JPS61116407A - Oscillating multiplying device - Google Patents

Oscillating multiplying device

Info

Publication number
JPS61116407A
JPS61116407A JP22152284A JP22152284A JPS61116407A JP S61116407 A JPS61116407 A JP S61116407A JP 22152284 A JP22152284 A JP 22152284A JP 22152284 A JP22152284 A JP 22152284A JP S61116407 A JPS61116407 A JP S61116407A
Authority
JP
Japan
Prior art keywords
output
waveguide
wave
output wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22152284A
Other languages
Japanese (ja)
Other versions
JPH0462486B2 (en
Inventor
Hiroyuki Hachitsuka
弘之 八塚
Yasuo Sagi
鷺 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22152284A priority Critical patent/JPS61116407A/en
Publication of JPS61116407A publication Critical patent/JPS61116407A/en
Publication of JPH0462486B2 publication Critical patent/JPH0462486B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To improve the stability of an action of the oscillating multiplying device and to improve a characteristic of electricity by installing an absorbing part to absorb an output wave component of the frequency higher than the frequency of the output wave of the output waveguide. CONSTITUTION:To take out an output wave efficiently, cut-off waveguides 11 and 12 to shut off the output frequency, for example, 2fo are installed on the H surface of an output waveguide 6, electric absorbing bodies 13 and 14 are installed at the short-circuiting part of the cut-off waveguide and the absorbing part is constituted. By the absorbing body composed of the cut-off waveguide including an electric wave absorbing body comparatively easily constituted which is installed at the output guidewave, the output wave is not influenced, and therefore, the characteristic of the output wave will not be deteriorated. On the other hand, the load can be made heavy for the output wave component having a higher frequency than that of the output wave. Thus, the output wave component can be attenuated and its occurrence can be prevented, and therefore, the action of the oscillating multiplying device can be stable and the electric characteristic can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は送受信周波数がマイクロ波帯以上の無線送受信
装置に使用する、発振逓倍器の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an oscillation multiplier used in a wireless transmitting/receiving device whose transmitting/receiving frequency is a microwave band or higher.

一般的に、導波管とマイクロ・ストリップラインを組合
せた発振逓倍器の発振用半導体素子として、例えば広い
周波数領域にわたって負性抵抗を持つガンダイオードを
用いる場合には、このダイオードのバラツキやケースの
浮遊容量等により所定の周波数以外の周波数で発振する
事があり、この様な場合には無線送受信装置は正常な動
作が行はれない。
Generally, when a Gunn diode, which has negative resistance over a wide frequency range, is used as the oscillation semiconductor element for an oscillation multiplier that combines a waveguide and a microstrip line, variations in the diode and case Stray capacitance or the like may cause oscillation at a frequency other than the predetermined frequency, and in such a case, the wireless transmitter/receiver cannot operate normally.

そこで、所定の周波数以外の周波数で発振するする可能
性の少ない、発振逓倍器が要望されていた。
Therefore, there is a need for an oscillation multiplier that is less likely to oscillate at frequencies other than the predetermined frequency.

斜視図を示す。A perspective view is shown.

第4図において、負性抵抗素子(例えばガンダイオード
)4は抵抗膜5を有するマイクロ・ストリップライン2
を介して誘電体共振器1と結合しており、発振条件を満
足するL 1 #(2n+ 1)  ・Z・λgの位置
で誘電体共振器の共振周波数で発振する。
In FIG. 4, a negative resistance element (for example, a Gunn diode) 4 is connected to a microstrip line 2 having a resistive film 5.
It oscillates at the resonant frequency of the dielectric resonator at a position L 1 #(2n+1)·Z·λg that satisfies the oscillation condition.

ここで、λgは発振波長を示す。Here, λg indicates the oscillation wavelength.

しかし、ガンダイオードの負性抵抗は広帯域特性を持ち
、且つ非直線性を持っているので、誘電体共振器1の共
振周波数foと等しい周波数を持つ波(基本波と云う)
の他に2fo 、3fo・・・の周波数を持つ高調波も
発生し、この高調波は高域通過型ろ波特性を有する出力
導波管6から出力される。
However, since the negative resistance of the Gunn diode has broadband characteristics and nonlinearity, a wave with a frequency equal to the resonant frequency fo of the dielectric resonator 1 (referred to as the fundamental wave)
In addition, harmonics having frequencies of 2fo, 3fo, . . . are also generated, and these harmonics are output from the output waveguide 6 having high-pass filtering characteristics.

