JPS61116292A - Gas-liquid heat-exchanging method and device - Google Patents
Gas-liquid heat-exchanging method and deviceInfo
- Publication number
- JPS61116292A JPS61116292A JP24730085A JP24730085A JPS61116292A JP S61116292 A JPS61116292 A JP S61116292A JP 24730085 A JP24730085 A JP 24730085A JP 24730085 A JP24730085 A JP 24730085A JP S61116292 A JPS61116292 A JP S61116292A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- tubes
- fluorine
- diameter
- containing polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
- F28F9/0131—Auxiliary supports for elements for tubes or tube-assemblies formed by plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0058—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
- F28F21/062—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
発明の背景
多種多様な熱交換装置がプロセス流からの排ガス、特に
燃焼ガスのような腐蝕性成分を含む排ガスの処理に使用
されてきた。そのような燃焼ガスは普通、非常に腐蝕性
の酸を形成しうる硫黄および窒素の酸化物を含有する。DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION A wide variety of heat exchange devices have been used to treat exhaust gases from process streams, particularly exhaust gases containing corrosive components such as combustion gases. Such combustion gases typically contain oxides of sulfur and nitrogen that can form highly corrosive acids.
それらの酸は、ガスが露点以下に冷却される1場合には
、熱交換装置において使用される材料を制限する。These acids limit the materials used in the heat exchange equipment in the case where the gas is cooled below the dew point.
そのようなガスの高度に腐蝕的な性質を補償するため、
過去において熱交換エレメントはガラスや銅、およびフ
ッ素含有重合体で被覆された銅により作製されてきた。To compensate for the highly corrosive nature of such gases,
In the past, heat exchange elements have been made of glass, copper, and copper coated with fluorine-containing polymers.
さらに、フッ素含有重合体製チューブを用いた非常に複
雑な装置も、例えばウイザーズ(wtt、hers)の
米国特許第3.455,893号明細書に示唆されてき
た。Additionally, very complex devices using fluorine-containing polymer tubing have been suggested, for example in U.S. Pat. No. 3,455,893 to WTT, Hers.
燃焼工程からの排ガスから熱を回収する際、熱伝達効率
と気体流の圧力降下との間のバランスをとろうとしても
常に困難性を伜う。したがって、気体流用の熱交換装置
には耐腐蝕性材料と、良好な熱伝達効率を最小の圧力降
下でもたらす形状とを組合せることのたえざる必要性が
存在していた。When recovering heat from the exhaust gas from a combustion process, it is always difficult to strike a balance between heat transfer efficiency and pressure drop of the gas stream. Therefore, there has been a continuing need for gas flow heat exchange devices to combine corrosion resistant materials with geometries that provide good heat transfer efficiency with minimal pressure drop.
発明の要約
この発明は、気体流をその温度とは異なる温度に保たれ
た熱交換器に通し、熱伝達媒体を熱交換器に循環させる
ことによシ気体流の温度を変化させる方法において、熱
交換器が列設された直径約3〜10■のフッ素含有重合
体製チューブを含み、かつ各チューブ区画間の自由スパ
ンが約20〜90LMであるものであって、気体流は熱
伝達媒体が循環されるチューブの少なくとも5列(r
OW)を横断して通過するものであり、該チューブは中
心から中心までの距離がチューブの直径の約1.25〜
6倍になるよう配設され、気体流が列設チューブを通過
する際にレイノルズ数が約800〜6000になる速度
を有し、自由スパンのチューブ直径に対する比が約50
〜150であるように改良した方法を提供する。SUMMARY OF THE INVENTION This invention provides a method for changing the temperature of a gaseous stream by passing the gaseous stream through a heat exchanger maintained at a temperature different from the temperature of the gaseous stream and circulating a heat transfer medium through the heat exchanger. fluoropolymer tubes approximately 3 to 10 mm in diameter in which a heat exchanger is arranged in a row, and the free span between each tube section is approximately 20 to 90 LM, the gas flow being a heat transfer medium. At least five rows of tubes (r
OW), and the tube has a center-to-center distance of approximately 1.25 to 1.25 mm of the tube diameter.
When the gas flow passes through the arrayed tubes, the Reynolds number is approximately 800 to 6000, and the free span to tube diameter ratio is approximately 50.
