JPS61117552A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS61117552A
JPS61117552A JP59237565A JP23756584A JPS61117552A JP S61117552 A JPS61117552 A JP S61117552A JP 59237565 A JP59237565 A JP 59237565A JP 23756584 A JP23756584 A JP 23756584A JP S61117552 A JPS61117552 A JP S61117552A
Authority
JP
Japan
Prior art keywords
photomask
arc
light
mirror
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237565A
Other languages
Japanese (ja)
Inventor
Tatsumi Hiramoto
立躬 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP59237565A priority Critical patent/JPS61117552A/en
Publication of JPS61117552A publication Critical patent/JPS61117552A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve the utilizing efficiency of light, by condensing laser light radiated from a laser oscillator to the incident end face of an optical fiber bundle. CONSTITUTION:Laser light from a laser oscillator 1 are made incident to the incident end face of an optical fiber bundle 3 and radiated from the flat fan-like radiating end 3b of the bundle 3 at a fixed angle on the same plane. The optical beam radiated from the end 3b is repeatedly reflected by a spherical mirror 4, whose reflecting mirror is a pat of such a sphere that the sphere has one point on the axis and its plane perpendicularly intersects the axis, other spheri cal mirrors 5 and 5, and plane mirrors 6, 6,- and becomes an arc-like slit of about 1-4mm in width by the action of the spherical mirrors 4 and 5. The arc-like light passing through a photomask 9 is repeatedly reflected among a trapezoidal mirror 8, concave mirror 9, and convex mirror 10 and forms a photomask pattern on a wafer 11 which is a body to be irradiated. The arc- like beam projects the photomask upon the whole area of a previously designat ed wafer by simultaneously moving the photomask 7 and wafer 11 in parallel with each other.

Description

【発明の詳細な説明】 〔産業上の利用分野、〕 本発明はフォトマスクを介して被照射物上を露光する装
置のうち、スキャン方式によって露光を行なう露、光装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exposure and light device that performs exposure by a scanning method, among devices that expose an object to be irradiated through a photomask.

〔従来の技術〕[Conventional technology]

スキャン方式による露光は種々の分野で利用されている
が、最も広く知られているのは半導体ウェハーを露光す
る場合である。以下理解を早めるため半導体ウェハーを
例にとって説明する。
Exposure using a scanning method is used in various fields, but the most widely known method is when exposing semiconductor wafers. In order to speed up understanding, the explanation will be given below using a semiconductor wafer as an example.

IC製造技術もLSIから超LSIの領域に突入し、リ
ソグラフィ一工程もより高い分解能を要求されるように
なった。光学系を用いた時の分解能−は、次式で与えら
れる。
IC manufacturing technology has also moved from LSI to VLSI, and even the lithography process has come to require higher resolution. The resolution when using an optical system is given by the following equation.

α8λ         (1) ””NA (μm) ここでλは光の波長(μm)であり、NAは第2図に示
す光学レンズ23の焦点Fにおける屈折角を−とした時 NA−出0(2) によシ与えられる数値であり、開口数と言われる。
α8λ (1) ”” NA (μm) Here, λ is the wavelength of light (μm), and NA is the refraction angle at the focal point F of the optical lens 23 shown in FIG. ) is the numerical value given by , and is called the numerical aperture.

(1)式かられかるように、分解能Cを上げるには開口
数NAを大きくするか、波長λを小さくすればよいが、
NAを大きくすれと焦点速度の問題がでてくる。すなわ
ち焦点深度Δけ で与えられるので、NAを大きくすると焦点深度が浅く
なり、ウェハー表面の平面度及び凹凸により焦点外れを
おこすし、NAを極端に大きくした光学レンズは設計そ
のものが困難である。
As can be seen from equation (1), in order to increase the resolution C, it is possible to increase the numerical aperture NA or decrease the wavelength λ.
As the NA increases, the problem of focal speed arises. That is, the depth of focus is given by Δ, so as the NA increases, the depth of focus becomes shallower, causing defocusing due to the flatness and unevenness of the wafer surface, and it is difficult to design an optical lens with an extremely large NA.

