wave oscillator 59 and a transmission modulator 58, which are commonly used in the three operating states of the road device, are connected to a circulator 53 of the drive terminal C example during radar operation and information communication from the on-vehicle device to the road device by a line switch 57. When transmitting information from the on-road device to the on-vehicle device, the circulator 5 is used as a drive terminal.
It is configured to be connected to four transmission ports, respectively.

上記路上機に対応する車載機は、第5図(b)に示すよ
うに、TEM二端子駆動の平面形の円偏波用プリントア
ンテナ60の二端子A′とB′にハイブリッド回路61
を接続し、第5図(a)の端子CとDに対応する駆動端
子C′とD′に対して、端子C′にはサーキュレータ6
2を接続しその受信ポートと送信ボートの間に車載機送
信変調器64を設けて路上機から送られた無変調搬送波
を車載機の情報信号で変調して送信するようにし、端子
D・には路上機からの送信信号を受信するための車載機
受信器63が接続される。
As shown in FIG. 5(b), the in-vehicle device corresponding to the above road device has a hybrid circuit 61 connected to two terminals A' and B' of a planar circularly polarized wave printed antenna 60 driven by a TEM two-terminal.
and drive terminals C' and D' corresponding to terminals C and D in FIG. 5(a), a circulator 6 is connected to terminal C'.
2 is connected, and an on-vehicle device transmission modulator 64 is provided between the receiving port and the transmitting boat, so that the unmodulated carrier wave sent from the on-road device is modulated with the information signal of the on-vehicle device and transmitted. An on-vehicle device receiver 63 for receiving transmission signals from on-road devices is connected.

上記第1図(a)の路上機は、路上機から車載機への情
報通信時における路上機の送信波の円偏波の旋回方向を
、車載機から路上機への情報通信時における路上機から
車載機への無変調搬送波の円偏波および車載機から路上
機への送信波の円偏波の旋回方向と同じにする。これに
対して、第5図(a)の路上機は、路上機から車載機へ
の情報通信時における路上機送信波の円偏波の旋回方向
を。
The on-road device shown in FIG. 1(a) above changes the turning direction of the circularly polarized wave of the transmission wave of the on-road device during information communication from the on-vehicle device to the on-vehicle device. The circular polarization direction of the unmodulated carrier wave from the on-vehicle device to the on-vehicle device and the circular polarization of the transmission wave from the on-vehicle device to the on-road device should be the same. On the other hand, the on-road device shown in FIG. 5(a) uses the rotating direction of the circularly polarized wave of the on-road device transmission wave during information communication from the on-road device to the vehicle-mounted device.

車載機から路上機への情報通信時における路上機から車
載機への無変調搬送波の円偏波および車載機から路上機
への送信波の円偏波の旋回方向と逆になるようにする。
When information is communicated from the on-vehicle device to the on-road device, the circular polarization of an unmodulated carrier wave from the on-road device to the on-vehicle device and the circular polarization of the transmission wave from the on-vehicle device to the on-road device are made to be opposite to the circular polarization direction.

第1図、第5図の路上機および車載機に使用される送信
変調$36.42.58.64としては、最近急速に高
性能化が進展したG a A s M E S −FE
Tを使用することにより高電力利得を有する変調器が構
成でき、また、路上機および車載機に使用される受信器
34,35,41,42,55゜56.63にもGaA
sMES−FETの前置増幅器を組入れることにより低
雑音化が容易にできる。
As the transmission modulation $36.42.58.64 used in the on-road equipment and in-vehicle equipment shown in Figs.
By using T, a modulator with high power gain can be constructed, and GaA can also be used in receivers 34, 35, 41, 42, 55°56.
Noise can be easily reduced by incorporating an sMES-FET preamplifier.