˜150.
さらにこの発明は、流路とその流路を横切って配設され
た熱交換器を有する所定速度の気体流の温度を変化させ
る之めの装置罠おいて、熱交換器が列設された直径約3
〜10mのフッ素含有重合体製チューブ、および約20
〜90cmの各チューブ区画間の自由スパンからなり、
該流路が熱伝達媒体の循環されるチューブの少なくとも
5列と交差し、チューブが中心から中心までの距離がチ
ューブ直径の約t25〜5:O倍になるように配設され
、自由スパンのチューブ直径に対する比が約50〜15
0であって、ノ4ラメータが気体流の速度で列設チュー
ブを通る際のレイノルズ数が約800〜3000になる
ように選択されるように改良された装置を提供するもの
である。The invention further provides an apparatus for changing the temperature of a gas stream at a predetermined velocity having a flow path and a heat exchanger disposed across the flow path. Approximately 3
~10 m of fluoropolymer tubing, and ca.
Consisting of a free span between each tube section of ~90 cm,
The flow path intersects at least five rows of tubes through which the heat transfer medium is circulated, the tubes being arranged such that the distance from center to center is approximately t25 to 5:0 times the tube diameter, and the free span is Ratio to tube diameter is approximately 50-15
0 and the Reynolds number is selected to be between about 800 and 3000 as the gas flow velocity passes through the arrayed tubes.
発明の詳細な記述
この発明は第1図に示すように、気体流1が入口2およ
び膨張部3を通って熱交換器を通過する。熱交換器のチ
ューブ4はチューブの各地部に位置するチューブシート
5および5Aの間に張設される。チューブはスペーサ乙
により2つの目的のために分離される。そのひとつは、
スは−サ間に約20〜9(1mの距離を有する各チュー
ブ区画の自由スパンを形成するためであり、もう1つの
目的はチューブの連続した列をチューブ直径の約1.2
5〜!1.0倍づつ分離させるためである。熱交換器を
通過した後、気体流は続いて出口8へと向う。DETAILED DESCRIPTION OF THE INVENTION The invention is illustrated in FIG. 1 in which a gas stream 1 passes through a heat exchanger through an inlet 2 and an expansion section 3. The tube 4 of the heat exchanger is stretched between tube sheets 5 and 5A located at each part of the tube. The tubes are separated by spacers for two purposes. One of them is
The purpose is to form a free span in each tube section with a distance of approximately 20 to 9 (1 m) between the tubes; another purpose is to separate successive rows of tubes with a distance of approximately
5~! This is to separate by 1.0 times. After passing through the heat exchanger, the gas stream continues towards outlet 8.
各チューブ区画の自由スパンを約20〜905+にする
と、チューブが低周波数、高振幅の振動を起すことがわ
かった。これは自己清浄機能とチューブの熱伝達係数の
増加という2つの利点を生ずる。チューブとスペーサは
、′1Ic2図により詳細に図示されている。スペーサ
6はスペーサ間に所望の自由スパンが保持されるよう、
ロッド9と共に用いられる。チューブはスペーサに設け
た開口部10を貫通している。It has been found that a free span of each tube section of about 20 to 905+ causes the tube to undergo low frequency, high amplitude vibrations. This provides the dual benefits of self-cleaning and an increased heat transfer coefficient of the tube. The tube and spacer are shown in more detail in Figure '1Ic2. The spacers 6 are arranged so that a desired free span is maintained between the spacers.
Used with rod 9. The tube passes through an opening 10 in the spacer.
スは−サは流れ方向に少なくとも5列のチューブからな
る列設チューブを形成する。それは任意の所望形状、例
えば図示の如く、正方形状にも、また三角形状にも配置
しうる。一般的には正方形状は気体流の圧力降下が少な
く、一方、三角形状は熱伝達が大きい。The spacer forms a row of tubes consisting of at least five rows of tubes in the flow direction. It may be arranged in any desired shape, for example square or triangular as shown. In general, a square shape results in less pressure drop in the gas flow, while a triangular shape provides greater heat transfer.