一方、例えば超高圧水銀ランプによって波長λを365
nm、 254nm、  185nm等と順次紫外領域
にもっていくと、分解能は波長が短かくなるほど上がる
ことになるが、このような紫外線は通常の光学レンズで
は吸収されてしまい、レンズの材質が限られたものとな
ってしまう。
On the other hand, for example, the wavelength λ can be set to 365 by using an ultra-high pressure mercury lamp.
If we move to the ultraviolet region one after another (nm, 254nm, 185nm, etc.), the resolution will increase as the wavelength becomes shorter, but such ultraviolet rays are absorbed by ordinary optical lenses, and the materials of the lenses are limited. It becomes a thing.

以上のような理由から、波長λを短かくしても吸収等の
問題がない反射光学系を用いたスキャン方式による露光
装置がいくつか開発されている。
For the above reasons, several exposure apparatuses have been developed that use a scanning method using a reflective optical system that does not cause problems such as absorption even when the wavelength λ is shortened.

すなわち反射光学系のみで円弧部分のみが、マスク像を
ウェハー上に1対1で投影されることを利用する方式(
USP 3,74aO15A、0ffner) テ円弧
型の水銀ランプを用いたものと、ショートアーク型の水
銀ランプを用い、反射光学系でこの光を円弧状にもって
いき、前者と同じようにフォトマスクパターンをウェハ
ー上に1対1で投影する方式%式%: 〔発明が解決しようとする問題点〕 しかしながら、前記の従来のスキャン方式による半導体
ウェハーの露光装置においては、円弧状の水銀ランプを
用いる方式の場合、円弧状ランプノアーク長に渉っての
輝度のバラツキやシビアな冷却を必要とする点等に問題
があり、ショートアーク型の水銀ランプを用い、反射光
学系で円弧状に展開させる方式の場合は、光源よりの光
が反射光学系によって捕捉される率が低く、光の利用効
率が極めて悪い等の問題点があった。
In other words, this method utilizes the fact that the mask image is projected one-to-one onto the wafer using only the reflective optical system and only the circular arc portion (
USP 3,74aO15A, 0ffner) One uses an arc-type mercury lamp, and the other uses a short-arc type mercury lamp, and uses a reflective optical system to bring this light in an arc shape, forming a photomask pattern in the same way as the former. [Problem to be solved by the invention] However, in the conventional scanning method semiconductor wafer exposure apparatus described above, a method using an arc-shaped mercury lamp is required. In this case, there are problems such as variations in brightness over the arc length and the need for severe cooling, so a method using a short arc type mercury lamp and expanding it in an arc shape using a reflective optical system is used. In this case, the rate at which the light from the light source is captured by the reflective optical system is low, resulting in problems such as extremely poor light utilization efficiency.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の露光装置は、レーザ発振器と、一端が束ねられ
てその端面が該レーザ発振器よりのレーザ光を受ける位
置に配置され、他端が所定め角度の扇状に展開された複
数本の光ファイバーと、この光ファイバーにより扇状に
放射された光ビームを更に円弧状にフォトマスク上に反
射展開させる複数の球面ミラーとを含み、前記円弧状の
反射光をフォトマスクを介して被照射物に投射させると
ともに、フォトマスクと被照射物とを同時に移動させる
ことにより、フォトマスクパターンを予め指定された領
域に渉って1対1でスキャン方式により投影させること
を特徴とする。
The exposure apparatus of the present invention includes a laser oscillator, and a plurality of optical fibers whose one end is bundled and whose end face is placed at a position to receive laser light from the laser oscillator, and whose other end is spread out in a fan shape at a predetermined angle. , a plurality of spherical mirrors that further reflect and expand the light beam emitted in a fan shape by the optical fiber onto a photomask in an arc shape, and project the arc-shaped reflected light onto an object to be irradiated via the photomask. , by simultaneously moving the photomask and the object to be irradiated, the photomask pattern is projected one-on-one over a pre-specified area by a scanning method.

