JPS61117451A - Analyzing method of sample component by high-speed liquid chromatography using absorbance detector - Google Patents

Analyzing method of sample component by high-speed liquid chromatography using absorbance detector

Info

Publication number
JPS61117451A
JPS61117451A JP23916984A JP23916984A JPS61117451A JP S61117451 A JPS61117451 A JP S61117451A JP 23916984 A JP23916984 A JP 23916984A JP 23916984 A JP23916984 A JP 23916984A JP S61117451 A JPS61117451 A JP S61117451A
Authority
JP
Japan
Prior art keywords
sample
absorbance
eluent
peak
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23916984A
Other languages
Japanese (ja)
Inventor
Kazuichi Hayakawa
和一 早川
Genichi Miyazaki
宮崎 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO BUNKOU KIKI KK
Original Assignee
OYO BUNKOU KIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO BUNKOU KIKI KK filed Critical OYO BUNKOU KIKI KK
Priority to JP23916984A priority Critical patent/JPS61117451A/en
Publication of JPS61117451A publication Critical patent/JPS61117451A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To identify easily a sample by detecting the absorbance with the light of a wavelength at which an eluate indicates the absorbance of a specified level as a detection wavelength and obtaining a chromatogram indicating the difference of the absorbance between the eluate and sample component. CONSTITUTION:An eluate tank 1, a pipe 2, a liquid feed pump 3, a sample injector 4, a column 5, an absorbance detector 6, a waste liquid tank 7 and a recorder 8 are provided. The eluate lifted from the tank 1 by the pump 3 is discharged through the pipe 2 to the tank 7. The sample is injected from the injector 4 into the eluate during the course of said discharge and is subjected to sepn. and elution in the elution time intrinsic to components by the interaction in the stage of passing through the column 5 and passes through the detector 6. The detector 6 detects the change of the absorbance of the eluate with time and applies the same to the recorder 8 so that the change is recorded by the recorder 8. The simultaneous analysis of the sample is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸光度検出器を使用した高速液体クロマトグ
ラフィーによる試料成分の分析方法に関し、特に検出波
長における溶離液の吸光度と試料成分の吸光度との差を
示すクロマトグラムを得るようにした吸光度検出器を使
用した高速液体クロマトグラフィーによる試料成分の分
析方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for analyzing sample components by high-performance liquid chromatography using an absorbance detector, and in particular, a method for analyzing sample components by high-performance liquid chromatography using an absorbance detector. The present invention relates to a method for analyzing sample components by high-performance liquid chromatography using an absorbance detector designed to obtain a chromatogram that shows the difference in chromatograms.

〔従来の技術〕[Conventional technology]

サンプル中に含有される成分の定量及び定性を行うため
の方法として吸光度検出器を使用した高速液体クロマト
グラフィーは現在不可欠のものとなっている。゛ 周知の通り、吸光度検出器を使用した高速液体クロマト
グラフィーでは試料を注入した溶離液をカラム内に通過
させた時、カラム内における相互作用の差により、各成
分が成分固有の溶出時間で溶出され、このカラムからの
溶出液を吸光度検出器に与えると、時間を横軸とし溶出
液の吸光度を変数とするクロマトグラムが得られ、この
クロマトグラムを試料中に含まれる成分の定量及び定性
を行う為の資料とすることができる。
High performance liquid chromatography using an absorbance detector is currently indispensable as a method for quantitatively and qualitatively determining components contained in a sample.゛As is well known, in high-performance liquid chromatography using an absorbance detector, when the sample is injected and the eluent is passed through the column, each component elutes at its own elution time due to differences in interactions within the column. When the eluate from this column is fed to an absorbance detector, a chromatogram is obtained with time as the horizontal axis and the absorbance of the eluate as a variable.This chromatogram can be used to quantify and qualitatively analyze the components contained in the sample. It can be used as a material for carrying out.

従来の吸光度検出器を使用した高速液体りaマトゲラフ
イーでは、試料中に含有されることが予想される成分に
つき吸収を示す波長を検出波長とするとともに、この検
出波長に対して吸収を示さない溶離液を使用し、ベース
ラインの上昇としてクロマトグラムを得るか、或いは、
試料中の予想される成分につき吸収を示さない波長を検
出波長とするとともに、この検出波長に対して吸収を示
す溶離液を使用し、ベースラインの低下としてクロマト
グラムを得ている。
In high-speed liquid atomography using a conventional absorbance detector, the detection wavelength is the wavelength at which a component expected to be contained in the sample exhibits absorption, and elution that does not exhibit absorption at this detection wavelength is used. Obtain a chromatogram as a rise in baseline, or
A wavelength at which the expected component in the sample does not exhibit absorption is used as the detection wavelength, and an eluent that exhibits absorption at this detection wavelength is used to obtain a chromatogram as a decrease in the baseline.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

この為、上記従来の吸光度検出器を使用した高速液体ク
ロマトグラフィーでは、検出波長につき吸収を示す成分
と吸収を示さない成分を含む試料の同時分析が困難であ
るという問題が指摘されるとともに、定性のための尺度
としては第一義的には予想される成分の溶出時間が与え
られるのみであるので、その同定も困難を伴うという問
題も指摘されている。
For this reason, in high-performance liquid chromatography using the conventional absorbance detector described above, it has been pointed out that it is difficult to simultaneously analyze samples containing components that exhibit absorption and components that do not exhibit absorption at the detection wavelength, and it is also difficult to analyze qualitatively. It has also been pointed out that since the primary measure for this is only the expected elution time of the component, it is difficult to identify it.

