JPS61115927A - Thermoplastic resin - Google Patents

Thermoplastic resin

Info

Publication number
JPS61115927A
JPS61115927A JP59236687A JP23668784A JPS61115927A JP S61115927 A JPS61115927 A JP S61115927A JP 59236687 A JP59236687 A JP 59236687A JP 23668784 A JP23668784 A JP 23668784A JP S61115927 A JPS61115927 A JP S61115927A
Authority
JP
Japan
Prior art keywords
weight
thermoplastic resin
diisocyanate
reaction
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59236687A
Other languages
Japanese (ja)
Other versions
JPH0586419B2 (en
Inventor
Hiroshi Ozawa
小沢 宏
Koji Takano
弘二 高野
Jiro Hikita
疋田 次郎
Tadashi Kitamura
正 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59236687A priority Critical patent/JPS61115927A/en
Publication of JPS61115927A publication Critical patent/JPS61115927A/en
Publication of JPH0586419B2 publication Critical patent/JPH0586419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To obtain a thermoplastic resin excellent in weather resistance, low- temperature flexibility and abrasion resistance, by reacting a hydroxy-terminated polyalkylene phthalate and polytetramethylene glycol with a diisocyanate. CONSTITUTION:A thermoplastic resin obtained by reacting 50-95wt% hydroxyl- terminated polyalkylene phthalate (A) of a number-average MW of 300-3,000 and 50-5wt% polytetramethylene glycol (B) [the sum of (A) and (B) is 100wt%] with a diisocyanate having the structure of the formula. When the number- average MW of the polyalkylene phthalate used is below 300, the resin is lacking in flexibility. When it exceeds 3,000, the resin has an undesirably decreased abrasion resistance. Therefore it is desirable that the number-average MW is 500-2,000. The polytetramethylene glycol contributes to improvement in, especially, low-temperature flexibility.

Description

【発明の詳細な説明】 本発明は耐候性、冷寒時の可撓性及び耐摩粍性にすぐれ
た新規な熱可塑性樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel thermoplastic resin having excellent weather resistance, flexibility in cold and cold conditions, and abrasion resistance.

従来よりポリウレタン樹脂は可撓性及び耐摩耗性にすぐ
れた物性を有することから多くの用途を期待されてきた
が、全般に耐候性が不良であり且つ樹脂の製造過程にお
いて副反応による分校構造を作〕易い為に1射出成盟等
による成形が困難で熱可塑性樹脂としての利用が十分行
えないのが実状であシ、主として熱硬化性樹脂として利
用されてきた。
Polyurethane resins have long been expected to be used in many applications due to their excellent physical properties such as flexibility and abrasion resistance. Because it is easy to manufacture, it is difficult to mold it by one injection molding, and the actual situation is that it cannot be used sufficiently as a thermoplastic resin, so it has been mainly used as a thermosetting resin.

本発明は従来の熱可塑性ポリウレタン樹脂の欠点を克服
しかつ耐候性及び特に冷寒時の可撓性に優れ、押出加工
や射出成製が容品である新規なポリエステルポリウレタ
ン系熱可塑性樹脂を提供するものである。
The present invention provides a new polyester polyurethane thermoplastic resin that overcomes the drawbacks of conventional thermoplastic polyurethane resins, has excellent weather resistance and flexibility especially in cold weather, and can be manufactured by extrusion or injection molding. It is something to do.

すなわち本発明は、 因 数平均分子量300〜3000を有するヒドロキシ
ル基末端ポリアルキレンフタレート30〜93重量憾と ■ ポリテトラメチレングリコール5O−S重量%〔囚
および■の和を700重量%とする〕とを 造を有するジイソシアネート と反応させて得られる熱可塑性樹脂である。
That is, the present invention comprises: 30-93% by weight of a hydroxyl group-terminated polyalkylene phthalate having a factor average molecular weight of 300-3000; It is a thermoplastic resin obtained by reacting with a diisocyanate having a structure.