以上説明したように第1図(a)および第5図(a)に
示す路上機の基本的な構成の一つの特徴は、車両レーダ
動作、路車間双方向情報通信動作にすべて円偏波を適用
し夫々の旋回方向の設定を最適にすることにある。一般
的に、無線通信では直線偏波の適用が通常であって、衛
星通信の分野以外での円偏波の適用例は非常に少ない、
衛星通信の場合における円価波の適用の理由は、衛星の
姿勢および電波が電離層内を通過する時の地磁気の作用
に起因するファラデー回転による偏波面の変動を回避す
ることにある。この場合、衛星局−地球局間の両リンク
で異なる搬送波数での互いに逆旋回の円価波を使用して
いる0円偏波の他の適用例としては、第4図(c)の走
行車両の相対速度検知用のドツプラレーダ方式が提案さ
れている(特開昭49−36294号公報)、この場合
、物標(前行車両の後面)に入射した円偏波の旋回方向
を反転して反射する特殊な反射器24を取付けて、対向
車線の走行車からのレーダ放射波を識別することを目的
としており、該反射器24としては旋回方向が互いに反
対な二つのヘリカルアンテナを組合せて構成している。
As explained above, one feature of the basic configuration of the roadside equipment shown in Figures 1(a) and 5(a) is that circularly polarized waves are used for vehicle radar operation and road-to-vehicle two-way information communication operation. The objective is to optimize the setting of each turning direction. In general, linear polarization is usually applied in wireless communications, and there are very few examples of circular polarization being applied outside of the field of satellite communications.
The reason for applying circular waves in the case of satellite communications is to avoid variations in the plane of polarization due to Faraday rotation caused by the attitude of the satellite and the action of the earth's magnetism when radio waves pass through the ionosphere. In this case, as another example of application of zero circularly polarized waves in which circular waves with different carrier numbers and opposite rotations are used in both links between the satellite station and the earth station, the travel shown in Fig. 4(c) is A Doppler radar system for detecting the relative speed of a vehicle has been proposed (Japanese Patent Application Laid-Open No. 49-36294). A special reflector 24 is installed for the purpose of identifying radar radiation waves from vehicles traveling in the oncoming lane, and the reflector 24 is constructed by combining two helical antennas whose turning directions are opposite to each other. are doing.

これに対して、本実施例の場合には、レーダ波の送信局
が固定の路上機であることおよびレーダ波のビーム方向
が第2図(c)のように路面に対して比較的、垂直に近
いことのため、対向車線走行車からの放射波の問題はほ
とんどなく、さらに本実施例のレーダ動作の目的である
交通流の制御・管制システムのため交通流情報収集とし
ては何らの特殊な操作も行なわない通常の走行車両の車
体からの反射波を対象とする。
In contrast, in the case of this embodiment, the radar wave transmitting station is a fixed roadside device and the beam direction of the radar wave is relatively perpendicular to the road surface as shown in FIG. 2(c). , there is almost no problem with radiation waves from vehicles traveling in the oncoming lane, and since the purpose of the radar operation in this example is a traffic flow control system, there is no special need for collecting traffic flow information. The target is the reflected waves from the body of a normal vehicle that is not being operated.

ここで注意すべきことは、金属反射板による円偏波の反
射は旋回方向が反転する性質があることであり、上述の
従来例のような旋回方向を反転して反射する特殊な反射
器は不必要である。
What should be noted here is that the reflection of circularly polarized waves by a metal reflector has a property in which the direction of rotation is reversed, and a special reflector that reverses the direction of rotation and reflects the wave, such as the conventional example mentioned above, is It's unnecessary.

一方、本実施例の路車間での情報通信において車載機か
ら路上機への情報通信時に路上機から送信する無変調搬
送波の円偏波と車載機から路上機への情報信号で変調さ
れた送信波の円偏波との旋回方向が同じになるように構
成される。このように両波の円偏波の旋回方向の関係を
設定することにより、路上機から送信された無変調搬送
波が走行車両の車体あるいは路面で反射して旋回方向が
反転して路上機にもどる不要反射波を、車載機から路上
機への送信波と識別でき1通信品質の向上に貢献するこ
とになる。
On the other hand, in the road-to-vehicle information communication of this embodiment, when information is communicated from the on-vehicle device to the on-road device, the unmodulated carrier wave transmitted from the on-road device is circularly polarized, and the information signal from the on-vehicle device to the road device is transmitted modulated by the circularly polarized carrier wave. It is configured so that the direction of rotation of the wave is the same as that of the circularly polarized wave. By setting the relationship between the rotation directions of the circularly polarized waves of both waves in this way, the unmodulated carrier wave transmitted from the road device is reflected by the vehicle body or the road surface, the direction of rotation is reversed, and it returns to the road device. Unnecessary reflected waves can be distinguished from waves transmitted from the in-vehicle device to the roadside device, contributing to improved communication quality.

路上機から車載機への情報通信時については。Regarding information communication from on-road equipment to on-vehicle equipment.

