JPS6111647A - Concentration meter - Google Patents

Concentration meter

Info

Publication number
JPS6111647A
JPS6111647A JP13111284A JP13111284A JPS6111647A JP S6111647 A JPS6111647 A JP S6111647A JP 13111284 A JP13111284 A JP 13111284A JP 13111284 A JP13111284 A JP 13111284A JP S6111647 A JPS6111647 A JP S6111647A
Authority
JP
Japan
Prior art keywords
sample
pure water
conductivity
evaporator
fixed quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13111284A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
雅秋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13111284A priority Critical patent/JPS6111647A/en
Publication of JPS6111647A publication Critical patent/JPS6111647A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Abstract

PURPOSE:To measure without the addition of a harmful substance by collecting the distilled component with heating the sample sampled by the fixed quantity sampling mechanism of a sample inside a evaporating can and by measuring the conductivity of the collected liquid thereof with a conductivity measuring cell. CONSTITUTION:An evaporation can 1 having cleaning mechanism, a distillater and collection part 2 having a fixed quantity pouring mechanism of pure water and clenning mechanism and a fixed quantity sampling mechanism 13 of a sample are provided. Conductivity is measured by a conductivity measuring cell by introducing the collected liquid from which the distilled component was collected by heating within the evaporation can 1 the sample sampled by the fixed quantity sampling mechanism 13 of the sample. There is thus no necessity of adding a harmful component to towers and tanks sort of a plant and a concentration meter suitable for the measurement of concentration of volatile component of a free hydrochloric acid and nitric acid, etc. in the sample including salt is obtd.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は導電率測定値から液体試料中の成分濃度を求め
る方式の濃度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a concentration meter that determines the concentration of components in a liquid sample from measured conductivity values.

〔従来技術とその問題点〕[Prior art and its problems]

導電率測定値から試料中の塩濃度あるいは酸濃度を求め
る濃度計は、試料中に試薬類を添加することなく測定で
きるという利点を有する反面、溶質が二種類以上台まれ
る場合にはそれらの寄与を区別することができず測定は
極めて困難となる。
Concentrators that measure salt or acid concentrations in a sample from conductivity measurements have the advantage of being able to measure without adding reagents to the sample, but when two or more types of solutes are present, Measurement becomes extremely difficult as the contributions cannot be distinguished.

硝酸、塩酸等の強酸水溶液は解離度が大きく当量導電率
の高い水素イオンを含むため導電率測定を用いた濃度計
の使用に適しているが、工程廃液中の酸濃度掬定中金属
回収工程の酸濃度測定では多量の塩を含み、さらに塩濃
度が変動するため適用できないという問題点があった。
Strong acid aqueous solutions such as nitric acid and hydrochloric acid have a large degree of dissociation and contain hydrogen ions with high equivalent conductivity, so they are suitable for use with a concentration meter that measures conductivity. There was a problem in that it could not be applied to the measurement of acid concentration because it contains a large amount of salt and the salt concentration fluctuates.

このような塩を含む試料の酸濃度測定に対しては滴定が
一般に用いられるが、この方法では滴定液としてアルカ
リ金属が混入されたシ塩の種類に応じたマスキング剤が
混入されたシするため、測定筒廃液を試料採取点に返却
することが困難である。特に試料が放射熊を有する場合
にはこの廃液処理が大きな障害となるという問題があっ
た。
Titration is generally used to measure the acid concentration of samples containing such salts, but in this method, the titrant contains an alkali metal and a masking agent depending on the type of salt is mixed in. , it is difficult to return the measuring tube waste liquid to the sampling point. Particularly when the sample contains radioactive materials, there is a problem in that the treatment of this waste liquid becomes a major hindrance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前記従来技術の問題点を解消し、プラン
トの塔槽類に対して有害な、成分を添加せぬ塩を含む試
料中の遊離塩酸、硝酸等の揮発性成分盪度測定に適した
濃度計を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to be able to measure the concentration of volatile components such as free hydrochloric acid and nitric acid in samples containing salts without adding components, which are harmful to towers and tanks of plants. Our goal is to provide a suitable concentration meter.