上記んのポリアルキレン7タレートは、例えばテレフタ
ル酸、テレフタル酸ジメチル、イソフタル酸、無水7タ
ル酸、オルソフタル酸の如き7タル酸、フタル酸無水物
又は7タル酸のアルコールエステル類等の7タル酸系化
合物、例えば、エチレングリコール、フロピレンゲリコ
ール、/、弘ブタンジオール、/、3ブタンジオール、
ネオペンチルグリコール、/、jベンタンジオール、/
、6ヘキサンジオール、ドデカンジオール等のアルキレ
ングリコール類とのエステルであって、従来公知の方法
によって脱水縮合又はエステル交換反応によって作られ
る。この際、アルキレングリコールのヒドロキシル基の
当量数を、7タル酸類のカルボキシル基(無水物及びア
ルコールエステル基をも含む)当量数よシ過剰にすると
とくよって、ポリアルキレン7タレートの数平均分子量
を調整できる。従って上記の脱水縮合又はエステル交換
反応を出来る限シ完結せしめ、その結果としてポリアル
キレンテレフタレートの両分子末端をヒドロキシル基と
することが重要である。この際、反応終了時のOH価の
測定によって理論値との対比から反応率は算出され、カ
ルボキシル(又はカルボキシアルキルエステル)基準の
反応率がqS係以上、好ましくはqg係以上になるよう
に制御される。又、上記の囚ボリアyキレ/フタレート
の数平均分子量は、OH価の測定から算出され、囚ポリ
アルキレン7タレートの重量−)をOH基轟量数と未反
応末端基の当量数の和で割った値の2倍を数平均分子量
として定義する。
The above-mentioned polyalkylene 7-talates include, for example, terephthalic acid, dimethyl terephthalate, isophthalic acid, 7-thalic anhydride, 7-thalic acids such as orthophthalic acid, phthalic anhydride, or 7-thalic acids such as alcohol esters of 7-thalic acid. system compounds, such as ethylene glycol, fluoropylene gellicol, /, hirobutanediol, /, 3-butanediol,
Neopentyl glycol, /, j-bentanediol, /
, 6-hexanediol, dodecanediol, and other alkylene glycols, and is produced by dehydration condensation or transesterification using conventionally known methods. At this time, the number average molecular weight of the polyalkylene 7-talate is adjusted by making the number of equivalents of the hydroxyl group of the alkylene glycol in excess of the number of equivalents of the carboxyl group (including anhydride and alcohol ester group) of the 7-talic acids. can. Therefore, it is important to complete the above-mentioned dehydration condensation or transesterification reaction as much as possible so that both molecular ends of the polyalkylene terephthalate have hydroxyl groups. At this time, the reaction rate is calculated from the comparison with the theoretical value by measuring the OH number at the end of the reaction, and the reaction rate is controlled so that the reaction rate based on carboxyl (or carboxyalkyl ester) is qS coefficient or higher, preferably qg coefficient or higher. be done. In addition, the number average molecular weight of the above-mentioned polyalkylene 7-talate/phthalate is calculated from the measurement of the OH value, and the weight of the polyalkylene 7-talate is the sum of the number of OH groups and the number of equivalents of unreacted end groups. Twice the divided value is defined as the number average molecular weight.

数平均分子量が300未満では、可撓性が不十分であシ
、又、3ooo以上では耐摩耗性が低下し不適であシ、
特に数平均分子量が300〜2000であることが好ま
しい。
If the number average molecular weight is less than 300, the flexibility will be insufficient, and if it is more than 300, the abrasion resistance will decrease and it will be unsuitable.
In particular, it is preferable that the number average molecular weight is 300 to 2,000.

上記した7タル酸系化合物の中では、テレフタル酸骨格
及びイソフタル酸骨格を有するものが好適であ)、又上
記したアルキレングリコール類の中では対象の分子構造
を有するエチレングリコール、/#”−ブタ/ジオール
、ネオペンチルグリコール、/e乙−ヘキサンジオール
が特に好ましい。
Among the above-mentioned 7-thalic acid-based compounds, those having a terephthalic acid skeleton and an isophthalic acid skeleton are preferred), and among the above-mentioned alkylene glycols, ethylene glycol having the target molecular structure, /diol, neopentyl glycol, and /e-hexanediol are particularly preferred.

上記0のポリテトラメチレングリコールは、テトラヒド
ロフランの開環重合によって得られる分子両末端がヒド
ロキシル基のジオールであり、本発明の目的には、数平
均分子量が≠OO〜3000のものが好ましい。而して
ポリテトラメチレングリコールは、特に耐寒時の可撓性
の向上に寄与する。
The above polytetramethylene glycol 0 is a diol having hydroxyl groups at both molecular ends obtained by ring-opening polymerization of tetrahydrofuran, and for the purpose of the present invention, those having a number average molecular weight of ≠OO to 3000 are preferable. Thus, polytetramethylene glycol contributes to improving flexibility, especially during cold resistance.

構造を有するジイソシアネートは、α、α、α′、α′
−テトラメチールメタキシリレンジイソシアネート及び
α、Iα、α′、α′−テトラメチルパラキシリレンジ
イソシアネートである。
Diisocyanates with the structure α, α, α′, α′
-tetramethyl metaxylylene diisocyanate and α, Iα, α', α'-tetramethyl para-xylylene diisocyanate.

上記のΩジイソシアネートは、そのイソシアネート基の
当量数が上記のんポリアルキレンフタレート及びβポリ
テトラメチレングリコールのヒドロキシル基の合計当量
数と/:0.ヲ〜/:/、/、好ましくは/:θり5〜
/ : i0!;となるような割合で付加縮合させて本
発明の熱可塑性樹脂が得られる。又、^ポリアルキレン
フタレートと6ポリテトラメチレングリコールの使用割
合は、^がjtO〜9j重t’l’/C対1.fBカj
O−jT重量’4 C(AJ及び■の和を100重量係
とする。)であり、囚が!rO重量%未満では、強度が
不足であシ、又崗が93重量%を越えると冷寒時の可撓
性が低下し、本発明の目的を達しえず不適である。特に
囚が乙O〜デθ重量係に対しaが≠o−io重量%であ
ることが好ましい。
The above Ω diisocyanate has an equivalent number of isocyanate groups equal to the total number of equivalents of hydroxyl groups of the above non-polyalkylene phthalate and β-polytetramethylene glycol /:0. wo~/:/,/, preferably /:θri5~
/ : i0! The thermoplastic resin of the present invention is obtained by addition condensation at a ratio such that; Also, the ratio of polyalkylene phthalate and 6-polytetramethylene glycol used is: jtO~9jt'l'/C to 1. fB Kaj
O-jT weight '4 C (the sum of AJ and ■ is 100 weight factor), and the prisoner! If the content is less than 93% by weight, the strength will be insufficient, and if the content exceeds 93% by weight, the flexibility in cold weather will decrease, making it impossible to achieve the object of the present invention. In particular, it is preferable that a is ≠o-io weight % with respect to the weight ratio O-de θ.

上記の^ポリアルキレンフタレートと0ポリテトラメチ
レングリコール及びΩジイソシアネートの反応にあ九っ
ては、囚、6及びqを同時に反応させてもよいが、■ま
たはBのいずれかを過剰尚量のジイソシアネートと予め
反応させ、ついで残余の^またはaを加えて反応を完結
せしめる方が好ましい。
In the above reaction of polyalkylene phthalate, 0 polytetramethylene glycol and Ω diisocyanate, 6 and q may be reacted at the same time, but either 2 or B may be reacted with an excess amount of diisocyanate. It is preferable to react in advance with ^ or a and then add the remaining ^ or a to complete the reaction.

又、従来広く用いられているジイソシアネート、例、t
ばトリレンジイソシアネートtたはジフェニルメタンジ
イソシアネート等とポリヒドロキシ化合物との反応では
、生成する樹脂の粘度が十分混合可能で且つ均一に反応
を進行せしめうる温度においては、アロファネートの副
生に伴う分枝化がおこシ、成凰可能な樹脂は得難く、又
副反応を制御する為の低温においては多量の有機溶剤中
で反応を進める必要があシ、その有機溶媒の除去に要す
るエネルギーや容積効率の点で著しく生産性が劣る。こ
れに対し上記のρのジイソシアネートは、ヒドロヤシル
基に対する反応が緩まんであシ、又アロファネートの副
生がおこシにくいので、均一な反応が十分可能な粘度で
ある温度、例えば100〜200°Oの温度において、
有機溶媒を用いることなく本発明の熱可塑性樹脂を製造
することが出来る。勿論、この反応過程において不活性
な有機溶媒を使用することを妨げるものではない、即ち
、上記の^アルキレン7タレート及び0テトラメチレン
グリコールと上記のρのジイソシアネートとの反応は、
通常/θθ〜200°0で行なうことができる。また、
有機溶媒を用いる場合には、100°0以下の反応温度
でも差し支えなく、更に例えば有機錫、有機鉛、第3級
アミン等の反応促進剤を併用してもよい。而して有機溶
媒を用いた場合には、真空で有機溶媒を留去するかまた
は本発明の熱可塑性樹脂を溶解しない溶媒、例えば炭化
水素類中に攪拌しながら投入し、凝集沈澱せしめ、乾燥
して本発明の熱可塑性樹脂を得ることが出来る。
In addition, conventionally widely used diisocyanates, such as t
In the reaction of tolylene diisocyanate or diphenylmethane diisocyanate, etc. with a polyhydroxy compound, at a temperature where the viscosity of the resulting resin is sufficient to allow mixing and the reaction to proceed uniformly, branching due to allophanate by-product may occur. However, it is difficult to obtain resins that can be easily formed, and it is necessary to proceed with the reaction in a large amount of organic solvent at low temperatures to control side reactions, which requires energy and volumetric efficiency to remove the organic solvent. Productivity is significantly lower in this respect. On the other hand, the diisocyanate with the above ρ does not react slowly with the hydroyacyl group, and is less likely to produce allophanate as a by-product, so it is heated at a temperature where the viscosity is sufficient to allow a uniform reaction, e.g. 100 to 200°O. At temperature,
The thermoplastic resin of the present invention can be produced without using an organic solvent. Of course, this does not preclude the use of inert organic solvents in this reaction process, i.e., the reaction of the above ^alkylene 7-talate and 0 tetramethylene glycol with the above diisocyanate of ρ is
Normally, it can be carried out at /θθ~200°0. Also,
When an organic solvent is used, the reaction temperature may be 100° or less, and a reaction accelerator such as organic tin, organic lead, or tertiary amine may also be used in combination. When an organic solvent is used, the organic solvent is distilled off in vacuo, or the thermoplastic resin of the present invention is poured into a solvent such as hydrocarbons with stirring, coagulated and precipitated, and then dried. The thermoplastic resin of the present invention can be obtained in this manner.

本発明の熱可塑性樹脂は、重量平均分子量が2万以上で
あることが得られる成型物シート等の強度等の点から好
ましく、特に8万〜80万であることが成型性および強
度の両面からみて好ましい。
The thermoplastic resin of the present invention preferably has a weight average molecular weight of 20,000 or more from the viewpoint of the strength of the molded product sheet etc. In particular, it is preferably 80,000 to 800,000 from the viewpoint of both moldability and strength. I like it.

本発明の熱可塑性樹脂は、耐候性、冷寒時の可撓性およ
び耐摩耗性にすぐれるところから、包装資材、建築資材
、ホットメルト型接着剤、金属被覆材、パイプ、ガスケ
ット類、電線、光ファイバー等の線材の被覆剤等多様な
用途に用いることが出来、又押出によるフィルム化、射
出成型、押出しコーティング、プレス加工等の通常な熱
可塑性樹脂の加工方法によって上記用途への応用がなさ
れる。
The thermoplastic resin of the present invention has excellent weather resistance, flexibility in cold and cold conditions, and abrasion resistance. It can be used for a variety of purposes, such as as a coating for wire rods such as optical fibers, and can be applied to the above uses by ordinary thermoplastic resin processing methods such as extrusion film formation, injection molding, extrusion coating, and press processing. Ru.

又、本発明の熱可塑性樹脂の実用に際しては、着色顔料
、体質顔料、およびガラスファイバー、メタルファイバ
ーの如き強化ファイバーのような充填剤や酸化防止剤、
紫外線吸収剤、離型剤、滑剤等の助剤類を目的に応じて
使用することが可能である。
In addition, when the thermoplastic resin of the present invention is put into practical use, coloring pigments, extender pigments, fillers such as reinforcing fibers such as glass fibers and metal fibers, antioxidants,
Auxiliary agents such as ultraviolet absorbers, mold release agents, and lubricants can be used depending on the purpose.

又、本発明の熱可塑性樹脂を他の熱可塑性樹脂または熱
硬化性樹脂と混合して使用することも可能である。以下
、実施例、比較例を示し、本発明を更に具体的に説明す
る。
It is also possible to use the thermoplastic resin of the present invention in combination with other thermoplastic resins or thermosetting resins. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

参考例 ポリアルキレンフタレートの合成 攪拌機、凝縮器、温度計を備えた反応器中に、表1に示
す(AJ〜■)の各々の原料を仕込み、加熱して内温か
150℃に達した時点で反応促進剤として原料仕込重量
に対し0.1重量%に相当するテトラブトキシチタンを
加え、生成する水又はメタノールを溜去しながら、内温
を毎時15℃の速度で昇温し、最後は210℃に保って
表1に示す時間(脱水又は脱メタノールの開始から反応
終了までの時間)反応させて各々のポリアルキレンフタ
レート囚〜(D+を得た。囚〜(D)のOH価の測定か
ら求めた反応率及び数平均分子量を併せて表1に記載し
tう実施例/〜6 (1)  付加縮合による熱可盟性樹脂の合成:表2の
実施例/〜6に示す重量のポリテトラメチレングリコー
ルとジイソシアネートとを攪拌機、温度計、凝縮器、窒
素導入口及び加熱可能な滴下槽を有する反応器に入れ、
窒素を気相に流しながら加熱攪拌を行い、表コ記載の温
度及び時間で第一段の反応を行った。次に表2記載の各
々のポリアルキレンフタレートを滴下槽で加熱溶解し、
反応器中に添加し表2記載の温度及び時間で第二段の反
応を行って実施例/〜乙の本発明の熱可盟性樹脂を得た
。各樹脂は、残留インシアネート基の赤外線吸収スペク
トルからほぼ定量的に反応が進行していることが確めら
れた。又、各々の樹脂の重量平均分子量をGPC法(ポ
リスチレン換算値)で測定し併せて表2に記載した。
Reference Example Synthesis of Polyalkylene Phthalate Into a reactor equipped with a stirrer, a condenser, and a thermometer, each of the raw materials (AJ to ■) shown in Table 1 was charged, and heated until the internal temperature reached 150°C. Tetrabutoxytitanium equivalent to 0.1% by weight based on the weight of the raw materials was added as a reaction accelerator, and the internal temperature was raised at a rate of 15°C per hour while distilling off the water or methanol produced, until the final temperature was 210°C. ℃ and allowed to react for the time shown in Table 1 (time from the start of dehydration or demethanolization to the end of the reaction) to obtain each polyalkylene phthalate (D+). From the measurement of the OH value of (D), The obtained reaction rates and number average molecular weights are also listed in Table 1. (1) Synthesis of thermoplastic resin by addition condensation: Polymers with the weights shown in Examples/-6 in Table 2 Tetramethylene glycol and diisocyanate are placed in a reactor having a stirrer, a thermometer, a condenser, a nitrogen inlet and a heatable dropping tank,
The mixture was heated and stirred while flowing nitrogen into the gas phase, and the first stage reaction was carried out at the temperature and time shown in Table 1. Next, each polyalkylene phthalate listed in Table 2 was heated and dissolved in a dropping tank.
It was added into a reactor and a second stage reaction was carried out at the temperature and time listed in Table 2 to obtain the thermoplastic resins of the present invention in Examples/--B. It was confirmed that the reaction of each resin proceeded almost quantitatively from the infrared absorption spectrum of the residual incyanate group. Further, the weight average molecular weight of each resin was measured by the GPC method (polystyrene equivalent value) and is also listed in Table 2.

(2)熱可塑性樹脂の評価: 実施例1〜6の各々の熱可塑性樹脂をスクリュー径40
日ダの押出機を用い表8記載の各温度でTダイを通して
押出し、50℃の冷却ロールを通して巻き取り、50μ
のフィルムを得た。
(2) Evaluation of thermoplastic resin: Each thermoplastic resin of Examples 1 to 6 was tested with a screw diameter of 40
Extruded through a T-die at each temperature listed in Table 8 using a Hida extruder, wound up through a cooling roll at 50°C, and
obtained the film.

得られたフィルムの抗張力及び伸度を常温及び−40℃
にて測定し、又耐摩耗性テスト及びクエザーオメーター
の照射テストを行い、その結果を表8に記載した。
The tensile strength and elongation of the obtained film were measured at room temperature and -40℃.
In addition, an abrasion resistance test and a Quesar-Ometer irradiation test were conducted, and the results are listed in Table 8.

比較例1 前記、実施例の付加縮合による熱可塑性樹脂の合成と同
様な装置を用い、まずポリテトラメチレングリコール(
数平均分子量500 ) 200重量部とα、α、αI
、αl−テトラメチルメタキシリレンジイソシアネート
866重量部を140’cで2時間加熱混合した後、ビ
スヒドロキンエチレンテレフタレート(分子量254 
) 800重量部を加え、150℃で8時間更に加熱混
合し、残留インンアネート基が赤外線吸収スペクトルか
ら消失したことを確め、熱可塑性樹脂を得た。この樹脂
の重量平均分子量は5.8万であった。
Comparative Example 1 Using the same apparatus as that used for the synthesis of thermoplastic resin by addition condensation in Example above, polytetramethylene glycol (
Number average molecular weight 500) 200 parts by weight and α, α, αI
, 866 parts by weight of αl-tetramethyl metaxylylene diisocyanate were heated and mixed at 140'C for 2 hours, and then bishydroquine ethylene terephthalate (molecular weight 254
) 800 parts by weight was added and further heated and mixed at 150° C. for 8 hours, and it was confirmed that the residual inanate group had disappeared from the infrared absorption spectrum, and a thermoplastic resin was obtained. The weight average molecular weight of this resin was 58,000.

この樹脂を用い実施例と同様にして50μのフィルムを
得、実施例と同様にして評価を行いその結果を表8に併
せて記載する。
Using this resin, a 50μ film was obtained in the same manner as in the Examples, and evaluated in the same manner as in the Examples, and the results are also listed in Table 8.

比較例2 前記実施例に記載したポリアルキレンフタレートの合成
と同様な装置を用い、ジメチルテレフタレート1164
  重量部及び1.6−へキチンジオール767重量部
を仕込み、反応促進剤として上記原料に対し0.1重量
%のテトラブトキシチタンを加え実施例と同様な操作で
24時間反応を行った。留出したメタノール量は768
重量部でヒドロキシル価から求めを反応率は100%、
数平均分子量は8094であった。
Comparative Example 2 Dimethyl terephthalate 1164
Parts by weight and 767 parts by weight of 1.6-hequitinediol were charged, and 0.1% by weight of tetrabutoxytitanium was added to the above raw materials as a reaction accelerator, and the reaction was carried out for 24 hours in the same manner as in the example. The amount of methanol distilled out was 768
The reaction rate is 100%, calculated from the hydroxyl value in parts by weight.
The number average molecular weight was 8,094.

上記のポリアルキレンフタレート850重量部を140
℃で溶解しつづいてα、α、α′、αI−テトラメチル
メタキシリレンジイソシアネート104重量部を加え2
時間加熱し、更にポリテトラメチレングリコール(数平
均分子量1000 ) 150重量部を加え、150℃
で4時間反応させて残留インシアネート基が赤外線吸収
スペクトルから消失したことを確め、熱可塑性樹脂を得
た。この樹脂の重量平均分子量は’Zq万であった。
140 parts by weight of the above polyalkylene phthalate
While melting at ℃, 104 parts by weight of α, α, α', αI-tetramethyl metaxylylene diisocyanate was added.
After heating for a while, 150 parts by weight of polytetramethylene glycol (number average molecular weight 1000) was added, and the mixture was heated to 150°C.
After reacting for 4 hours, it was confirmed that the residual incyanate groups had disappeared from the infrared absorption spectrum, and a thermoplastic resin was obtained. The weight average molecular weight of this resin was 'Zq million.

この樹脂を用いて実施例と同様にしてSθμのフィルム
を得、実施例と同様にして評価を行い、その結果を表I
C併せて記載する。
Using this resin, a film of Sθμ was obtained in the same manner as in the example, and evaluated in the same manner as in the example, and the results are shown in Table I.
C will also be described.

比較例3 前記ポリテトラメチレングリコール(数平均分子量SO
O>μQ重量部とα、α、α′、α′−テトラメチルメ
タキシリレンジイソシアネート、24.3−重量部を実
験番号(zlと同様な条件にて反応させ、次に前記ポリ
アルキレンフタレート■q60重量部を加え、実験番号
(1)と同様な条件でta2段の反応を行いft重量平
均分子量!i:A万の熱可塑性樹脂を得た。
Comparative Example 3 The polytetramethylene glycol (number average molecular weight SO
Parts by weight of O>μQ and 24.3 parts by weight of α, α, α', α'-tetramethyl metaxylylene diisocyanate were reacted under the same conditions as in Experiment No. (zl), and then the polyalkylene phthalate 60 parts by weight of q was added, and a two-stage reaction of ta was carried out under the same conditions as in Experiment No. (1) to obtain a thermoplastic resin having a weight average molecular weight of ft.i:A million.

実施例と全く同様にして!rθμのフィルムを作成し評
価を行った。評価結果を表3IC併せて記載する。
Do exactly the same as the example! A film of rθμ was prepared and evaluated. The evaluation results are also listed in Table 3IC.

比較例弘 前記ポリテトラメチレングリコール(数平均分子量/!
f00)!!j;−0重量部とα、α、α′、α′−テ
トラメチルメタキシリレンジイソシアネート2AgTL
量部を実験番号(5)と同様な条件にて反応させ、次に
前記ポリアルキレン7タレートρtt、!ro重量部を
加え、実験番号(5)と同様な条件で第2段の反応を行
い重量平均分子量/1Aj−万の熱可塑性樹脂を得た。
Comparative Example Hiro's polytetramethylene glycol (number average molecular weight/!
f00)! ! j; -0 parts by weight and α, α, α′, α′-tetramethyl metaxylylene diisocyanate 2AgTL
Amounts were reacted under the same conditions as in Experiment No. (5), and then the polyalkylene 7-talate ρtt,! A second stage reaction was carried out under the same conditions as in Experiment No. (5) to obtain a thermoplastic resin having a weight average molecular weight of 1Aj-10,000.

実施例と全く同様にしてSOμのフィルムを作成し評価
を行った。評価結果を表3に併せて記載する。
SOμ films were prepared and evaluated in exactly the same manner as in the examples. The evaluation results are also listed in Table 3.

比較例S 表1記載のポリアルキレンフタレートC)ioo。Comparative example S Polyalkylene phthalate C)ioo listed in Table 1.

重量部を/ j O’Oで溶解し、3q7を置部のα。Dissolve part by weight with /j O'O, add 3q7 to α.

α、α′、α′−テトラメチルメタキシリレンジイソシ
アネートを7時間にわたって滴下し、更に/!O°Oで
2時間加熱混合し比較例の熱可塑性樹脂を合成した。重
量平均分子量は/a3万であった。次に実施例と同様に
して、5′Qμのフィルムを作成し、評価を行った。そ
の結果を表3に併記する。
α,α′,α′-tetramethylmethaxylylene diisocyanate was added dropwise over 7 hours, and further /! A thermoplastic resin of a comparative example was synthesized by heating and mixing at O°O for 2 hours. The weight average molecular weight was /a30,000. Next, a 5'Qμ film was prepared and evaluated in the same manner as in the example. The results are also listed in Table 3.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)数平均分子量300〜3000を有するヒ
ドロキシル基末端ポリアルキレンフタレ ート50〜95重量%と (B)ポリテトラメチレングリコール50〜5重量%〔
(A)および(B)の和を100重量%とする〕とを (C)一般式▲数式、化学式、表等があります▼の 構造を有するジイソシアネート と反応させて得られる熱可塑性樹脂。
(1) (A) 50-95% by weight of hydroxyl-terminated polyalkylene phthalate having a number average molecular weight of 300-3000 and (B) 50-5% by weight of polytetramethylene glycol [
The sum of (A) and (B) is 100% by weight] is reacted with (C) a diisocyanate having the structure of general formula ▲ Numerical formula, chemical formula, table, etc. ▼.
JP59236687A 1984-11-12 1984-11-12 Thermoplastic resin Granted JPS61115927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236687A JPS61115927A (en) 1984-11-12 1984-11-12 Thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236687A JPS61115927A (en) 1984-11-12 1984-11-12 Thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS61115927A true JPS61115927A (en) 1986-06-03
JPH0586419B2 JPH0586419B2 (en) 1993-12-13

Family

ID=17004283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236687A Granted JPS61115927A (en) 1984-11-12 1984-11-12 Thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS61115927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202610A (en) * 1987-02-17 1988-08-22 Kuraray Co Ltd Production of polyurethane
JPH06500146A (en) * 1991-03-06 1994-01-06 ビーエーエスエフ コーティング アクチェンゲゼルシャフト Method for producing multilayer protective and/or decorative coatings
WO2001053374A1 (en) * 2000-01-24 2001-07-26 Mitsui Chemicals, Incorporated Urethane resin composition for sealing optoelectric conversion devices
JP2014234406A (en) * 2013-05-31 2014-12-15 アキレス株式会社 Polyurethane foam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893463A4 (en) * 1996-12-30 2000-03-22 Daicel Chem Polyester elastomers, processes for preparing the same, and compositions of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142527A (en) * 1984-07-30 1986-03-01 アメリカン・サイアナミド・カンパニー P-tmxdi polyurethane elastomer having high compression permanent strain characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142527A (en) * 1984-07-30 1986-03-01 アメリカン・サイアナミド・カンパニー P-tmxdi polyurethane elastomer having high compression permanent strain characteristics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202610A (en) * 1987-02-17 1988-08-22 Kuraray Co Ltd Production of polyurethane
JPH06500146A (en) * 1991-03-06 1994-01-06 ビーエーエスエフ コーティング アクチェンゲゼルシャフト Method for producing multilayer protective and/or decorative coatings
WO2001053374A1 (en) * 2000-01-24 2001-07-26 Mitsui Chemicals, Incorporated Urethane resin composition for sealing optoelectric conversion devices
JP2014234406A (en) * 2013-05-31 2014-12-15 アキレス株式会社 Polyurethane foam

Also Published As

Publication number Publication date
JPH0586419B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
Niesten et al. Synthesis and properties of segmented copolymers having aramid units of uniform length
CN1221430A (en) Polyisocyanate modified isomonoolefin-paraalkylstyrene elastomeric compositions
JPH02170816A (en) Bulk polymerization of polyurethane by using extruder
EP0299068B1 (en) Process for producing polyurethane
CN101173032A (en) Large-molecular weight polyurethane acrylic ester and synthesizing method thereof
Xiang et al. Effect of soft chain length and generation number on properties of flexible hyperbranched polyurethane acrylate and its UV-cured film
JP2825969B2 (en) Method for producing aliphatic polyester
EP0572682B1 (en) Process for producing high-molecular aliphatic polyester, and film
CN113980230A (en) Moisture-resistant thermoplastic polyurethane elastomer material and preparation method thereof
JPS61115927A (en) Thermoplastic resin
CN113993926A (en) Biodegradable resin composition having improved mechanical properties, moldability and weather resistance, and process for producing the same
US20070060687A1 (en) Resin compositions
Allauddin et al. Synthesis & characterization of benzaldehyde modified acetoacetylated polyesters for polyurethane/urea coatings
JPH02276878A (en) One pack type polyurethane thermosetting coating composition
JPH0678413B2 (en) Thermoplastic resin composition
MXPA02006393A (en) Radio-hardenable powder paints.
JP3196496B2 (en) Paint for pre-coated steel sheet, pre-coated steel sheet and method for producing the same
JPH02160820A (en) Polyurethane resin composition
JP3625971B2 (en)   Method for producing polyester elastomer
JP3046658B2 (en) Method for producing polyester containing urethane bond
JPH0547564B2 (en)
JPH05178956A (en) Production of high-molecular aliphatic polyester
JPH1160674A (en) Preparation of thermoplastic polyurethane resin having high dynamic storage modulus
JP3125387B2 (en) Method for producing polyester containing urethane bond
JP3079712B2 (en) Film formed using polyester containing urethane bond