〔作用〕[Effect]

本発明においては、レーザ発振器より放出されたレーザ
光は細いビームとなり、このビームが光フアイバー束の
入射端面に入射さhる。そして、光、ファイバー束の出
射端が所定角度の扇状をなしているので、レーザ光の全
量を扇状に展開して球面ミラーに投射できる。更に、球
面きラーは入射光を順次円弧状忙反射展開させるので光
源よりの光を効率よく被照射体に円弧状に投射でき、従
って光の利用効率が極めて高く、円弧全長にわたって輝
度のバラツキが非常に少なくなる。
In the present invention, the laser beam emitted from the laser oscillator becomes a narrow beam, and this beam enters the input end face of the optical fiber bundle. Since the light and the output end of the fiber bundle form a fan shape with a predetermined angle, the entire amount of laser light can be expanded into a fan shape and projected onto the spherical mirror. Furthermore, since the spherical mirror sequentially reflects and develops the incident light in an arc shape, the light from the light source can be efficiently projected onto the irradiated object in an arc shape, resulting in extremely high light utilization efficiency and eliminating variations in brightness over the entire length of the arc. There will be very few.

〔実施例〕〔Example〕

本発明を図面を参照しながら詳細に説明する。 The present invention will be explained in detail with reference to the drawings.

本発明の一実施例においては、例えば第1図に示すよう
に、レーザ発振器1よシのレーザ光が、複数本の光ファ
イバーが束ねられた光ファイバー束30入射端面3aに
受光される。レーザ発振器1としては紫外線を放射する
ものであれば各種のものが使用できる。例えば、アルゴ
ンレーザは波長が488nmや515nmの光を、ヘリ
ウム−カド電つムレーザは442nmや525nmの光
を放射するが、これらは波長が長いために1 レーザ発
振器1内にKDPやADP、BNNなどの高調波変換素
子を内蔵させて、波長を1/2にして短波長に変換すれ
ばよい。あるいけプリズムを用いて分光し、短波長のも
のを利用してもよい。
In one embodiment of the present invention, for example, as shown in FIG. 1, a laser beam from a laser oscillator 1 is received by an incident end face 3a of an optical fiber bundle 30 in which a plurality of optical fibers are bundled. As the laser oscillator 1, various types can be used as long as they emit ultraviolet rays. For example, an argon laser emits light with a wavelength of 488 nm or 515 nm, and a helium-cadmium laser emits light with a wavelength of 442 nm or 525 nm. It is sufficient to incorporate a harmonic conversion element to halve the wavelength and convert it to a shorter wavelength. It is also possible to perform spectroscopy using an Arike prism and use short wavelength light.

光フアイバー束3の出射端3bは扁平な扇状をしており
、これより放出される光はある一点より同一平面上で一
定角度で放射される光ビームを形成する。そして出射端
3bより放出された光ビームは、上記の一点を軸上に持
ち、かつ上記の平面がこの軸に垂直に交るような球の一
部を反射鏡とするような球面ミラー4と他の球面ミラー
5,5、及び平面鏡6.6・・・で繰り返し反射させる
うちに、球面ミラー4.5の作用により、約1〜4關幅
の円弧状スリットとなり、フォトマスク7を通過した円
弧状の光は台形ミラー8、凹面ミラー9、凸面ミラー1
0、凹面ミラー9、台形ミラー8と反射がくり返され、
被照射体であるウェハー11上にフォトマスクパターン
が結像されるようになっている。この円弧状ビームはフ
ォトマスク7とウェハー11を同時に平行移動させるこ
とによってフォトマスクパターンを予め指定されたウェ
ハー面上の全領域に渉って1対1でスキャン方式により
投影させることによって露光が行なわれる。
The output end 3b of the optical fiber bundle 3 has a flat fan shape, and the light emitted from it forms a light beam emitted from a certain point on the same plane at a constant angle. The light beam emitted from the output end 3b is reflected by a spherical mirror 4 which has the above point on its axis and whose reflecting mirror is a part of a sphere whose plane intersects perpendicularly to this axis. As it is repeatedly reflected by other spherical mirrors 5, 5 and plane mirror 6.6, it becomes an arc-shaped slit with a width of about 1 to 4 squares due to the action of spherical mirror 4.5, and passes through photomask 7. The arc-shaped light is a trapezoidal mirror 8, a concave mirror 9, and a convex mirror 1.
0, concave mirror 9, trapezoidal mirror 8 and reflection are repeated,
A photomask pattern is imaged onto a wafer 11 which is an object to be irradiated. This arcuate beam is exposed by simultaneously moving the photomask 7 and the wafer 11 in parallel and projecting the photomask pattern one-on-one over the entire area on the wafer surface specified in advance. It will be done.

次に本発明における光の利用効率について言及すれば、
レーザ光は直進性が良く、また反射鏡での反射効率も良
いため光の利用効率がかなり高い。
Next, referring to the light utilization efficiency in the present invention,
Laser light travels in a straight line and has good reflection efficiency on reflecting mirrors, so the light usage efficiency is quite high.

まだ、レーザ発振器は外表面全体から熱が一様に放散さ
れるので、レーザ光が進む光学系の方向に熱が放射され
る率が少なくて有利である。
Still, the laser oscillator is advantageous because heat is uniformly dissipated from the entire outer surface, so that the rate of heat being radiated in the direction of the optical system through which the laser beam travels is small.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明は、レーザ発振器より放出さ
れたレーザ光は元ファイバー束の入射端面に集光される
ので、光源の光はその全量が光フアイバー束に導かれる
。また、光ファイバーによって扇状に展開されて放出さ
れる光は、そのはy全量が複数の球面ミラーと平面鏡で
反射展開され、1〜4閣巾の円弧状のスリットとして集
光されるので、従来の方式に比べて電力消費量がずっと
少くなり、光の利用効率を著しく向上することができる
As explained above, in the present invention, the laser beam emitted from the laser oscillator is focused on the incident end face of the original fiber bundle, so that the entire amount of light from the light source is guided to the optical fiber bundle. In addition, the entire amount of light emitted in a fan shape by an optical fiber is reflected and expanded by multiple spherical mirrors and plane mirrors, and is condensed as an arc-shaped slit with a width of 1 to 4. Compared to other methods, power consumption is much lower, and light usage efficiency can be significantly improved.

なお、本発明は、前述した半導体ウェハーの露光装置に
限定されるものではなく、例えば水晶振動子、弾性波素
子等に対する露光にも適用できるものである。
Note that the present invention is not limited to the above-described exposure apparatus for semiconductor wafers, but can also be applied to, for example, exposure of crystal resonators, acoustic wave elements, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図は光学系NAの
定義の説明図である。 1・・・レーザ発振器 3・・・光フアイバー束6a・
・・入射端面 3b・・・出射端4.5・・・球面ミラ
ー 6・・・平面ミラー7・・・フォトマスク 11・・・被照射体(ウェハー) 手続補正書(自発) 昭和60年10月11日
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram of the definition of the optical system NA. 1... Laser oscillator 3... Optical fiber bundle 6a.
...Incidence end face 3b...Output end 4.5...Spherical mirror 6...Plane mirror 7...Photomask 11...Irradiated object (wafer) Procedural amendment (voluntary) October 1985 11th of the month

Claims (1)

【特許請求の範囲】[Claims]  レーザ発振器と、一端が束ねられてその端面が該レー
ザ発振器よりのレーザ光を受ける位置に配置され、他端
が所定の角度の扇状に展開された複数本の光ファイバー
と、この光ファイバーにより扇状に放射された光ビーム
を更に円弧状にフォトマスク上に反射展開させる複数の
球面ミラーとを含み、前記円弧状の反射光をフォトマス
クを介して被照射物に投射させるとともに、フォトマス
クと被処理物とを同時に移動させることにより、フォト
マスクパターンを予め指定された領域に渉って1対1で
スキャン方式により投影させることを特徴とする露光装
置。
A laser oscillator, a plurality of optical fibers whose one end is bundled and whose end face is placed in a position to receive the laser beam from the laser oscillator, and whose other end is unfolded in a fan shape at a predetermined angle, and the optical fibers emit light in a fan shape. The mirror includes a plurality of spherical mirrors that reflect and expand the reflected light beam onto the photomask in an arc shape, and projects the arc-shaped reflected light onto the object to be irradiated via the photomask. An exposure apparatus characterized in that a photomask pattern is projected one-on-one over a pre-designated area by a scanning method by simultaneously moving a photomask pattern and a photomask pattern.
JP59237565A 1984-11-13 1984-11-13 Exposing device Pending JPS61117552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237565A JPS61117552A (en) 1984-11-13 1984-11-13 Exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237565A JPS61117552A (en) 1984-11-13 1984-11-13 Exposing device

Publications (1)

Publication Number Publication Date
JPS61117552A true JPS61117552A (en) 1986-06-04

Family

ID=17017193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237565A Pending JPS61117552A (en) 1984-11-13 1984-11-13 Exposing device

Country Status (1)

Country Link
JP (1) JPS61117552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106730U (en) * 1990-02-21 1991-11-05
WO2003085457A1 (en) * 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and its application
CN103954436A (en) * 2014-05-09 2014-07-30 安庆师范学院 High-precision spectral radiance calibration device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106730U (en) * 1990-02-21 1991-11-05
JPH085546Y2 (en) * 1990-02-21 1996-02-14 ウシオ電機株式会社 Wafer periphery exposure system
WO2003085457A1 (en) * 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and its application
US6894712B2 (en) 2002-04-10 2005-05-17 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7015488B2 (en) 2002-04-10 2006-03-21 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7048528B2 (en) 2002-04-10 2006-05-23 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7077972B2 (en) 2002-04-10 2006-07-18 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7079169B2 (en) 2002-04-10 2006-07-18 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
CN103954436A (en) * 2014-05-09 2014-07-30 安庆师范学院 High-precision spectral radiance calibration device

Similar Documents

Publication Publication Date Title
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
JP4329266B2 (en) Illumination apparatus, exposure method and apparatus, and device manufacturing method
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
US5123036A (en) X-ray exposure apparatus
JPH07283133A (en) Irradiation light source and irradiation method for microlithography
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP3278277B2 (en) Projection exposure apparatus and device manufacturing method using the same
JPH06181153A (en) Optical drawing apparatus
JPH0837139A (en) Exposure illuminating system
US4521087A (en) Optical system with diffuser for transformation of a collimated beam into a self-luminous arc with required curvature and numerical aperture
JP2003045784A (en) Illumination system, aligner, and device-manufacturing method
US5359388A (en) Microlithographic projection system
JP2002198309A (en) Illumination system with less heat load
US5198837A (en) Laser beam harmonics generator and light exposing device
JP2000021712A (en) Illuminating optical system and aligner provided with the system
JP3067491B2 (en) Projection exposure equipment
JPS61117552A (en) Exposing device
JP3452057B2 (en) Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same
JPH0666246B2 (en) Illumination optics
JPH1197340A (en) Exposing optical system, optical processing device, exposing device, and photocoupler
JPH09159964A (en) Lighting device for semiconductor exposure device
JPS61117554A (en) Exposing device
JPS61117550A (en) Exposing device
JP3521506B2 (en) Illumination device and exposure device
KR101753075B1 (en) A scan-type exposure apparatus