又、誘電体共振器1が収容されている部分は大きなスペ
ースになっているので、発生した高調波と結合して不要
共振が起こし易い。
Furthermore, since the portion where the dielectric resonator 1 is housed is a large space, it is likely to combine with the generated harmonics and cause unnecessary resonance.

そこで、これを防止する為にマイクロ・ストリップライ
ン2に乗った高調波か誘電体共振器lの方に伝搬しない
様に、マイクロ・ストリップラインの両側に設けたλ・
χのラインによる帯域阻止型ろ波器10と、第1のカッ
トオフ導波管7が設けられている。
Therefore, in order to prevent this, λ/
A band-elimination filter 10 with lines of χ and a first cutoff waveguide 7 are provided.

第5図及び第6図は別の構成の従来例の構成図を示す。FIGS. 5 and 6 show configuration diagrams of a conventional example with another configuration.

第5図及び第6図共に、負性抵抗を持つガンダイオード
を導波管内に挿入した時に、インピーダンスの高い導波
管とガンダイオードとを整合させて、ガンダイオードか
ら発生ずる高調波電力例えば希望する2逓倍された出力
波を効率よく取出す為に、整合器を挿入した場合の構成
図で、第5図はスタブ型チューナー7を、第6図はE−
11型チューナー8.9を設むJた場合を示している。
Both Figures 5 and 6 show that when a Gunn diode with negative resistance is inserted into a waveguide, the waveguide with high impedance and the Gunn diode are matched, and the harmonic power generated from the Gunn diode is generated, for example, as desired. This is a configuration diagram when a matching box is inserted in order to efficiently extract the doubled output wave.
This shows the case where an 8.9 inch 11-inch tuner is installed.

何れも、スタブ又は短絡板を可動する事により最大の出
力波が得られる様にしている。
In either case, the maximum output wave can be obtained by moving the stub or shorting plate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの整合器の内、第5図に示ずスタブ型チューナー
はミリ波帯において、Qが小さく構造も複雑になり易い
。又、第6図に示ずE−H型チューナーはQが高いが構
造が大きく複雑になる。
Among these matching devices, a stub type tuner (not shown in FIG. 5) tends to have a small Q and a complicated structure in the millimeter wave band. Further, although the E-H type tuner shown in FIG. 6 has a high Q, the structure is large and complicated.

又、ガンダイオードのパッケージやガンダイオードとマ
イクロ・ストリップラインとを接続する接続リボン等に
よる、寄生インダクタンス又は寄生容量によって構成さ
れた共振回路により、ガンダイオードが高い周波数で寄
生発振をする可能性が高いと云う2つの問題点があった
Additionally, there is a high possibility that the Gunn diode will cause parasitic oscillation at high frequencies due to a resonant circuit formed by parasitic inductance or capacitance caused by the Gunn diode package or the connection ribbon connecting the Gunn diode and the micro strip line. There were two problems.

c問題点を解決するための手段〕 上記の問題点は、出力導波管に出力波の周波数よりも高
い周波数の出力波成分を吸収する吸収部を設けた本発明
の発振逓倍器により解決する。
Means for Solving Problem c] The above problem is solved by the oscillation multiplier of the present invention, which has an absorption section in the output waveguide that absorbs an output wave component with a frequency higher than the frequency of the output wave. .

〔作用〕[Effect]

本発明は導波管の高域通過型ろ波特性を利用して、希望
する出力波の周波数(例えば2fo )以上の周波数を
持つ希望しない出力波成分に対して負荷を重くする事に
より、2foの周波数以外の寄生発振を防止すると共に
、3fo 、4fo・・・と云う高調波成分(出力成分
と云う)を減衰させる様な吸収部を設けた。
The present invention utilizes the high-pass filtering characteristics of the waveguide to increase the load on undesired output wave components having frequencies higher than the desired output wave frequency (for example, 2fo). An absorption section is provided that prevents parasitic oscillations at frequencies other than 2fo and attenuates harmonic components (referred to as output components) of 3fo, 4fo, etc.

即ち、吸収部の構成例として出力導波管の側壁に希望す
る出力波を遮断するカットオフ導波管を設け、そのカッ
トオフ導波管の短絡部に例えば4角錐の電波吸収体を固
定し、又は4角錐の電波吸収体が固定された可動できる
短絡部をもつカットオフ導波管を出力導波管の側壁に設
けた。
That is, as an example of the configuration of the absorption section, a cutoff waveguide that blocks the desired output wave is provided on the side wall of the output waveguide, and a radio wave absorber, for example, in the form of a square pyramid is fixed to the short circuit part of the cutoff waveguide. Alternatively, a cut-off waveguide having a movable short-circuit portion to which a four-sided pyramidal radio wave absorber is fixed is provided on the side wall of the output waveguide.

この様な構成にする事により、希望する出力波以外の出
力波成分が電波吸収体で吸収されるので、高調波は減衰
されると共に、寄生発振を抑圧する事ができた。
With this configuration, output wave components other than the desired output wave are absorbed by the radio wave absorber, so harmonics can be attenuated and parasitic oscillations can be suppressed.

〔実施例〕〔Example〕

以下図示実施例により、本発明の要旨を具体的に説明す
る。尚、企図を通じて同一符号は同一対象物を示す。
The gist of the present invention will be specifically explained below with reference to illustrated examples. Note that the same reference numerals refer to the same objects throughout the plan.

第1図〜第3図は本発明の3種類の実施例の構成図を示
す。
1 to 3 show configuration diagrams of three types of embodiments of the present invention.

第1図は出力波を効率よく取出す為に、出力導波管6の
H面に出力周波数例えば2foを遮断するカットオフ導
波管11及び12を設け、このカットオフ導波管の短絡
部に電波吸収体(例えば4角錐)13及び14を設げて
吸収部を構成した。
In Fig. 1, cutoff waveguides 11 and 12 are provided on the H side of the output waveguide 6 to cut off the output frequency, for example, 2fo, in order to efficiently extract the output wave. Radio wave absorbers (for example, quadrangular pyramids) 13 and 14 were provided to constitute an absorber.

第2図は別の実施例を示すもので、E面にカットオフ導
波管を設けたもので、第1図と同じく電波吸収体がカッ
トオフ導波管の短絡部に固定され、吸収部を構成してい
る。
Figure 2 shows another embodiment in which a cut-off waveguide is provided on the E plane, in which the radio wave absorber is fixed to the short-circuited part of the cut-off waveguide as in Figure 1, and the absorber It consists of

第3図は第1図及び第2図の構成例と異なり、カットオ
フ導波管19に上記の電波吸収体が固定された短絡部1
7が可変できる様になっている。
Unlike the configuration examples shown in FIGS. 1 and 2, FIG.
7 can be changed.

〔発明の効果〕〔Effect of the invention〕

上記の3例の何れの場合でも、出力導波管に設けた比較
的簡単な構成の電波1反収体を含むカットオフ導波管か
ら構成された吸収体によっては、出力波は影響を受けな
いので、出力波の特性を劣化させる事がない。
In any of the three examples above, the output wave is not affected by the absorber, which is composed of a cut-off waveguide that includes a radio wave 1 reflector with a relatively simple configuration, provided in the output waveguide. Therefore, the characteristics of the output wave will not deteriorate.

一方、出力波よりも高い周波数を持つ出力波成分に対し
て負荷を重くする事ができる。
On the other hand, it is possible to increase the load on the output wave component having a higher frequency than the output wave.

この為、出力波成分を減衰させたり又は発生を阻止させ
る事ができるので、発振逓倍器の動作が安定し、電気特
性が向上すると云う効果か得られる。
Therefore, it is possible to attenuate the output wave component or prevent its generation, thereby stabilizing the operation of the oscillation multiplier and improving the electrical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の構成図、 第2図は本発明の別の実施例の構成図、第3図は本発明
の更に別の実施例の構成図、第4図は従来例の構成図、 第5図は別の従来例の構成図、 第6図は更に別の構成図を示す。 図において、 1は誘電体共振器、 2はマイクロストリップライン、 3はバイアス端子、 4は負性抵抗素子、 5は抵抗膜、 6ば出力導波管、 7は第1のカットオフ導波管、 11.12はカットオフ導波管、 13.14は電波吸収体を示す。 第4図
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a block diagram of another embodiment of the present invention, Fig. 3 is a block diagram of yet another embodiment of the present invention, and Fig. 4 is a conventional block diagram. FIG. 5 shows a configuration diagram of another conventional example, and FIG. 6 shows still another configuration diagram. In the figure, 1 is a dielectric resonator, 2 is a microstrip line, 3 is a bias terminal, 4 is a negative resistance element, 5 is a resistive film, 6 is an output waveguide, and 7 is a first cutoff waveguide. , 11.12 is a cut-off waveguide, and 13.14 is a radio wave absorber. Figure 4

Claims (1)

【特許請求の範囲】 1、基本波に共振する誘電体共振器と出力周波数以上を
阻止する第1のカットオフ導波管を貫通して配置・固定
された抵抗膜を有するマイクロ・ストリップラインとか
らなる基本波発振回路と、該第1のカットオフ導波管に
接続された該基本波を阻止する出力導波管内に配置・固
定された発振用半導体素子とを接続した発振器において
、該出力導波管に出力波の周波数よりも高い周波数の出
力波成分を吸収する吸収部を設けたことを特徴とする発
振逓倍器。 2、前記吸収部は該出力導波管をHベンド構造にし、一
端を出力端に、他端を該出力波を遮断する第2のカット
オフ導波管を設け、該第2のカットオフ導波管内に該出
力波成分を吸収する電波吸収体を設けた出力波整合用導
波管短絡構造を有する事を特徴とする特許請求の範囲第
1項記載の発振逓倍器。 3、前記吸収部は該発振用半導体素子の近傍に該出力波
を阻止する第2のカットオフ導波管を設け、該第2のカ
ットオフ導波管内に電波吸収体を挿入した事を特徴とす
る特許請求の範囲第1項記載の発振逓倍器。
[Claims] 1. A micro-strip line having a resistive film arranged and fixed through a dielectric resonator that resonates with the fundamental wave and a first cut-off waveguide that blocks frequencies higher than the output frequency. and an oscillation semiconductor element arranged and fixed in an output waveguide connected to the first cutoff waveguide and blocking the fundamental wave, the output An oscillation multiplier characterized in that a waveguide is provided with an absorption section that absorbs an output wave component having a frequency higher than the frequency of the output wave. 2. The absorption section has the output waveguide in an H-bend structure, and has one end as an output end and the other end as a second cutoff waveguide that blocks the output wave, and the second cutoff waveguide is configured as an output waveguide. The oscillation multiplier according to claim 1, characterized in that the oscillation multiplier has a waveguide short-circuit structure for output wave matching in which a radio wave absorber for absorbing the output wave component is provided in the wave tube. 3. The absorption section is characterized in that a second cutoff waveguide for blocking the output wave is provided near the oscillation semiconductor element, and a radio wave absorber is inserted into the second cutoff waveguide. An oscillation multiplier according to claim 1.
JP22152284A 1984-10-22 1984-10-22 Oscillating multiplying device Granted JPS61116407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22152284A JPS61116407A (en) 1984-10-22 1984-10-22 Oscillating multiplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22152284A JPS61116407A (en) 1984-10-22 1984-10-22 Oscillating multiplying device

Publications (2)

Publication Number Publication Date
JPS61116407A true JPS61116407A (en) 1986-06-03
JPH0462486B2 JPH0462486B2 (en) 1992-10-06

Family

ID=16768028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22152284A Granted JPS61116407A (en) 1984-10-22 1984-10-22 Oscillating multiplying device

Country Status (1)

Country Link
JP (1) JPS61116407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236705A (en) * 1988-03-16 1989-09-21 Fujitsu Ltd Frequency multiplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236705A (en) * 1988-03-16 1989-09-21 Fujitsu Ltd Frequency multiplier

Also Published As

Publication number Publication date
JPH0462486B2 (en) 1992-10-06

Similar Documents

Publication Publication Date Title
US3931587A (en) Microwave power accumulator
US3913035A (en) Negative resistance high-q-microwave oscillator
JPS58168306A (en) Microwave oscillator
Song et al. Distributed Bragg reflection dielectric waveguide oscillators
US3196339A (en) Microwave harmonic generator and filter element therefor
JPS61116407A (en) Oscillating multiplying device
US3919666A (en) Solid state microwave cavity oscillator operating below cavity cutoff frequency
US3212018A (en) Waveguide parametric amplifier employing variable reactance device and thin septa iris to resonate fixed reactance of the device
US3858123A (en) Negative resistance oscillator
EP1093217B1 (en) Oscillator and radio equipment
US3223918A (en) Frequency multiplier
US3445778A (en) Wall current amplifier and oscillator
JP4299997B2 (en) Magnetron device
US3393357A (en) Miniaturized package containing a solid state oscillator and a frequency multiplier
US3775701A (en) Semiconductor diode mounting and resonator structure for operation in the ehf microwave range
JPS59117302A (en) Filter
US4542352A (en) Cavity oscillator with undesired mode absorbing waveguides for linear FM
JP3848860B2 (en) Planar circuit with cavity resonator
Mallik et al. Some studies on the effect of the resonant cap on the oscillator performance of X-band GaAs and Si IMPATT oscillators
JP2001102871A (en) Oscillator and radio equipment
US3418601A (en) Waveguide phase-locked oscillators
RU1718679C (en) Amplifier klystron
JP3460644B2 (en) Oscillator and wireless device
Laton et al. Characteristics of LMPATT-Diode Reflection Amplifiers
SU1210159A1 (en) Waveguide circuit for super-high frequency device