〔問題点を解決するための手段及びその作用〕本発明は
このような問題点を解決するためになされたものであり
、検出波長につき吸収を示す成分と吸収を示さないか或
いは吸収が小さい成分の同時分析を可能ならしめるとと
もに、予想される成分毎の溶出時間に加え成分毎の検出
波長に於けるi 1ilI液の吸光度と試料成分の吸光
度の差を定性のための尺度として与えることにより、同
定を容易にすることを目的とするものである。
[Means for Solving the Problems and Their Effects] The present invention was made to solve these problems, and consists of components that exhibit absorption at the detection wavelength and components that do not exhibit absorption or have small absorption. In addition to the expected elution time of each component, by providing the difference between the absorbance of the i1ilI solution and the absorbance of the sample component at the detection wavelength of each component as a qualitative measure. The purpose is to facilitate identification.

本発明に係る吸光度検出器を使用した高速液体クロマト
グラフィーによる試料成分の分析方法は、溶離液に関し
て適当な吸光度を示す波長を検出波長として使用すると
、溶離液よりも吸光度の高いサンプルと溶離液よりも吸
光度の低いサンプルとでは極性の異なるピークが得られ
るという事実に基づいてなされたものであり、分離条件
を満足する溶離液に対して一定の吸収を示す波長を検出
波長として選択し、検出波長の光に対する溶離液の吸光
度と試料成分の吸光度の差を示すクロマトグラムを得、
得られたクロマトグラムのピーク時間とピーク極性とピ
ーク量とによって成分の定性・定量を行うものである。
In the method for analyzing sample components by high-performance liquid chromatography using the absorbance detector according to the present invention, when a wavelength that exhibits an appropriate absorbance with respect to the eluent is used as the detection wavelength, a sample having a higher absorbance than the eluent and the eluent are detected. This was done based on the fact that samples with low absorbance yield peaks with different polarities, and the detection wavelength is selected as the detection wavelength, which exhibits a constant absorption for the eluent that satisfies the separation conditions. Obtain a chromatogram showing the difference between the absorbance of the eluent and the absorbance of the sample components with respect to the light of
The components are qualitatively and quantitatively determined based on the peak time, peak polarity, and peak amount of the obtained chromatogram.

例えば第1図において、横軸を検出波長・縦軸を吸光度
として、溶離液の吸光分光特性を実線Eで示し、試料中
の第1サンプルの吸光分光特性を点線S1で示し、試料
中の第2サンプルの吸光分光特性を一点鎖線S2で示し
、試料中の第3サンプルの吸光分光特性を二点鎖線S3
で示した場合、従来の分析方法では溶離液に対して吸収
のない(吸収の小さい)波長λ1を検出波長とした吸光
度検出を行っている。
For example, in FIG. 1, the horizontal axis is the detection wavelength and the vertical axis is the absorbance. The absorption spectral characteristics of the second sample are shown by the dashed-dotted line S2, and the absorption spectral characteristics of the third sample among the samples are shown by the dashed-double line S3.
In the case shown by , in the conventional analysis method, absorbance detection is performed using the wavelength λ1, which has no absorption (low absorption) for the eluent, as the detection wavelength.

従って、第1サンプルの溶出時間をtl・第2サンプル
の溶出時間をt2・第3サンプルの溶出時間をt3とし
た場合、例えば、第2図に示すようなりロマトダラムが
得られる。
Therefore, if the elution time of the first sample is tl, the elution time of the second sample is t2, and the elution time of the third sample is t3, a romatodalum as shown in FIG. 2 is obtained, for example.

そして検出波長がλ1の場合、第1サンプル及び第2サ
ンプルは吸収を示すので、クロマトグラム上において時
間t1及び時間t2にはピークが出現するが、第3サン
プルは吸収を示さないので、時間t3においては第3サ
ンプルが溶出されているのにもかかわらずクロマトグラ
ム上はノイズ程度のピークしか出現せず、第3サンプル
に関しては検出自体が困難である。
When the detection wavelength is λ1, the first sample and the second sample exhibit absorption, so peaks appear on the chromatogram at times t1 and t2, but the third sample does not exhibit absorption, so at time t3 Although the third sample has been eluted, only noise peaks appear on the chromatogram, and the detection of the third sample is difficult.

そして、この様に検出波長λ1に対して吸収を示さない
第3サンプルの検出をするためには第3サンプルが吸収
を示す波長に検出波長を変更する必要がある。そしてこ
の場合には変更後の検出波長に付き吸収を示さない溶離
液を選択する必要があり、しかもその溶離液はカラムや
試料成分との関係で分離条件を満足するものでなくては
ならないという絶対的な条件が課せられているので、溶
離液やカラムの選択に大きな困難を伴うことになる。
In order to detect the third sample that does not exhibit absorption at the detection wavelength λ1 in this manner, it is necessary to change the detection wavelength to a wavelength at which the third sample exhibits absorption. In this case, it is necessary to select an eluent that does not exhibit absorption at the changed detection wavelength, and the eluent must also satisfy the separation conditions in relation to the column and sample components. Since absolute conditions are imposed, the selection of eluent and column becomes very difficult.