該通信時が時分割で動作することのために原理的には任
意の旋回方向でもよく、路上機から車載機への送信波を
車載機から路上機への情報通信時の路車間での両波と同
じ旋回方向とした場合が第1図1反対の旋回方向とした
場合が第5図の実施例に相当する。
Since the communication is performed in a time-sharing manner, any turning direction may be used in principle. The case where the turning direction is the same as that of the waves corresponds to the embodiment shown in FIG. 1. The case where the turning direction is opposite to that shown in FIG. 1 corresponds to the embodiment shown in FIG.

また、上記路上機においては、平面形の円偏波用プリン
トアンテナ31.51を効果的に適用して装置の小型化
、低コスト化を行なっている。すなわち、従来からの円
偏波用アンテナとしてのヘリカルアンテナはその捲線方
向により取扱う円偏波の旋回方向が固定されることおよ
び高周波化に問題があり、また導波管系による構成では
ファラデー回転子による円偏波変換器を必要として小型
化、低コスト化が困難である等の問題があり、路車間無
線通信の分野での円偏波を適用を疎外する要因になって
いた。これに対して、上記路上機において適用されてい
る平面形の円価用プリントアンテナは、主として衛星通
信分野での適用を目的に高利得アレイ化構成、ミリ波帯
への適用周波数の拡張等を含めて近年急速に進展したも
のであり(K、R,Carver & J、V、Min
k ;  IEE Tfani、 vol、AP−29
,NO,I PP2〜241981)、マイクロストリ
ップ形、スロット形等の素子構造を基本としてTEM回
路系への接続が容易であり1生写食刻技術により量産化
が可能であり、薄形化、低コスト化も可能である。
Furthermore, in the above-mentioned road device, the planar circularly polarized wave printed antenna 31.51 is effectively applied to reduce the size and cost of the device. In other words, conventional helical antennas as antennas for circularly polarized waves have problems in that the direction of rotation of the circularly polarized waves handled is fixed depending on the winding direction, and that there are problems with high frequencies. There are problems such as the need for a circularly polarized wave converter, which makes it difficult to downsize and reduce costs, and this has become a factor that precludes the application of circularly polarized waves in the field of road-to-vehicle wireless communication. On the other hand, the planar printed antenna used in the above-mentioned on-road equipment has a high-gain array configuration and expansion of the applicable frequency to the millimeter wave band, etc., mainly for application in the satellite communication field. Including, rapid progress has been made in recent years (K, R, Carver & J, V, Min
k; IEE Tfani, vol, AP-29
, NO, I PP2-241981), based on element structures such as microstrip type and slot type, it is easy to connect to the TEM circuit system, and mass production is possible using photo-etching technology. Cost reduction is also possible.

上記路上機の基本的な構成の次の特徴は、路上機の三動
作、すなわち車両検知用レーダ動作と路上機からの車載
機へおよび車載機から路上機への情報通信との動作のす
べてに対して唯一個の搬送波発振器37.59を共通に
使用するようにしたことである。搬送波発振器37.5
9は、路車間通信機器の置かれる比較的苛酷な温度条件
のもとでも、所定の周波数安定度を確保する必要があり
The following features of the basic configuration of the above-mentioned on-road unit are that all three operations of the on-road unit, namely radar operation for vehicle detection, information communication from the on-road unit to the on-board unit, and from the on-board unit to the on-road unit, are performed. In contrast, only one carrier wave oscillator 37.59 is used in common. Carrier wave oscillator 37.5
9, it is necessary to ensure a predetermined frequency stability even under the relatively severe temperature conditions under which the road-to-vehicle communication equipment is placed.

このための対策コストが装置コストの比較的大きな割合
をしめており、上記実施例に示すように搬送波発振器を
路上機側のみとしたことは、車載機の簡素化、小型化、
低コスト化にとって極めて効果的となる。
The cost of countermeasures for this accounts for a relatively large proportion of the equipment cost, and as shown in the above embodiment, using the carrier wave oscillator only on the roadside equipment simplifies and miniaturizes the on-vehicle equipment.
This is extremely effective in reducing costs.