重合体製チューブは広範囲の種類のフッ素含有重合体か
ら製造しうるが、それらは望ましい熱伝達性、気体流の
腐蝕効果に対する抵抗性、およびすぐれた耐汚染性を合
せ持ったものとして知られてきた。特に好適なものは、
テトラフルオロエチレン重合体、米国特許第2,946
,765号明細書に記載されているようなテトラフルオ
ロエチレンとへキナフルオロプロヒレントノ共重合体、
および米国特許第3,132,123号明細書に記載さ
れているようなテトラフルオロエチレンとパーフルオロ
プロピルビニルエーテルとの共重合体である。なお、こ
の発明において使用しうる他のフッ素含有重合体には、
ポリビニリデンジフルオライド、およびポリテトラフル
オロエチレンとクブロートリフルオロエチレンの共重合
体も含まれる。Polymeric tubing may be made from a wide variety of fluorine-containing polymers, which are known for their combination of desirable heat transfer properties, resistance to the corrosive effects of gas flow, and excellent stain resistance. Ta. Particularly suitable are
Tetrafluoroethylene polymer, U.S. Patent No. 2,946
, a copolymer of tetrafluoroethylene and hequinafluoroproherent as described in No. 765,
and copolymers of tetrafluoroethylene and perfluoropropyl vinyl ether as described in U.S. Pat. No. 3,132,123. In addition, other fluorine-containing polymers that can be used in this invention include:
Also included are polyvinylidene difluoride and copolymers of polytetrafluoroethylene and cubrotrifluoroethylene.
さらに、ことに参考文献として挙げるレイリー (Re
illy)等の米国特許第3,718,1 s 1号明
細書に記載されているように、熱伝達特性をより改善す
るためにフッ素含有重合体に伝導性粒子を混入すること
もできる。黒鉛粒子が特に好適である。In addition, Rayleigh (Re
Conductive particles can also be incorporated into fluorine-containing polymers to further improve heat transfer properties, as described in U.S. Pat. Particularly preferred are graphite particles.
熱交換ユニットの端部で用いられるチューブシートは、
同じくここに参考文献として挙げるウイザーズ(Wit
hers)の米国特許第4315,740号明細書に記
載されているような既知技術によって作製できる。The tube sheet used at the end of the heat exchange unit is
Wizards (Wit), which is also cited here as a reference.
Hers, U.S. Pat. No. 4,315,740.
この熱交換装置の操作時には、水または同様の熱伝達流
体が熱交換器を通って循環される一方、同時に気体流が
熱交換チューブを横切るように通過する。列設チューブ
を通過する気体流のレイノルズ数は好ましくは約100
0〜2000である。レイノルズ数は公知の如く、最小
横断空間面積にチューブ直径と気体密度を掛けて、気体
粘度で割ったものに基づくものである。必要なレイノル
ズ数は、列設チューブに進入する気体速度を調整するか
、チューブの寸法や配置を調整するか、あるいはそれら
2つの方法を組合せるかして得られる。In operation of this heat exchange device, water or similar heat transfer fluid is circulated through the heat exchanger while a gaseous stream is simultaneously passed across the heat exchange tubes. The Reynolds number of the gas flow passing through the array tubes is preferably about 100.
It is 0-2000. The Reynolds number, as is known, is based on the minimum cross-sectional area multiplied by the tube diameter and the gas density divided by the gas viscosity. The required Reynolds number can be obtained by adjusting the gas velocity entering the array of tubes, by adjusting the size and placement of the tubes, or by a combination of the two methods.
この発明において熱伝達がなぜ改善されるのか、十分K
ll解されているわけではないが、レイノルズ数が約8
00より低いと、他の構造条件が満たされていても、気
体速度が小さすぎて可撓性チューブに何の動きも発生す
ることができず、チューブが剛性のものであるかのよう
に作用するものと考えられる。空気速度が増加するとチ
ューブは前後左右にばたつき動き始める。Why heat transfer is improved in this invention, enough K
Although it is not fully understood, the Reynolds number is approximately 8.
Below 00, even if other structural conditions are met, the gas velocity is too small to cause any movement in the flexible tube, causing it to act as if it were rigid. It is considered that As the air velocity increases, the tube begins to flap back and forth and side to side.
これが渦流形成を促進し、チューブ壁と気体流との間の
熱伝達速度を増加させる。この動きを生ずるのに必要な
エネルギーはそれ自体、剛性チューブの同様な列で生ず
るチューブ束による圧力降下より大きな圧力降下として
表われる。This promotes vortex formation and increases the rate of heat transfer between the tube wall and the gas stream. The energy required to produce this movement is itself expressed as a pressure drop greater than the pressure drop due to the tube bundle over a similar row of rigid tubes.
気体流の速度をさらに上げると、圧力降下と熱伝達速度
はレイノルズ数的8000で流れが乱流となるまで増加
する。As the gas flow velocity is further increased, the pressure drop and heat transfer rate increase until the flow becomes turbulent at a Reynolds number of 8000.
この発明で材質、寸法および速度の限定が必要であるの
はこの振動のためであり、この振動により剛性チューブ
の熱交換器から普通に期待される以上の大きな熱交換速
度が得られる。It is this oscillation that necessitates the material, size, and speed limitations of this invention, which provide greater heat exchange rates than would normally be expected from a rigid tube heat exchanger.
この発明によシ加熱されたり冷却される気体流は、腐蝕
性酸を形成しうる硫黄や窒素の酸化物を含む、さまざま
な腐蝕性成分を含有しうる。The gas stream heated or cooled according to the present invention can contain a variety of corrosive components, including oxides of sulfur and nitrogen that can form corrosive acids.
気体流の温度は約80〜240℃でなければならない。The temperature of the gas stream should be about 80-240°C.
温度が240℃を越えるとフッ素含有重合体チューブに
好ましくない影響を与えるし、一方80℃未満に気体流
を処理しても実用的利点はほとんどない。というのはこ
の温度よりかなり低く気体温度を下げても、昇温しよう
とする気体の自然的傾向により温度上昇してしまうから
である。Temperatures above 240°C have an undesirable effect on the fluoropolymer tube, while treating the gas stream below 80°C has little practical benefit. This is because even if the gas temperature is lowered well below this temperature, the natural tendency of the gas to warm up will cause the temperature to rise.
この発明を次の具体例によりさらに詳しく説明する。This invention will be explained in more detail by the following specific examples.
実施例および比較例
ナト2フルオロエチレンーパーフルオロビニルエーテル
共重合体製の約650本の中空可撓性チューブの試験束
を、高さ46a1幅46cpaの透明アクリル展箱体の
頂部と底部にある孔を通してチューブ群を張設すること
により作製した。これらのチューブは直径4.75−で
、試験箱体内部の同一の透明アクリル樹脂製のスペーサ
を貫通している。これらのスば一すは試験室の頂部の空
気流流路からはずれ念位置に取り除くことができるよう
になっており、チューブの軸方向長さに沿って各チュー
ブ区画の自由スパンが15〜46αになるように配設さ
れる。チューブは正方形状に穴が並ぶよう配置された。EXAMPLES AND COMPARATIVE EXAMPLES A test bundle of approximately 650 hollow flexible tubes made of Nato 2-fluoroethylene-perfluorovinyl ether copolymer was inserted into holes in the top and bottom of a transparent acrylic exhibition box measuring 46 cm high and 46 cpa wide. It was made by stretching the tube group through the tube. These tubes were 4.75 mm in diameter and passed through identical clear acrylic spacers inside the test box. These splices can be removed in position out of the air flow path at the top of the test chamber, and the free span of each tube section is 15 to 46 α along the axial length of the tube. It is arranged so that The tubes were arranged with holes arranged in a square shape.
熱交換エレメントは20列のチューブで作られた。The heat exchange element was made of 20 rows of tubes.
チューブはチューブ直径の約2.0倍の距離づつ離して
設置された。その端部は一緒に結合され、米国特許第3
,315,740号明細書に記載されたようにチューブ
シートを形成した。The tubes were spaced apart by a distance of approximately 2.0 tube diameters. The ends are joined together and the U.S. Pat.
Tubesheets were formed as described in , 315,740.
モジュールは風洞中に置かれ、圧力降下測定が約400
〜10,000の範囲のレイノルズ数に対応する空気流
速の中で行なわれた。The module was placed in a wind tunnel and pressure drop measurements of approximately 400
The experiments were carried out at air flow rates corresponding to Reynolds numbers in the range ˜10,000.
風洞中に設置後、30 psigまでの圧力の飽和水蒸
気が空気を加熱するためにチューブ束に導入されるよう
、水蒸気供給管を上流チューブシートに接続した。チュ
ーブ束から出た凝縮水蒸気はドレイントラップを介して
排出した。圧力、流れおよび温度の測定は、総体的熱伝
達係数およびチューブ束を横切る際の圧力降下がいろい
ろ々空気速度条件のもとて決定できるように行なわれた
。After installation in the wind tunnel, a steam supply tube was connected to the upstream tubesheet so that saturated steam at a pressure of up to 30 psig was introduced into the tube bundle to heat the air. Condensed water vapor from the tube bundle was discharged through a drain trap. Pressure, flow and temperature measurements were made so that the overall heat transfer coefficient and pressure drop across the tube bundle could be determined under various air velocity conditions.
圧力測定は傾斜マノメータ(油密度=829Kf/ml
)を用いて行なった。チューブ束を横切る空気速度は、
DI8A科学用恒温風速計で較正した工業用風速計で測
定した。チューブから空気へ。Pressure measurement was performed using an inclined manometer (oil density = 829 Kf/ml
) was used. The air velocity across the tube bundle is
Measurements were made with an industrial anemometer calibrated with a DI8A scientific thermostatic anemometer. From the tube to the air.
の熱流動は空気流の温度をJ型態電対で熱交換モジュー
ルの前後で測定することによシ検知した。加熱水蒸気圧
力は7 paigと15 paigを用いた。空気流速
は層流、遷移状態流および乱流状態にまたがる範囲で変
化させた。The heat flow was detected by measuring the temperature of the air stream with a J-type couple before and after the heat exchange module. The heating steam pressure used was 7 paig and 15 paig. Air flow rates were varied over a range spanning laminar, transition-state, and turbulent flow conditions.
圧力降下は次の式による無次元数として計算された:
ここでΔ9は圧力低下、パスカル
Nは流れ方向にあるチューブ列の数
Pは空気密度、KIl/m5
■はチューブ束内の最小横断面に基づ
いた空気流速、m7sec
総体的熱伝達係数、UOlは各条件下で実験的に求めら
れた。それから外部空気薄膜係数を逆算するために次の
式が用いられた:
Q = UOA (LMTD) ==WCpΔTここで
Aは熱伝達面積、m2
LMrDは対数平均温度差、C
Wは空気流量、tbAr
g
Cpは空気熱容量、1丁・℃
ΔTはチューブ束内外での空気温度の差にはチューブ装
態伝導度
twは壁厚さ
Do、D1ijチューブの外径および内径hiは既知の
工学的相互関係から計算される内部薄膜係数
終始一貫したSIユニットが上記計算のすべてに使用さ
れている。The pressure drop was calculated as a dimensionless number according to the following formula: where Δ9 is the pressure drop, Pascal N is the number of tube rows in the flow direction, P is the air density, and KIl/m5 is the minimum cross-section within the tube bundle. The air flow velocity, m7sec, based on the overall heat transfer coefficient, UOl, was determined experimentally under each condition. The following formula was then used to back-calculate the external air film coefficient: Q = UOA (LMTD) = = WCpΔT where A is the heat transfer area, m2 LMrD is the logarithmic mean temperature difference, CW is the air flow rate, tbAr g Cp is the air heat capacity, 1°C. ΔT is the difference in air temperature between the inside and outside of the tube bundle, the tube equipment conductivity tw is the wall thickness Do, D1ij is the outer diameter and inner diameter hi of the tube, which are known engineering correlations. A consistent SI unit with internal film coefficients calculated from .
外部薄膜係数、hOlは無次元数Jbとして表わされる
。The external thin film coefficient, hOl, is expressed as a dimensionless number Jb.
f′およびJbはレイノルズ数・Reの関数として゛第
3.4および5図に示されている。f' and Jb are shown in Figures 3.4 and 5 as functions of Reynolds number/Re.
−DoVP
Re −−
μ
チューブの振動は、空気流のレイノルズ数が約800以
上になったとき、観察された。振動の振幅は目に見える
ほど大きく、多くの場合チューブ直径の2倍以上であっ
た。-DoVP Re-- Vibration of the μ tube was observed when the Reynolds number of the air flow was about 800 or higher. The amplitude of the vibrations was visibly large, often more than twice the tube diameter.
試験の結果は第3〜5図にまとめられている。The results of the tests are summarized in Figures 3-5.
観察された圧力降下と振動しているチューブ束を横切る
熱伝達速度は、遷移状態領域(Re=800〜5000
)において、剛性金属チューブに基づいて文献の相互関
係により予想された値より高い。The observed pressure drop and heat transfer rate across the vibrating tube bundle are in the transition state region (Re = 800-5000
), higher than the values predicted by literature correlations based on rigid metal tubes.
第1図はこの発明の熱交換装置の横断面図である。第2
図は第1図の装置で用いることのできるチューブ束の斜
視図である。
第3図はこの発明の熱交換装置における圧力降下と気体
速度との間の関係を図示したものである。
第4.5図はこの発明の熱交換装置における熱伝達と気
体速度との間の関係を図示したもので、チューブの自由
スパン長さの重要性を示す。
外2名
Re
気イ本 速 度
Fig。4
/?e
気体速度FIG. 1 is a cross-sectional view of the heat exchange device of the present invention. Second
1 is a perspective view of a tube bundle that can be used in the apparatus of FIG. 1; FIG. FIG. 3 illustrates the relationship between pressure drop and gas velocity in the heat exchange apparatus of the present invention. Figure 4.5 illustrates the relationship between heat transfer and gas velocity in the heat exchanger of the present invention, illustrating the importance of the free span length of the tubes. Outside 2 people Re speed Fig. 4 /? e gas velocity
Claims (1)
器に通し、熱伝達媒体を熱交換器に循環させることによ
つて、気体流の温度を変化させる方法において、熱交換
器が列設された直径約3〜10mmのフッ素含有重合体
製チューブを含み、かつ各チューブ区画間の自由スパン
が約20〜90cmであるものであつて、気体流は熱伝
達媒体が循環されるチューブの少なくとも5列を横断し
て通過するものであり、該チューブは中心から中心まで
の距離がチューブの直径の約1.25〜5倍になるよう
配設され、気体流が列設チューブを通過する際のレイノ
ルズ数が約800〜3000になる速度を有し、自由ス
パンのチューブ直径に対する比が約50〜150である
ことを特徴とする方法。 2)フッ素含有重合体がテトラフルオロエチレンとヘキ
サフルオロプロピレンの共重合体である特許請求の範囲
第1項記載の方法。 3)フッ素含有重合体がテトラフルオロエチレンとパー
フルオロプロピルビニルエーテルの共重合体である特許
請求の範囲第1項記載の方法。 4)チューブがさらにフッ素含有重合体より実質的に高
い熱伝導率を有する充填剤粒子を約5〜45重量%含む
ものである特許請求の範囲第1項記載の方法。 5)伝導性充填剤粒子が黒鉛である特許請求の範囲第4
項記載の方法。 6)各チューブ区画間の自由スパンが約40〜60cm
である特許請求の範囲第1項記載の方法。 7)チューブの直径が約4.0〜6.5mmである特許
請求の範囲第1項記載の方法。 8)流路とその流路を横切つて配設された熱交換器を有
する所定速度の気体流の温度を変化させるための装置に
おいて、熱交換器が列設された直径約3〜10mmのフ
ッ素含有重合体チューブおよび約20〜90cmの各チ
ューブ区画間の自由スパンからなり、該流路が熱伝達媒
体の循環されるチューブの少なくとも10列を横断し、
チューブが中心から中心までの距離がチューブ直径の約
1.25〜3.0倍になるよう配設され、気体流がチュ
ーブ列を通過する際に約800〜3000のレイノルズ
数を有するような速度をもち、自由スパンのチューブ直
径に対する比が約50〜150であつて、パラメータは
気体流の速度で列設チューブを通る際のレイノルズ数が
約800〜3000になるように選択されることを特徴
とする装置。 9)フッ素含有重合体がテトラフルオロエチレンとヘキ
サフルオロプロピレンの共重合体である特許請求の範囲
第8項記載の装置。 10)フッ素含有重合体がテトラフルオロエチレンとパ
ーフルオロプロピルビニルエーテルの共重合体である特
許請求の範囲第8項記載の装置。 11)チューブがさらにフッ素含有重合体より実質的に
高い熱伝導率を有する充填剤粒子を約5〜45重量%含
むものである特許請求の範囲第8項記載の装置。 12)伝導性充填剤粒子が黒鉛である特許請求の範囲第
11項記載の装置。 13)各チューブ区画の自由スパンが約40〜65cm
である特許請求の範囲第11項記載の装置。 14)チューブの直径が約4.0〜6.5mmである特
許請求の範囲第11項記載の装置。[Claims] 1) A method of changing the temperature of a gas stream by passing the gas stream through a heat exchanger maintained at a different temperature than the gas stream and circulating a heat transfer medium through the heat exchanger. comprising fluorine-containing polymer tubes of about 3 to 10 mm in diameter in which a heat exchanger is arranged in a row, and the free span between each tube section is about 20 to 90 cm, and the gas flow is for heat transfer. The medium is circulated through at least five rows of tubes arranged such that the distance from center to center is about 1.25 to 5 times the tube diameter, and the gas flow passing through the arrayed tubes at a velocity such that the Reynolds number is about 800 to 3000, and the free span to tube diameter ratio is about 50 to 150. 2) The method according to claim 1, wherein the fluorine-containing polymer is a copolymer of tetrafluoroethylene and hexafluoropropylene. 3) The method according to claim 1, wherein the fluorine-containing polymer is a copolymer of tetrafluoroethylene and perfluoropropyl vinyl ether. 4) The method of claim 1, wherein the tube further comprises about 5-45% by weight filler particles having a thermal conductivity substantially higher than the fluorine-containing polymer. 5) Claim 4, wherein the conductive filler particles are graphite.
The method described in section. 6) Free span between each tube section is approximately 40-60 cm
The method according to claim 1. 7) The method of claim 1, wherein the tube has a diameter of about 4.0 to 6.5 mm. 8) In a device for changing the temperature of a gas stream having a predetermined velocity, which has a flow path and a heat exchanger disposed across the flow path, the heat exchanger is arranged in a row and has a diameter of about 3 to 10 mm. fluorine-containing polymer tubes and a free span between each tube section of about 20 to 90 cm, the flow path traversing at least 10 rows of tubes through which the heat transfer medium is circulated;
The tubes are arranged such that the distance from center to center is about 1.25 to 3.0 times the tube diameter, and the gas flow passes through the tube array at a velocity such that it has a Reynolds number of about 800 to 3000. , the ratio of free span to tube diameter is about 50 to 150, and the parameters are selected such that the Reynolds number at the velocity of the gas flow through the arrayed tubes is about 800 to 3000. A device that does this. 9) The device according to claim 8, wherein the fluorine-containing polymer is a copolymer of tetrafluoroethylene and hexafluoropropylene. 10) The device according to claim 8, wherein the fluorine-containing polymer is a copolymer of tetrafluoroethylene and perfluoropropyl vinyl ether. 11) The device of claim 8, wherein the tube further includes about 5 to 45% by weight filler particles having a thermal conductivity substantially higher than the fluorine-containing polymer. 12) The device of claim 11, wherein the conductive filler particles are graphite. 13) Free span of each tube section is approximately 40-65 cm
12. The apparatus according to claim 11. 14) The device of claim 11, wherein the tube has a diameter of about 4.0 to 6.5 mm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66897284A | 1984-11-07 | 1984-11-07 | |
US668972 | 1984-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61116292A true JPS61116292A (en) | 1986-06-03 |
Family
ID=24684505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24730085A Pending JPS61116292A (en) | 1984-11-07 | 1985-11-06 | Gas-liquid heat-exchanging method and device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0181614A1 (en) |
JP (1) | JPS61116292A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04501456A (en) * | 1988-11-01 | 1992-03-12 | インフラソニック アクティエボラーグ | Method and device for forced heat transfer between objects and gases |
JPH04501457A (en) * | 1988-11-01 | 1992-03-12 | インフラソニック アクティエボラーグ | Method and apparatus for forced heat transfer between an object and a gas |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8711428D0 (en) * | 1987-05-14 | 1987-06-17 | Du Pont Canada | Comfort heat exchanger |
DE3820866C2 (en) * | 1988-06-21 | 1996-06-05 | Sgl Technik Gmbh | Pipe for shell-and-tube heat exchangers |
FR2793011B1 (en) | 1999-04-29 | 2001-07-06 | Valeo Thermique Moteur Sa | FLEXIBLE TUBE HEAT EXCHANGER, PARTICULARLY FOR MOTOR VEHICLES |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5517319A (en) * | 1978-07-22 | 1980-02-06 | Sankin Kogyo Kk | Preparation of eugenol zinc salt |
JPS58214784A (en) * | 1982-05-28 | 1983-12-14 | ヌ−ベル・アプリカシオン・テクノロジク | Heat-exchange element and heat accumulator |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3132123A (en) * | 1960-11-25 | 1964-05-05 | Du Pont | Polymers of perfluoroalkoxy perfluorovinyl ethers |
US3417812A (en) * | 1966-11-30 | 1968-12-24 | Du Pont | Heat exchanger apparatus with a novel by-passing arrangement for shellside flow |
US3718181A (en) * | 1970-08-17 | 1973-02-27 | Du Pont | Plastic heat exchange apparatus |
US3805881A (en) * | 1971-08-17 | 1974-04-23 | Du Pont | Fluid heat exchange system |
US4271900A (en) * | 1978-06-28 | 1981-06-09 | E. I. Du Pont De Nemours And Company | Apparatus with expandable tube bundle |
-
1985
- 1985-11-06 JP JP24730085A patent/JPS61116292A/en active Pending
- 1985-11-07 EP EP85114212A patent/EP0181614A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5517319A (en) * | 1978-07-22 | 1980-02-06 | Sankin Kogyo Kk | Preparation of eugenol zinc salt |
JPS58214784A (en) * | 1982-05-28 | 1983-12-14 | ヌ−ベル・アプリカシオン・テクノロジク | Heat-exchange element and heat accumulator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04501456A (en) * | 1988-11-01 | 1992-03-12 | インフラソニック アクティエボラーグ | Method and device for forced heat transfer between objects and gases |
JPH04501457A (en) * | 1988-11-01 | 1992-03-12 | インフラソニック アクティエボラーグ | Method and apparatus for forced heat transfer between an object and a gas |
Also Published As
Publication number | Publication date |
---|---|
EP0181614A1 (en) | 1986-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins | |
Wang | Investigation of wavy fin-and-tube heat exchangers: a contribution to databank | |
Wang et al. | Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers | |
US8425656B2 (en) | Transport membrane condenser using turbulence promoters | |
Lin et al. | A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins | |
Shao et al. | Heat recovery with low pressure loss for natural veltilation | |
Rugh et al. | Study of a very compact heat exchanger used for passenger compartment heating in automobiles. | |
JPS61116292A (en) | Gas-liquid heat-exchanging method and device | |
Bartlett | The fundamentals of heat exchangers | |
US4643244A (en) | Gas-liquid heat exchange process and apparatus | |
Omohundro et al. | Heat transfer and fluid friction during viscous flow across banks of tubes | |
JP3862584B2 (en) | Heat transfer tube for falling film evaporator | |
Lapin et al. | Heat transfer coefficients for finned exchangers | |
Dreyer et al. | Heat and mass transfer coefficient and pressure drop correlations for a crossflow evaporative cooler | |
Kang et al. | Evaluation of the wavy fin geometry used in air-cooled finned-tube heat exchangers | |
Kırtepe et al. | Experimental Investigation of Heat Transfer and Friction Characteristics in L-Footed Spiral Fin-Tube Banks | |
Krause et al. | Heat transfer from horizontal serrated finned tubes in an air-fluidized bed of uniformly sized particles | |
Sarkar et al. | Heat transfer and pressure drop in turbulent flow through a tube with longitudinal perforated star-shaped inserts | |
Azad et al. | Thermal performance of heat pipe heat recovery system | |
Jang et al. | Heat and mass transfer performances of closed-type cooling towers | |
JPS5938596A (en) | Heat exchanger | |
JPS6034938Y2 (en) | Heat pipe heat exchanger | |
Kanakis | The effect of condensate inundation on steam condensation heat transfer to wire-wrapped tubing | |
Muneeshwaran et al. | Effect of Inclination Angle on the Airside Hydrothermal Performance of the Rectangular Plain Fin Heat Exchangers Operating Under Wet Conditions | |
Ebisu | Development of new concept air-cooled heat exchanger for energy conservation of air-conditioning machine |