又、第1サンプル・第2サンプルに関しても、試料中に
含有されるかもしれない未知の成分の存在を考慮すると
、溶出時間tl −t2のみを定性のための判断基準と
して同定することは少なからぬ危険を伴う。
Also, regarding the first and second samples, considering the presence of unknown components that may be contained in the sample, it is not uncommon to identify only the elution time tl - t2 as a criterion for qualitative judgment. It's dangerous.

しかしながら、本発明では上記の様に一定の吸収を示す
波長を検出波長として選択し、得られたクロマトグラム
のピーク時間とピーク極性によって分析を行うものであ
るので、このように検出波長につき吸収を示す成分と吸
収を示さない成分を同時検出できるとともに、同定の確
実性を高めることができる。
However, in the present invention, as described above, a wavelength that exhibits a certain absorption is selected as the detection wavelength, and analysis is performed based on the peak time and peak polarity of the obtained chromatogram. It is possible to simultaneously detect components that exhibit absorption and components that do not exhibit absorption, and to increase the certainty of identification.

例えば、第1図に示す様な吸光分光特性を示すサンプル
の分析を行う場合、本発明では溶離液に付き吸収を示す
波長λ2や波長λ3を検出波長として使用する。
For example, when analyzing a sample exhibiting absorption spectroscopic characteristics as shown in FIG. 1, the present invention uses wavelengths λ2 and λ3 that exhibit absorption in the eluent as detection wavelengths.

検出波長を/+2とし、第1サンプルの溶出時間ヲtl
・第2サンプルの溶出時間をt2・第3サンプルの溶出
時間をL3とした場合、溶離液は検出波長λ2に対して
一定の吸収を示するので、例えば、第3図に示す様に、
ベースラインが一定のレベルを持ち、各サンプルの溶出
時間において、当該サンプルと溶離液との吸光度の差に
対応して極性が決定されるピークを持つクロマトグラム
が得られる。
The detection wavelength is /+2, and the elution time of the first sample is
- If the elution time of the second sample is t2 and the elution time of the third sample is L3, the eluent exhibits a constant absorption at the detection wavelength λ2, so for example, as shown in Figure 3,
A chromatogram is obtained in which the baseline has a constant level and the peak polarity is determined according to the difference in absorbance between the sample and the eluent at the elution time of each sample.

又、検出波長をλ3とし、第1サンプルの溶出時間をt
l・第2サンプルの溶出時間をt2・第3サンプルの溶
出時間をt3とした場合にも、溶離液は検出波長λ3に
対して一定の吸収を示すので、例えば、第4図に示す様
に、ベースラインが一定のレベルを持ち、各サンプルの
溶出時間において、当該サンプルと溶離液との吸光度の
差に対応して極性が決定されるピークを持つクロマトグ
ラムが得られる。
Also, the detection wavelength is λ3, and the elution time of the first sample is t.
Even if the elution time of the second sample is t2 and the elution time of the third sample is t3, the eluent exhibits a certain absorption at the detection wavelength λ3, so for example, as shown in FIG. , a chromatogram is obtained in which the baseline has a constant level and the polarity of the peak is determined according to the difference in absorbance between the sample and the eluent at the elution time of each sample.

従って、検出波長に対して吸収を示す成分と検出波長に
対して吸収を示さない成分が混在する試料でも通常は確
実に検出することができるとともに、溶出時間の他にピ
ークの極性を定性のための新たな判断基準とすることが
できるので、同定の確実性が向上し、特に検出波長を2
以上使用選択して分析した場合はその同定の確実性は極
めて高いものとなろう。
Therefore, even samples containing a mixture of components that absorb at the detection wavelength and components that do not absorb at the detection wavelength can usually be detected reliably, and in addition to the elution time, the polarity of the peak can also be determined for qualitative analysis. This improves the certainty of identification, especially when the detection wavelength is set to 2.
If the above methods are used and analyzed, the certainty of identification will be extremely high.

要約すれば、本発明にかかる吸光度検出器を使用した高
速液体クロマトグラフィーによる試料成分の分析方法は
、含有が予想される成分の分離条件を満足するとともに
、予め吸光分光特性が把握されている溶離液中に試料を
注入してカラム内を通過せしめ、該カラムから溶出され
た溶出液を吸光度検出器に与え、該吸光度検出器におい
て前記溶離液が一定のレベルの吸収を示す波長の光を検
出波長として吸光度を検出し、前記溶離液の吸光度と試
料成分の吸光度の差を示すクロマトグラムを得るように
なされている。
In summary, the method for analyzing sample components by high performance liquid chromatography using the absorbance detector according to the present invention satisfies the separation conditions for components expected to be contained, and also uses an eluent whose absorbance spectroscopic characteristics are known in advance. A sample is injected into the solution and passed through the column, the eluate eluted from the column is given to an absorbance detector, and the absorbance detector detects light at a wavelength at which the eluent exhibits a certain level of absorption. The absorbance is detected as a wavelength to obtain a chromatogram showing the difference between the absorbance of the eluent and the absorbance of the sample component.

〔作用〕[Effect]

即ち、本発明によれば溶離液が一定の吸収を示す波長を
検出波長とするので、検出波長に対する吸光度が溶離液
の吸光度と異なる成分は吸光の有無にかかわりなく、正
又は負のピークとして検出することができ、又、試料成
分の吸光度が溶離液の吸光度と等しい波長を検出波長と
すると、試料成分のピークのみを除去することができる
。そして、このピークの出現時間と極性により定性をピ
ーク量により定量をより正確に行なうことができる。
That is, according to the present invention, the detection wavelength is the wavelength at which the eluent exhibits a certain absorption, so components whose absorbance at the detection wavelength is different from the absorbance of the eluent are detected as positive or negative peaks, regardless of the presence or absence of absorption. Furthermore, if the detection wavelength is set to a wavelength at which the absorbance of the sample component is equal to the absorbance of the eluent, only the peak of the sample component can be removed. Further, qualitative determination can be performed based on the appearance time and polarity of this peak, and quantitative determination can be performed more accurately based on the peak amount.

〔実施例〕〔Example〕

以下図面を参照して本発明の1実施例を詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

先ず、第5図はクロマトグラフの原理図を示しており、
1は溶離液槽、2はパイプ、3は送液ポンプ、4はサン
プル注入器、5はカラム、6は吸光度検出器、7は廃液
槽、8はレコーダを各々示しており、送液ポンプ3によ
って溶離液槽1からくみ上げられた溶離液はパイプ2f
is通って廃液槽7に排出される。そしてその過程で溶
離液中にはサンプル注入器4から試料を注入されるとと
もに、カラム5内を通過する時の相互作用により成分固
有の溶出時間で分離溶出されて、吸光度検出器6を通過
する。そしてこの吸光度検出器6は溶出液の経時的な吸
光度の変化を検出してレコーダ8に与え、レコーダ8で
これを記録する。
First, Figure 5 shows the principle diagram of a chromatograph.
1 is an eluent tank, 2 is a pipe, 3 is a liquid pump, 4 is a sample injector, 5 is a column, 6 is an absorbance detector, 7 is a waste liquid tank, and 8 is a recorder. The eluent pumped up from the eluent tank 1 by the pipe 2f
is and is discharged to the waste liquid tank 7. During this process, a sample is injected into the eluent from the sample injector 4, and due to interaction as it passes through the column 5, it is separated and eluted at a component-specific elution time, and then passes through the absorbance detector 6. . The absorbance detector 6 detects changes in the absorbance of the eluate over time and supplies the detected changes to the recorder 8, which records the change.

尚、本実施例では溶離液に適度の吸収をされる波長を検
出波長として使用するために、吸光度検出器6としては
市販の波長可変式紫外吸光度検出を使用した。
In this example, a commercially available wavelength variable ultraviolet absorbance detector was used as the absorbance detector 6 in order to use a wavelength that is moderately absorbed by the eluent as the detection wavelength.

又、カラム5内にはZipax  SAXを充填し、i
 fist ?(lとしてはフタル酸二ナトリウムを主
に用い、毎分1〜2ml流した。又、カラム5内温度は
摂氏20”乃至40”に調整し、試料溶液としては市販
のナトリウム塩を使用し、1o乃至100μmを注入し
た。
In addition, column 5 was filled with Zipax SAX, and i
Fist? (Disodium phthalate was mainly used as l, and the flow rate was 1 to 2 ml per minute. Also, the temperature inside the column 5 was adjusted to 20" to 40" Celsius, and a commercially available sodium salt was used as the sample solution. 1o to 100 μm was implanted.

先ず溶離液として5X10−4Mのフタル酸二ナト、 
リウム(溶離液イオンはphthalate2−)を使
用するとともに、試料溶液として各々1×10−4Mの
硝酸ナトリウム(試料イオンはN03−)・硫酸ナトリ
ウム(試料イオンは5Oa2−)  ・沃化ナトリウム
(試料イオンはI−)を使用した実験例を示す。
First, 5X10-4M di-phthalate as an eluent,
In addition to using sodium nitrate (sample ion is N03-), sodium sulfate (sample ion is 5Oa2-), sodium iodide (sample ion is shows an experimental example using I-).

第6図(A)・第6図(B)・第6図(C)は上記の溶
離液及び試料溶液を用いた時の分離カラム溶出液の吸光
度を、波長239nm・245nm・254nmの紫外
線を使用して、経時的に追跡して得られたクロマトグラ
ムを各々示している。
Figure 6 (A), Figure 6 (B), and Figure 6 (C) show the absorbance of the separation column eluate when using the above eluent and sample solution, and the absorbance of the eluate from the separation column when exposed to ultraviolet rays at wavelengths of 239 nm, 245 nm, and 254 nm. The graphs show chromatograms obtained by using and tracking over time.

第6図(A)・第6図(B)・第6図(C)のクロマト
グラムにおいて顕れるピークI・ピーク■・ピーク■は
検出波長のいかんにかかわらず、各図とも同一の溶出時
間で出現しており、各図ともピーク■・ピーク■・ピー
ク■は同一の成分が溶出されたものと思われる。
Peak I, peak ■, and peak ■ that appear in the chromatograms of Figure 6 (A), Figure 6 (B), and Figure 6 (C) are the same elution time in each figure, regardless of the detection wavelength. It appears that the same component was eluted in peaks ■, peak ■, and peak ■ in each figure.

そして、予め硝酸イオン(NO3−)  ・硫酸イオン
(SO42−)  ・沃素イオン(I−)の純品につい
て調べた溶出時間から判断して、ピーク■の出現時間は
硝酸イオン(NO3−)の溶出時間に一致し、ピークH
の出現時間は硫酸イオン(S。
Judging from the elution time previously investigated for pure products of nitrate ion (NO3-), sulfate ion (SO42-), and iodide ion (I-), the appearance time of peak ■ is the elution time of nitrate ion (NO3-). coincides with the peak H
The appearance time of sulfate ion (S.

42−)の溶出時間に一致し、ピーク■の出現時間は沃
素イオン(I−)の溶出時間に一致するので、ピーク■
は硝酸イオン(NO3−)を、ピーク■は硫酸イオン(
S042″′)を、ピーク■は沃素イオン(I−)を各
々示すものと推定される。
42-), and the appearance time of peak ■ corresponds to the elution time of iodide ion (I-), so peak ■
indicates nitrate ion (NO3-), and peak ■ indicates sulfate ion (
It is estimated that the peak ① indicates the iodide ion (I-).

又、第7図は溶離液であるフタル酸二ナトリウム(溶離
液イオンはpnthalate2−)と、試料溶液であ
る硝酸ナトリウム(試料イオンはN03−)・硫酸ナト
リウム(試料イオンは5042−)・沃化ナトリウム(
試料イオンはI−)の吸光分光特性を示している。Aの
カーブは溶離液イオン(p h t h a l a 
t e2−5 XIO−5M)の吸光分光特性を、1の
カーブは硝酸イオン(NO3−IXIO−’M)の吸光
分光特性を、11のカーブ(実際には紫外線吸収を全く
示さない)は硫酸イオン(S 042−5 XIO−5
M)の吸光分光特性を、iiiのカーブは沃第イオン(
1−I XIO−4M)の吸光分光特性を各々示してい
る。
Figure 7 shows the eluent disodium phthalate (eluent ion is pnthalate2-) and the sample solution sodium nitrate (sample ion is N03-), sodium sulfate (sample ion is 5042-), and iodide. sodium(
The sample ion shows the absorption spectroscopic characteristics of I-). The curve A shows the eluent ion (ph th a la
t e2-5 Ion (S 042-5 XIO-5
The absorption spectroscopic characteristics of M) are expressed by the curve iii of iodide ion (
1-I XIO-4M) are shown.

先ず、第6図(A)の検出波長を239nmとした場合
のクロマトグラムではI及びHのピークは負で、■のピ
ークは正となっている。そ゛してこのことから検出波長
が239nmの場合は硝酸イオンと推定されるIのピー
クの成分と硫酸イオンと推定されるnのピーク成分は溶
離液よりも吸光度が低く、沃素イオンと推定される■の
ピークの成分は溶離液よりも吸光度が高いことが理解さ
れる。
First, in the chromatogram shown in FIG. 6(A) when the detection wavelength is 239 nm, the peaks of I and H are negative, and the peak of ■ is positive. Therefore, when the detection wavelength is 239 nm, the I peak component, which is presumed to be nitrate ion, and the n peak component, which is presumed to be sulfate ion, have lower absorbance than the eluent, and are presumed to be iodide ions. It is understood that the component of the peak (2) has higher absorbance than the eluent.

そこで、第7図の吸光分光特性を見ると、波長239n
mの紫外線に対する溶離液及び各成分の吸光度は高いも
のから並べると、沃素イオン(カーブiii )−溶固
【液(カーブA)、−硝酸イオン(カーブi)の順に並
び、硫酸イオンは全く吸収を示さない。そしてこのこと
は第6図(A)に示す検出波長を239nmとして得ら
れたクロマトグラムと一致し、ピーク■は硝酸イオン(
NO3−)を、ピーク■は硫酸イオン(3042−)を
、ピーク■は沃素イオン(I−)を示すものとの推定と
一致。
Therefore, looking at the absorption spectral characteristics in Figure 7, the wavelength is 239n.
The absorbance of the eluent and each component for ultraviolet light of m is arranged in descending order of iodide ion (curve iii) - solution (curve A), - nitrate ion (curve i), and sulfate ion is not absorbed at all. does not indicate. This is consistent with the chromatogram shown in Figure 6 (A) obtained with the detection wavelength of 239 nm, and the peak ■ is nitrate ion (
It is consistent with the estimation that the peak ① indicates sulfate ion (3042-), and the peak ▪ indicates iodine ion (I-).

する。do.

次ぎに、第6図(B)の検出波長を245nmとした場
合のクロマトグラムではI及び■のピークは負で、■の
ピークは現れない。−そしてこのことから検出波長を2
4..5nmとした場合は、硝酸イオンと准定されるI
のピークの成分と硫酸イオンと准定されるHのピーク成
分は溶離液よりも吸光度が低(、沃素イオンと准定され
る■のピークの成分は溶な液と吸光度が等しいことが理
解される。
Next, in the chromatogram shown in FIG. 6(B) when the detection wavelength is 245 nm, the peaks of I and ■ are negative, and the peak of ■ does not appear. -And from this, the detection wavelength is set to 2
4. .. When the wavelength is 5 nm, I is assumed to be a nitrate ion.
It is understood that the peak component (2) and the H peak component (assumed to be sulfate ions) have a lower absorbance than the eluent (and the component (2), which is identified as iodide ion, has an absorbance equal to that of the soluble liquid).

そこで、第7図の吸光分光特性を見ると、波長245n
mの紫外線に対する溶離液及び各成分の吸光度を見ると
、沃素イオン(カーブiii )と溶離液(カーブA)
の吸光度は等しく、硝酸イオン(カーブi)がこれに続
き、硫酸イオンは全く吸収を示さない。そしてこのこと
は第6図(B)に示す検出波長を245r+mとして得
られたクロマトグラムと一致し、ピーク■は硝酸イオン
(NO3−)を、ピーク■は硫酸イオン(5042−)
を、ピーク■〔第6図(B)ではピーク■ば現実には出
現しない。〕は沃素イオン(1−)を示すものとの推定
と一致する。
Therefore, looking at the absorption spectral characteristics in Figure 7, we see that the wavelength is 245n.
Looking at the absorbance of the eluent and each component against ultraviolet rays of m, the iodide ion (curve iii) and the eluent (curve A)
The absorbance of is equal, followed by nitrate ion (curve i), and sulfate ion shows no absorption at all. This is consistent with the chromatogram obtained with the detection wavelength of 245r+m shown in Figure 6(B), where the peak ■ represents nitrate ions (NO3-) and the peak ■ represents sulfate ions (5042-).
, the peak ■ [in Fig. 6 (B), the peak ■ does not appear in reality. ] is consistent with the assumption that it represents an iodide ion (1-).

更に、第6図(C)の検出波長を254nmとした場合
のクロマトグラムでは■及び■及び■Iのピークは全て
負になる。そしてこのことから検出波長を254nmと
した場合は、硝酸イオンと推定されるIのピークの成分
と硫酸イオンと推定されるHのピーク成分と沃素イオン
と推定される■のピークの成分は全て溶離液よりも吸光
度が低いことが理解される。
Furthermore, in the chromatogram shown in FIG. 6(C) when the detection wavelength is 254 nm, the peaks of ■, ■, and ■I are all negative. From this, when the detection wavelength is set to 254 nm, the components of the I peak, which is estimated to be nitrate ions, the H peak component, which is estimated to be sulfate ions, and the component of the ■ peak, which is estimated to be iodide ions, are all eluted. It is understood that the absorbance is lower than that of the liquid.

そこで、第7図の吸光分光特性を見ると、波長254n
mの紫外線に対する溶離液及び各成分の吸光度を見ると
、溶離液(カーブA)のみが吸光を示し、各試料成分は
吸光をしめさない。そしてこのことは第6図(B)に示
す検出波長を254nmとして得られたクロマトグラム
と一致し、ピークIは硝酸イオン(NO3−)を、ピー
ク■は硫酸イオン(S042−)を、ピーク■は沃素イ
オン(1−)を示すものとの推定と一致する。
Therefore, looking at the absorption spectral characteristics in Figure 7, we see that the wavelength is 254n.
Looking at the absorbance of the eluent and each component against ultraviolet rays of m, only the eluent (curve A) shows light absorption, and each sample component does not show light absorption. This is consistent with the chromatogram obtained with the detection wavelength of 254 nm shown in FIG. is consistent with the assumption that it represents an iodide ion (1-).

このように3種類の異なる波長について得られたクロマ
トグラムを吸光分光特性と比較検討した結果、前記の推
定を裏付けることができるので、ピーク■は硝酸イオン
(NOx−)を、ピーク■は硫酸イオン(504’−)
を、ピーク■は沃素イオン(I−)を各々示すものと定
性した場合、その精度は溶出時間のみによる定性よりも
はるかに信頼度の高いものとなる。
As a result of comparing the chromatograms obtained at three different wavelengths with the absorption spectroscopic characteristics, we can confirm the above assumption, and the peak ■ represents nitrate ion (NOx-), and the peak ■ represents sulfate ion. (504'-)
When qualitatively determining that the peaks 1 and 2 represent iodide ions (I-), the accuracy is much more reliable than the qualitative determination based only on the elution time.

次ぎに、上記と同様の条件で定量性を見ると、溶出ピー
クの面積はその極性の正・負に無関係に試料イオンと溶
離液イオンの吸光度の差と試料イオンの注入量の積に比
例し、従って、溶出ピーク幅が一定の条件ではピーク高
さ法と面積法のいづれに寄っても検量線は直線になる。
Next, looking at quantitative performance under the same conditions as above, the area of the elution peak is proportional to the product of the difference in absorbance between sample ions and eluent ions and the injection amount of sample ions, regardless of whether the polarity is positive or negative. Therefore, under conditions where the elution peak width is constant, the calibration curve will be a straight line regardless of whether the peak height method or the area method is used.

又、ピーク■(沃素イオン)に見られるピークの消去は
、定性及び定量を妨げる成分ピークを消去して、目的試
料成分の定性及び定量を容易にするためにも役立つ。
Furthermore, erasing the peak seen in peak (i) (iodine ion) is also useful for erasing component peaks that impede qualitative and quantitative determination, thereby facilitating qualitative and quantitative determination of target sample components.

尚、第8図は溶離条件を一定としたまま、検出波長を2
39nmとして試料濃度を変化させて得られた検量線を
示し、硝酸イオン・硫酸イオン・沃素イオンともリニア
な特性を得ることができた。
In addition, Fig. 8 shows that the detection wavelength was changed to 2 while keeping the elution conditions constant.
The calibration curve obtained by changing the sample concentration at 39 nm is shown, and it was possible to obtain linear characteristics for nitrate ion, sulfate ion, and iodine ion.

尚、上記ではイオン交換クロマトグラフィーに本発明を
適用した実施例を示したが、イオン交換クロマトグラフ
ィー以外のクロマトグラフィーに本発明を通用すること
が可能なことはいうまでもなく、又、吸光度検出器で使
用する全ての波長域において吸収を示さない溶離液を使
用する場合は/8離条件を乱さない範囲で検出波長に対
して吸収を示すような試薬を若干量混入すれば、本方法
を通用することができる。
Although the above example shows an example in which the present invention is applied to ion exchange chromatography, it goes without saying that the present invention can be applied to chromatography other than ion exchange chromatography. When using an eluent that does not exhibit absorption in all wavelength ranges used in the instrument, this method can be used by mixing a small amount of a reagent that exhibits absorption at the detection wavelength within a range that does not disturb the separation conditions. It can be passed.

C効果〕 以上説明した様に、本発明によれば/g離液と試料中の
成分の吸光度の差を示すクロマトグラムを(qでいるの
で、溶離液の検出波長に関して吸光特性さえ分かってい
れば、検出波長に関して吸収を示す成分と吸収を示さな
いか吸収が小さい成分が混在する試料を同時分析をする
ことができる。
C effect] As explained above, according to the present invention, the chromatogram showing the difference in absorbance between /g syneresis and the components in the sample is expressed as (q). For example, it is possible to simultaneously analyze a sample containing a mixture of components that exhibit absorption at the detection wavelength and components that exhibit no absorption or have low absorption.

又、本発明の場合、溶離液の選択に際しても従来の様に
、試料成分の検出6JLUに対する吸光度を各店した上
で、検出波長に対して吸収を示さない溶離液を選択する
必要もなく、溶離液に関しては溶離条件のみを検討して
選択すれば良いので、溶離液の選択が極めて容易になる
In addition, in the case of the present invention, when selecting an eluent, there is no need to select an eluent that does not exhibit absorption at the detection wavelength after determining the absorbance of each sample component against the detection 6JLU as in the conventional method. As for the eluent, it is only necessary to consider and select the elution conditions, so selection of the eluent becomes extremely easy.

更に、成分の定性のための基準として溶出時間の他にピ
ーク極性の正・負が新たに加わるので、定性がより容易
になる。
Furthermore, since the positive/negative peak polarity is newly added in addition to the elution time as a criterion for the qualitative determination of the components, the qualitative determination becomes easier.

しかも、妨害ピークを容易に消去できるので、定性及び
定量がより容易になる。
In addition, interfering peaks can be easily eliminated, making qualitative and quantitative determination easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は仮想的な試料及び溶離液の吸光分光特性を示す
図、第2図は第1図に示す吸光分光特性を持つ試料に関
して従来の方法で炸裂したクロマトグラム、第3図及び
第4図は第1図に示す吸光分光特性を持つ試料に関して
本発明の方法で作製したクロマトグラム、第5図はクロ
マトグラフィー用の装置システムの概略図、第6図(A
>  ・第6図(B)  ・第6図(C)は本発明の実
験例によって得られたクロマトグラム、第7図は本発明
の実験例として使用した溶離液及び試料の吸光分光特性
を示す図、第8図は沃素イオン・硝酸イオン・硫酸イオ
ンの検量線を示す図。 ■・・・溶離液槽     2・・・パイプ3・・・送
液ポンプ    4・・・サンプル注入器5・・・カラ
ム  ゛   6・・・吸光度検出器7・・・廃液槽 
     8・・・レコーダ特許出願人 応用分光機器
株式会社 代 理 人 弁理士  村上光用 第1図
Figure 1 is a diagram showing the absorption spectroscopic characteristics of a hypothetical sample and eluent, Figure 2 is a chromatogram exploded using the conventional method for a sample having the absorption spectroscopic characteristics shown in Figure 1, and Figures 3 and 4. The figure shows a chromatogram prepared by the method of the present invention for a sample having the absorption spectroscopic characteristics shown in Figure 1, Figure 5 is a schematic diagram of the chromatography equipment system, and Figure 6 (A
> ・Figure 6 (B) ・Figure 6 (C) shows the chromatogram obtained in the experimental example of the present invention, and Figure 7 shows the absorption spectroscopic characteristics of the eluent and sample used as the experimental example of the present invention. Figure 8 shows calibration curves for iodide ions, nitrate ions, and sulfate ions. ■... Eluent tank 2... Pipe 3... Liquid pump 4... Sample injector 5... Column ゛ 6... Absorbance detector 7... Waste liquid tank
8...Recorder patent applicant Representative of Applied Spectroscopic Instruments Co., Ltd. Patent attorney Figure 1 for Hikaru Murakami

Claims (1)

【特許請求の範囲】[Claims] 含有が予想される成分の分離条件を満足するとともに、
予め吸光分光特性が把握されている溶離液中に試料を注
入してカラム内を通過せしめ、該カラムから溶出された
溶出液を吸光度検出器に与え、該吸光度検出器において
前記溶離液が一定のレベルの吸収を示す波長の光を検出
波長として吸光度を検出し、前記溶離液の吸光度と試料
成分の吸光度の差を示すクロマトグラムを得るようにし
たことを特徴とする吸光度検出器を使用した高速液体ク
ロマトグラフィーによる試料成分の分析方法。
In addition to satisfying the separation conditions for components expected to be included,
A sample is injected into an eluent whose absorbance spectroscopic characteristics are known in advance and allowed to pass through the column, and the eluate eluted from the column is applied to an absorbance detector. A high-speed absorbance detector using an absorbance detector, characterized in that the absorbance is detected using light at a wavelength that indicates a level of absorption as the detection wavelength, and a chromatogram showing the difference between the absorbance of the eluent and the absorbance of the sample component is obtained. A method for analyzing sample components using liquid chromatography.
JP23916984A 1984-11-13 1984-11-13 Analyzing method of sample component by high-speed liquid chromatography using absorbance detector Pending JPS61117451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23916984A JPS61117451A (en) 1984-11-13 1984-11-13 Analyzing method of sample component by high-speed liquid chromatography using absorbance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23916984A JPS61117451A (en) 1984-11-13 1984-11-13 Analyzing method of sample component by high-speed liquid chromatography using absorbance detector

Publications (1)

Publication Number Publication Date
JPS61117451A true JPS61117451A (en) 1986-06-04

Family

ID=17040753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23916984A Pending JPS61117451A (en) 1984-11-13 1984-11-13 Analyzing method of sample component by high-speed liquid chromatography using absorbance detector

Country Status (1)

Country Link
JP (1) JPS61117451A (en)

Similar Documents

Publication Publication Date Title
CA1042988A (en) Dual ion chromatograph using parellel columns
US10184925B2 (en) Preparative separation chromatograph system
Patil HPLC Method Development–A Review
Mannschreck et al. Liquid chromatography on triacetylcellulose, 4. Determination of enantiomeric purity in spite of incomplete chromatographic separation
CN106872595B (en) The measuring method of chiral molecules content based on circular dichroism technology
He et al. A high precision method for calcium determination in seawater using ion chromatography
Smith et al. Determination of metal ions by liquid chromatography incorporating dithiocarbamates in the eluent
Dsouza et al. Multiple heart-cutting two-dimensional liquid chromatography: recent developments and applications
Crompton Determination of anions in natural and treated waters
US4567753A (en) Independent analysis of anions and cations using indirect photometric chromatography
Lichtenfels et al. Gas partition analysis of light ends in gasolines
Mannschreck et al. Liquid chromatography of enantiomers: Determination of enantiomeric purity in spite of extensive peak overlap
Velikonja Bolta et al. Gas chromatographic determination of formaldehyde in air using solid-phase microextraction sampling
JPS61117451A (en) Analyzing method of sample component by high-speed liquid chromatography using absorbance detector
Zenki Determination of alkaline earth metals by ion-exchange chromatography with spectrophotometric detection
JPS60104238A (en) Method and device for quantitative analysis by detecting simultaneously multi-wavelength
Waterworth Validation of ion chromatographic methods for the trace analysis of ions in pharmacopoeial grades of water
CA1088776A (en) Quantitative chromatographic analysis without calibration
JP2518256B2 (en) Method and apparatus for simultaneous analysis of vanillyl mandelic acid, homovanillic acid and creatinine
Thome et al. Direct coupling of glass capillary columns to a mass spectrometer
JPS6024447A (en) High performance liquid chromatography quantitative analytical method and apparatus using multi-wavelength simultaneous detection
Miró et al. A critical examination of sorbent extraction pre-concentration with spectrophotometric sensing in flowing systems
JPS58144745A (en) Analyzing method for rare earth element
Steenkamp et al. Simultaneous determination of toxic heavy metals in Metformin hydrochloride using reversed-phase high-performance liquid chromatography
Bachhav et al. A Concise Review on High-Per-formance Liquid Chromatography