各種の交通運輸情報システム、自動車総合管制システム
等では、路車間情報通信機能と交通流情報収集機能とが
必要であり、両機能に対して別々の路上機を設定するこ
とと対比して、上記実施例は両機能を完全に集約した路
上機であり、交通運輸情報システム、自動車総合管制シ
ステム等において極めて有用である。
Various traffic information systems, comprehensive vehicle control systems, etc. require a road-to-vehicle information communication function and a traffic flow information collection function. The embodiment is a road device that completely integrates both functions, and is extremely useful in traffic information systems, comprehensive vehicle control systems, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、路上機の三動作
における電波伝播もすべて円偏波として二端子駆動の平
面形の円偏波用プリントアンテナを送受信共同とし、各
種作動の円偏波の旋回方向を夫々に最適に選定し、三動
作における搬送波発振器を共通化するように構成するこ
とにより、極めて簡素化、小型化された多目的の路上機
を低コストで提供できるという優れた効果が得られる。
As explained above, according to the present invention, the radio wave propagation in the three operations of the roadside device is all circularly polarized waves, and the two-terminal drive planar printed antenna for circularly polarized waves is used for both transmission and reception, and circularly polarized waves are transmitted and received in the various operations. By optimally selecting the direction of rotation for each of the robots and configuring the carrier wave oscillator to be common for the three operations, an extremely simple and compact multipurpose road machine can be provided at low cost. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明に係る車両検知機能を有する路車
間無線通信用路上機の構成を示すブロック図、第1図(
b)は該路上機に対応する車載機の構成を示すブロック
図、第2図(a) 、 (b) 、 (C)および第3
図はそれぞれ従来の移動車間に対する情報通信の伝送形
態を示す概略図、第4図(a)、(b)、(C)は従来
の移動車両の検知方式を示す概略図、第5図(a)は本
発明に係る他の路上機の構成を示す図、第5図(b)は
該路上機に対応する車載機の構成を示すブロック図であ
る。 図中、31.51・・・円偏波用プリントアンテナ、3
2.52・・・ハイブリット回路、 33,53゜54
・・・サーキュレータ、34.56・・・レーダ波受信
器、35.55・・・受信器、36.58・・・送信変
調善、37,59・・・搬送波発振器、57・・・回線
切換器。
FIG. 1(a) is a block diagram showing the configuration of a roadside device for road-to-vehicle wireless communication having a vehicle detection function according to the present invention.
b) is a block diagram showing the configuration of an on-vehicle device corresponding to the on-road device; FIGS. 2(a), (b), (C) and 3.
4(a), (b), and (C) are schematic diagrams showing a conventional method of detecting moving vehicles, and FIG. 5(a) ) is a diagram showing the configuration of another road device according to the present invention, and FIG. 5(b) is a block diagram showing the configuration of an on-vehicle device corresponding to the road device. In the figure, 31.51...Circularly polarized wave printed antenna, 3
2.52...Hybrid circuit, 33,53°54
...Circulator, 34.56...Radar wave receiver, 35.55...Receiver, 36.58...Transmission modulation, 37,59...Carrier wave oscillator, 57...Line switching vessel.

Claims (1)

【特許請求の範囲】[Claims] 車両検知用レーダ動作と路上機から車載機へおよび車載
機から路上機への情報通信との三動作を時分割で行なう
路上機において、該三動作に共通に使用する搬送波発振
器と送信変調器とを設け、該送信変調器を制御して車両
検知用レーダ動作時にはパルス変調器を制御して車両検
知用レーダ動作時にはパルス変調あるいは無変調とし、
前記路上機から車載機への情報通信時には情報信号で変
調し、前記車載機から路上機への情報通信時には無変調
とし、前記三動作での電波伝播をすべて円偏波として二
端子駆動の平面形の円偏波用プリントアンテナを送受信
共用のアンテナとし、前記車両検知用のレーダ送信波の
円偏波の旋回方向と前記車載機から路上機への情報通信
時に路上機から送信する無変調搬送波の円偏波の旋回方
向と同じ旋回方向で送信する車載機からの送信波を受信
する受信機と、レーダ送信波の円偏波と反対の旋回方向
のレーダ反射波を受信するパルスレーダ形あるいはドッ
プラレーダ形の受信器とを設け、前記路上機から車載機
への情報通信時の送信波の円偏波の旋回方向を車載機か
ら路上機への情報通信時に路上機から送信する無変調搬
送波の円偏波の旋回方向と同じかあるいは反対とするよ
うにしたことを特徴とする車両検知レーダ機能を有する
路車間無線通信用路上機。
In a roadside device that performs three operations in a time-sharing manner: radar operation for vehicle detection, information communication from the roadside device to the onboard device, and from the onboard device to the roadside device, a carrier wave oscillator and a transmission modulator commonly used for the three operations are used. and controlling the transmission modulator to control the pulse modulator when the vehicle detection radar is operating, so that the pulse modulation or no modulation is performed when the vehicle detection radar is operating;
When transmitting information from the on-road device to the on-vehicle device, the information signal is modulated, and during the information communication from the on-vehicle device to the on-road device, no modulation is performed, and all radio wave propagation in the three operations is circularly polarized. A circularly polarized printed antenna of the form is used for both transmission and reception, and the rotation direction of the circularly polarized wave of the radar transmission wave for vehicle detection and the unmodulated carrier wave transmitted from the on-road device when information is communicated from the on-vehicle device to the road device are used. A receiver that receives a transmission wave from an on-vehicle device that is transmitted in the same direction as the circularly polarized wave of the radar, and a pulse radar type or A Doppler radar type receiver is provided, and a non-modulated carrier wave transmitted from the on-road device during information communication from the on-vehicle device to the on-road device determines the turning direction of the circularly polarized wave of the transmitted wave during information communication from the on-road device to the on-vehicle device. 1. A road equipment for road-to-vehicle wireless communication having a vehicle detection radar function, characterized in that the turning direction of circularly polarized waves is the same as or opposite to the direction of rotation of the circularly polarized waves.
JP59238126A 1984-11-12 1984-11-12 On-road equipment for radio communication between on-road equipments having vehicle detection radar function Granted JPS61117929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238126A JPS61117929A (en) 1984-11-12 1984-11-12 On-road equipment for radio communication between on-road equipments having vehicle detection radar function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238126A JPS61117929A (en) 1984-11-12 1984-11-12 On-road equipment for radio communication between on-road equipments having vehicle detection radar function