〔発明の概要〕[Summary of the invention]

本発明による濃度計は試料の定量採取機構により一定量
の試料を蒸発缶内に注入し塩の分解温度よシも低い温度
で加熱しなから溜出液を一定量の捕集用純水中に捕集す
る。これによって塩分の導電率測定値に対する寄与を除
去することができる。
The concentration meter according to the present invention uses a quantitative sampling mechanism to inject a fixed amount of sample into an evaporator, heats it at a temperature lower than the decomposition temperature of salt, and then pours the distillate into a fixed amount of pure water for collection. to be collected. This allows the contribution of salt to the conductivity measurements to be removed.

捕集用純水量を溜出液量よシも充分大きくとることによ
り捕集液量を一定とみなし、捕集液の導電率測定値から
試料中成分濃度を求める。
By setting the amount of pure water for collection to be sufficiently larger than the amount of distilled liquid, the amount of collection liquid is assumed to be constant, and the concentration of the component in the sample is determined from the measured value of the conductivity of the collection liquid.

〔発明の効果〕〔Effect of the invention〕

本発明は硝酸、塩酸等の比較的沸点の低い酸とそO塩の
共存する試料に対して特に有効である。
The present invention is particularly effective for samples in which acids with relatively low boiling points, such as nitric acid and hydrochloric acid, and their O salts coexist.

強酸とその塩の共存する溶液を例にとると、試料中の遊
離酸のみを溜出させるため、塩が多量含まれる試料に対
しても酸濃度計として適用が可能となる。さらに溜出液
を多量の純水中に希釈するため試料液温の変動と紘無関
係に一定温度における導電率の測定ができ、導電率の温
度補償が不要である。また測定溝廃液は試料に純水が添
加されただけのものであるから、試料採取点に廃液を返
却しても害を及ばさない。
Taking a solution containing a strong acid and its salt as an example, since only the free acid in the sample is distilled out, it can be applied as an acid concentration meter even to samples containing a large amount of salt. Furthermore, since the distillate is diluted in a large amount of pure water, conductivity can be measured at a constant temperature regardless of fluctuations in sample liquid temperature, and temperature compensation for conductivity is not necessary. Furthermore, since the measurement groove waste liquid is simply pure water added to the sample, there is no harm in returning the waste liquid to the sampling point.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1@社本発明による濃度計の構成図である。FIG. 1 is a configuration diagram of a densitometer according to the present invention.

蒸発缶1は耐食性材料例えばタンタル構成され、試料及
びキャリヤガスの流入口1m、キャリヤガスの流出口1
b、純水供給口1c、排液口1dを有し、流出口1bは
配管によって溜出液捕集部2と、純水供給口1cは開閉
弁3を介して図示しない外部の純水供給源と、排液口1
dは開閉弁4を介して排液配管5とそれぞれ接続されて
いる。溜出液捕集部2は開閉弁6を介して開放されてい
る排気口2a、純水の定量注入機構例えばピストンシリ
ンダ7と接続される純水注入口2b、開閉弁8と接続さ
れる流出口2c、流出口1bと接続される流入口2dを
有し、流出口2Cから出る配管は開閉弁8の下流側の流
路切換器9,10を切換えることによって検出器11を
通過する流路とバイパス流路12の切換えを行ない得る
構造となっている。また試料定量採取機構13は流路切
換器13a、13b及び置換配管13Cから成シ、試料
循環配管14の一部を形成して置換配管13C内を試料
で置換しうる構造である。同様に純水定量採取機構15
は流路切換器15a、 15b、置換配管15Cから成
シ、純水貯槽16から出る循環配管17の一部を形成し
て置換配管15C内を純水で置換しうる構造となりてい
る。さらに流路切換器15bは開閉弁18を介して気体
の供給源例えば圧縮空気19に接続されている。初期状
態においては開閉弁3゜4.8.18が閉、開閉弁6が
開の状態にあり、流路切換器9,10はバイパス流路1
2側に開いて検出器11内には純水が満たされた状態に
ある。
The evaporator 1 is made of a corrosion-resistant material such as tantalum, and has a sample and carrier gas inlet of 1 m and a carrier gas outlet of 1 m.
b, has a pure water supply port 1c and a drain port 1d, the outflow port 1b is connected to the distillate collection unit 2 via piping, and the pure water supply port 1c is connected to an external pure water supply (not shown) via an on-off valve 3. source and drain port 1
d are connected to drain pipes 5 via on-off valves 4, respectively. The distillate collection unit 2 has an exhaust port 2a opened via an on-off valve 6, a pure water inlet 2b connected to a pure water quantitative injection mechanism, for example, a piston cylinder 7, and a flow connected to an on-off valve 8. It has an inlet 2d connected to the outlet 2c and the outlet 1b, and the piping exiting from the outlet 2C is a flow path that passes through the detector 11 by switching the flow path switchers 9 and 10 on the downstream side of the on-off valve 8. The structure allows switching between the bypass flow path 12 and the bypass flow path 12. The sample quantitative collection mechanism 13 is composed of flow path switches 13a, 13b and a replacement pipe 13C, and forms a part of the sample circulation pipe 14, so that the inside of the replacement pipe 13C can be replaced with a sample. Similarly, pure water quantitative sampling mechanism 15
It is constructed of flow path switching devices 15a, 15b and replacement piping 15C, and forms a part of circulation piping 17 exiting from pure water storage tank 16, so that the inside of replacement piping 15C can be replaced with pure water. Furthermore, the flow path switching device 15b is connected to a gas supply source, for example, compressed air 19, via an on-off valve 18. In the initial state, the on-off valve 3゜4.8.18 is closed, the on-off valve 6 is open, and the flow path switches 9 and 10 are in the bypass flow path 1.
The detector 11 is opened to the second side and is filled with pure water.

測定にあたっては試料定量採取機構13の流路切換器1
3 a+ 13 bHと、純水定量採取機構15の流路
切換器15a、 15bを切換えて、置換配管13C,
15C内をそれぞれ試料、純水で置換する。次いで流路
切換器]Ja、 13b、 15a、 15bを切換え
、開閉弁18を開くと空気圧によって定量分取された試
料及び純水は蒸発缶1内に押し出される。配管内に残留
する試料は後行する純水によって洗浄されるため、定量
性と繰返し測定の際のクロスコンタミネーション防止に
有効である。蒸発缶1を予め設定温度に加熱して溜出液
捕集部2にピストンシリンダ7で一定量の純水を注入し
ておけば、蒸発缶1内に入った純水及び試料は蒸発をは
じめ、空気流に伴われて流入口2dから吹出されて溜出
液捕集部2内の純水に捕集される。流入口2dを予め注
入された純水の液面よシ下げておけば空気吹出しによる
攪拌もおこない得るため一層好適である。溜出が終了し
九ら開閉弁8を開き開閉弁6を閉じて空気圧により捕集
液をバイパス流路12を通して一部排液し、次いで流路
切換器7,8を同時に切換えて検出器11内を捕集液で
置換する。余分な捕集液は再度流路切換器7,8を同時
に切換えてバイパス流路12を通して全量排液する。検
出器11内の捕集液の導電率を測定したのち、開閉弁8
を閉じ、開閉弁6を開いてピストンシリンダ7により榴
出液捕集部2に純水を注入し、同様の操作を行なうこと
によって溜出液捕集部2内の純水による洗浄と検出器1
1内の純水置換を行なう。次いで開閉弁8,18を閉じ
て開閉弁3を開き純水供給口ICから純水を加圧過大し
て蒸発缶1内の残留物を溶解除去する。以上の動作によ
って1回の測定が終了し、これを繰返すことによって連
続した測定を行なうことができる。
For measurement, the flow path switching device 1 of the sample quantitative collection mechanism 13
3 a+ 13 bH and the flow path switchers 15a and 15b of the pure water quantitative sampling mechanism 15 are switched, and the replacement piping 13C,
Replace the inside of 15C with the sample and pure water, respectively. Then, when the flow path switching devices Ja, 13b, 15a, and 15b are switched and the on-off valve 18 is opened, the sample and pure water, which have been quantitatively separated, are pushed into the evaporator 1 by air pressure. The sample remaining in the pipe is washed away by the subsequent purified water, which is effective for quantitative performance and for preventing cross-contamination during repeated measurements. If the evaporator 1 is heated in advance to a set temperature and a certain amount of pure water is injected into the distillate collection section 2 using the piston cylinder 7, the pure water and sample that have entered the evaporator 1 will begin to evaporate. , is blown out from the inlet 2 d along with the air flow and collected by the pure water in the distillate collection section 2 . It is more preferable to lower the inlet port 2d below the level of the pure water injected in advance, since stirring can also be performed by blowing out air. When the distillation is completed, the on-off valve 8 is opened, the on-off valve 6 is closed, and a portion of the collected liquid is drained by air pressure through the bypass flow path 12. Then, the flow path switching devices 7 and 8 are simultaneously switched to the detector 11. Replace the inside with collection liquid. The excess collection liquid is completely drained through the bypass flow path 12 by switching the flow path switching devices 7 and 8 at the same time again. After measuring the conductivity of the collection liquid in the detector 11, the on-off valve 8
, open the on-off valve 6, inject pure water into the exudate collection section 2 using the piston cylinder 7, and perform the same operation to clean the exudate collection section 2 with pure water and clean the detector. 1
Perform pure water replacement in 1. Next, the on-off valves 8 and 18 are closed, and the on-off valve 3 is opened to overpressurize pure water from the pure water supply port IC to dissolve and remove the residue in the evaporator 1. One measurement is completed by the above operation, and by repeating this, continuous measurements can be performed.

溜出液捕集部2内に注入する純水量と蒸発缶1に注入さ
れる試料及び純水量の比を大きくとれば捕集液全体に占
める溜出液量の割合は充分小さくなシ、捕集液の導電率
測定値から試料中の揮発性成分量を求める際の誤差はわ
ずかである。また溜出液捕集用の純水温度を一定としそ
おけば溜出液混入による温度上昇はわずかであるから、
試料液温の変動が激しい場合でも温度補償による誤差を
低減すること、ができる。さらに試料に対して純水以外
の添加を行なわないため分析島液を試料採取点に返却し
ても無害である。この濃度計は硝酸や塩酸のような比較
的低温で揮発する酸とその塩が混在する試料に対して特
に有効であるが、硝酸塩では低温において熱分解するも
のもあるため、蒸発缶1の温度は塩の熱分解温度以下に
保持することがMましく、蒸発缶温度を測定して加熱調
節を行なう温度制御機構を付加すればさらに好適である
If the ratio of the amount of pure water injected into the distillate collection section 2 and the amount of sample and pure water injected into the evaporator 1 is set large, the proportion of the amount of distillate in the total collected liquid will be sufficiently small. The error in determining the amount of volatile components in the sample from the measured conductivity of the collected liquid is small. In addition, if the temperature of the pure water for collecting distillate is kept constant, the temperature increase due to contamination with distillate will be small.
Even when the sample liquid temperature fluctuates rapidly, it is possible to reduce errors caused by temperature compensation. Furthermore, since nothing other than pure water is added to the sample, there is no harm in returning the analysis sample to the sampling point. This concentration meter is particularly effective for samples containing a mixture of acids and their salts that volatilize at relatively low temperatures, such as nitric acid and hydrochloric acid, but since some nitrates thermally decompose at low temperatures, It is preferable to maintain the temperature below the thermal decomposition temperature of the salt, and it is even more preferable to add a temperature control mechanism that measures the temperature of the evaporator and adjusts the heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による濃度計の構成図で弗る。 1、・・・蒸発缶  2.・・・溜出液捕果部 3.・
・・開閉弁4、・・・開閉弁 5.・・・排液配管 6
.・・・開閉弁7、・・7ピストンシリンダ 8.・・
・開閉弁、9.・・・流路切換器  IQ、・・・波路
切換器11、・・・検出器  1z・・・バイパス流路
13、・・・試料定量採取機構  14.・・・試料循
環配管15、・・・純水定量採取機構  16.・・・
純水貯槽17、・・・循環配管  1&・・・開閉弁 
 19.・・・圧縮空気代理人 弁理士 則 近 憲 
佑 (ほか1名)
FIG. 1 is a block diagram of a densitometer according to the present invention. 1. Evaporator 2. ... Distillate collection section 3.・
...On-off valve 4, ...On-off valve 5. ...Drainage piping 6
.. ...Opening/closing valve 7,...7 piston cylinder 8.・・・
・On-off valve, 9. ...Flow path switch IQ, ...Wave path switch 11, ...Detector 1z...Bypass flow path 13, ...Sample quantitative collection mechanism 14. ...Sample circulation piping 15, ...Pure water quantitative sampling mechanism 16. ...
Pure water storage tank 17,... Circulation piping 1 &... Open/close valve
19. ...Compressed air agent Patent attorney Nori Chika
Yu (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)液体試料の導電率測定によって試料中の成分濃度
を求める方式の濃度計において、洗浄機構を有する蒸発
缶と、純水の定量注入機構及び洗浄機構を有する溜出液
捕集部と、試料の定量採取機構と、この試料の定量採取
機構により採取された試料を前記蒸発缶内で加熱して溜
出成分を捕集したのちの捕集液導入して導電率を測定す
る導電率測定セルとを具備してなることを特徴とした濃
度計。
(1) In a concentration meter that determines the concentration of components in a sample by measuring the conductivity of a liquid sample, an evaporator having a cleaning mechanism, a distillate collection unit having a pure water metering mechanism and a cleaning mechanism, A quantitative sample collection mechanism, and conductivity measurement in which the sample collected by the quantitative sample collection mechanism is heated in the evaporator to collect distilled components, and then a collection liquid is introduced to measure the conductivity. A densitometer characterized by comprising a cell.
(2)蒸発缶に、この蒸発缶の温度制御を行なう温度検
出機構を有してなることを特徴とした特許請求の範囲第
1項に記載の濃度計。
(2) The concentration meter according to claim 1, wherein the evaporator has a temperature detection mechanism for controlling the temperature of the evaporator.
JP13111284A 1984-06-27 1984-06-27 Concentration meter Pending JPS6111647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13111284A JPS6111647A (en) 1984-06-27 1984-06-27 Concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13111284A JPS6111647A (en) 1984-06-27 1984-06-27 Concentration meter

Publications (1)

Publication Number Publication Date
JPS6111647A true JPS6111647A (en) 1986-01-20

Family

ID=15050263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13111284A Pending JPS6111647A (en) 1984-06-27 1984-06-27 Concentration meter

Country Status (1)

Country Link
JP (1) JPS6111647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502245A (en) * 1999-06-16 2003-01-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Sectioned vacuum roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502245A (en) * 1999-06-16 2003-01-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Sectioned vacuum roll

Similar Documents

Publication Publication Date Title
Rood et al. Hygroscopic properties of atmospheric aerosol in Riverside, California
Deitz et al. Rapid, sensitive method for determination of mercury in a variety of biological samples
CN109342284A (en) A kind of detection system and detection method for harmful substances from flue gases
JPS6111647A (en) Concentration meter
US8618820B2 (en) Method and device for measuring the purity of ultrapure water
Buelow et al. An Improved Method for Determining Organics by Activated Carbon Adsorption and Solvent Extraction—Part I
KR100879009B1 (en) A system and method for monitoring metals and metal compounds in air and gases
CN206772953U (en) A kind of Industrial Boiler water hardness monitoring device
Flint A method for the determination of small concentrations of so3 in the presence of larger concentrations of so2
CA1044323A (en) Method and means for quantitative analysis of sulfuric acid-containing gases
KR101769736B1 (en) Apparatus for Automatically Analyzing Chemical Oxygen Demand
JPS60195442A (en) Anion concentration measuring apparatus
JP2692276B2 (en) Total organic carbon meter with blank check mechanism
DE10321357B4 (en) Method and device for the quantitative determination of individual substances in gas mixtures obtained by oxidative or reductive mineralization of organic compounds
JPS61104256A (en) Apparatus for analysis of total volatile organic compound
Qu et al. SO3 Sampling and Detection Analysis Method in Coal-Fired Power Plant
SU1076760A1 (en) Device for measuring small consumption of gas
Bond et al. Ion-selective electrode with microprocessor-based instrumentation for on-line monitoring of copper in plant electrolyte
JP3089867B2 (en) Salt detection method and apparatus
JPH0747719Y2 (en) Mixing tank with pH measuring device
JP2000035420A (en) Ion analysis device
SU1749807A1 (en) Conductometrical analyzer of air admixture content
US4504367A (en) Monitoring of chemical species in solution and apparatus therefor
JPS6017729Y2 (en) sampling probe
SU1068765A1 (en) Device for gas sample preparation