Publications (2)

Publication Number Publication Date
JPS61117929A true JPS61117929A (en) 1986-06-05
JPH058614B2 JPH058614B2 (en) 1993-02-02

Family

ID=17025561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238126A Granted JPS61117929A (en) 1984-11-12 1984-11-12 On-road equipment for radio communication between on-road equipments having vehicle detection radar function

Country Status (1)

Country Link
JP (1) JPS61117929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645900A2 (en) * 1993-09-24 1995-03-29 Robert Bosch Gmbh Method and apparatus for data transmission by means of circular polarized waves

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645900A2 (en) * 1993-09-24 1995-03-29 Robert Bosch Gmbh Method and apparatus for data transmission by means of circular polarized waves
EP0645900A3 (en) * 1993-09-24 1999-06-16 Robert Bosch Gmbh Method and apparatus for data transmission by means of circular polarized waves
CN1076908C (en) * 1993-09-24 2001-12-26 罗伯特-博希股份公司 Process and device for the transmission of data signals

Also Published As

Publication number Publication date
JPH058614B2 (en) 1993-02-02

Similar Documents

Publication Publication Date Title
US5387916A (en) Automotive navigation system and method
US5444742A (en) System for bidirectional data transmission between a plurality of stationary units and a vehicle
US5424747A (en) Process and system for determining the position and orientation of a vehicle, and applications
US6693581B2 (en) Device for transmitting data in a motor vehicle
JP2002264810A (en) System and method of positioning railway vehicle at point along rail track provided with beacon, and antenna suited for the same
JPH02287180A (en) On-vehicle radar system
JPS61117929A (en) On-road equipment for radio communication between on-road equipments having vehicle detection radar function
Detlefsen et al. Interoperable 5.8 GHz DSRC systems as basis for europeanwide ETC implementation
JPH058613B2 (en)
EP0368545A1 (en) Improvements in the transmission and reception of electric signals carrying information
JP3009587B2 (en) Non-contact IC card type transceiver
JPH07198838A (en) Navigation device for automobile
JP4460706B2 (en) Gate system
JPS61118030A (en) Radio communication system between vehicles on road
JP3190572B2 (en) Communication device
JPH06301888A (en) Radio communication system between road and vehicle
JP3601097B2 (en) Wireless card device and communication area control method thereof
JPS61105134A (en) Radio communication system between automobiles on road
JPH11248837A (en) On-board radar
JP2987767B2 (en) Lane marker and body displacement measurement method using it
JP2002352377A (en) Multiplication reflective radio wave type marker system and traffic system
Grabow et al. 5.8 GHz phased array antenna for electronic toll collection in road traffic applications
JP2569576B2 (en) Intermittent drive transmitter
JPH11339187A (en) Lane marker system
Konno et al. A Headway Control System Concept Using Dual-mode Millimeter-wave Radar

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees