JPS61115307A - Thermal radiation shield plate for superconducting magnet - Google Patents

Thermal radiation shield plate for superconducting magnet

Info

Publication number
JPS61115307A
JPS61115307A JP59236619A JP23661984A JPS61115307A JP S61115307 A JPS61115307 A JP S61115307A JP 59236619 A JP59236619 A JP 59236619A JP 23661984 A JP23661984 A JP 23661984A JP S61115307 A JPS61115307 A JP S61115307A
Authority
JP
Japan
Prior art keywords
cryostat
fixed
shield plate
radiation shield
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236619A
Other languages
Japanese (ja)
Inventor
Isao Kurita
勲 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59236619A priority Critical patent/JPS61115307A/en
Publication of JPS61115307A publication Critical patent/JPS61115307A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0687Special properties of materials for vessel walls superconducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0509"Dewar" vessels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To keep uniform a shielding effect as a whole by a structure wherein shield plates on inner-tube and outer-tube sides are fixed to the inner and outer tubes of a cryostat respectively at a plurality of points in the axial and circumferential directions and the thermal shrinkage in the circumferential direction is absorbed by a change in the shape of the shield plates between supporting points. CONSTITUTION:Radiation shield plates 6a and 6b are provided between a coil and a cryostat in order to shield a radiant heat so that a heat from the outer tube 5a of the cryostat, which is an atmospheric temperature, and a heat from the inner tube side 5b may not be transmitted to a superconducting coil 1, and liquid nitrogen pipings are wound round thereon respectively so as to keep them at the temperature of liquid nitrogen. Moreover, a heat insulating material 7 is provided on the cryostat side, and it is supported by the cryostat. The shield plates are fixed by bolts 9 to the cryostat through the intermediary of distant pieces 8 fixed to the cryostat in all the four places in the circumferential direction at supporting points in the center in the axial direction. At other supporting points fixing bolts 10 and the distant pieces 8 are fixed with a gap between them, and therefore the move of the shield plates in the axial direction is made free.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超電導磁石に係り、特に、高エネルギ物質の
分野で用いられるソレノイド形の超電導電磁石の熱放射
シールド板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a superconducting magnet, and particularly to a thermal radiation shield plate for a solenoid-type superconducting electromagnet used in the field of high-energy materials.

〔発明の背景〕[Background of the invention]

従来、超電導電磁石の放射シールド板は、大気温度のク
ライオとの温度差によって熱応力が生じないよ5に分割
してクライオに取付け、熱収縮差を吸収する方法(実開
昭57−134809)や、ルノイド軸が縦のものでは
、上端から吊シ下げて吸収する方法(特公昭49−36
797慶6るが分割、合せ目の動きが大きく、シールド
板に付ける断熱層がこわれやすいこと、吊り下げる方法
をンレイド軸が横のものに応用すると、シールド板全体
が熱収縮によって小さくなると、その収縮量だけ、下端
が上がり、シールド板筒の中心がずれる欠点がある。
Conventionally, the radiation shield plate of a superconducting electromagnet has been divided into five parts and attached to the cryo to prevent thermal stress from occurring due to the temperature difference between the cryo and the cryo at atmospheric temperature, and the method has been used to absorb the difference in thermal shrinkage (Utility Model Publication No. 57-134809). For those with vertical lunoid shafts, there is a method of absorbing the lunoid by hanging it from the upper end (Special Publication No.
797 Kei6ru has large movement at the split and seam, and the insulation layer attached to the shield plate is easily damaged.If the hanging method is applied to a case where the laid shaft is horizontal, the entire shield plate becomes smaller due to heat shrinkage. The disadvantage is that the lower end rises by the amount of contraction, causing the center of the shield plate cylinder to shift.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の欠点を補う7−ルド板を提
供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a 7-fold plate which compensates for the drawbacks of the prior art.

〔発明の概要〕[Summary of the invention]

本発明の要点は、内筒側および外筒側シールド板をそれ
ぞれクライオの内筒および外筒に、軸方向と周方向に複
数点で固定し、この支持点め支持を、ソレノイド軸の軸
方向に可動、半径方向に固定として、周方向の熱収縮は
支持点間の7−ルド板の変形で吸収する構造にある。た
だし、軸方向の位置の基準を明確にするため、軸方向の
一断面の支持点を全て軸方向に固定しても良い。
The gist of the present invention is to fix the inner and outer shield plates to the inner and outer cylinders of the cryo at multiple points in the axial and circumferential directions, and to provide support at these support points in the axial direction of the solenoid shaft. It is movable in the radial direction and fixed in the radial direction, and thermal contraction in the circumferential direction is absorbed by the deformation of the seven-fold plate between the supporting points. However, in order to clarify the reference of the position in the axial direction, all the support points of one section in the axial direction may be fixed in the axial direction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図および第2図によシ説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は間接冷却式ソレノイド形超電導電磁石の構造を
示し、第2図はその断面を示す。
FIG. 1 shows the structure of an indirectly cooled solenoid type superconducting electromagnet, and FIG. 2 shows its cross section.

lはンレノイド状超電導コイルで、液体ヘリツム冷却管
が巻回されるサポートシリンダー2によってサポートさ
れ、軸サポート3とラジアル丈ボー)4.4’により真
空容器(以下クライオと称するン外筒5aiCまた支持
される。
1 is a superconducting coil in the form of a superconductor, which is supported by a support cylinder 2 around which a liquid helium cooling tube is wound, and is supported by an axial support 3 and a radial length bow 4.4' of a vacuum vessel (hereinafter referred to as cryo) and an outer cylinder 5aiC. be done.

放射シールド板5a、5bは、大気温度でめるクライオ
外筒5a、および内筒5bからの熱が、超電導コイル1
に伝わらないよう放射熱をシールドする目的で、コイル
とり2イオ間に設けられるもので、液体窒素配管が巻回
され、液体窒素温度に保たれ、また、クライオ側に断熱
材7が設けられ、り2イオから支持される。
The radiation shield plates 5a and 5b prevent the heat from the cryo outer cylinder 5a and the inner cylinder 5b, which are heated at atmospheric temperature, from reaching the superconducting coil 1.
In order to shield the radiant heat from being transmitted to the cryo, it is installed between the coil handle 2 and the cryo. A liquid nitrogen pipe is wound around the cryo to maintain the liquid nitrogen temperature, and a heat insulating material 7 is provided on the cryo side. Supported by Ri2io.

外筒側、内筒側とも支持点は軸方向に五ケ所、半径方向
には一断面で四ケ所で支持される。
Both the outer cylinder side and the inner cylinder side are supported at five support points in the axial direction, and at four points in one cross section in the radial direction.

軸方向の中央の支持点では第3図のように、周方向四ケ
所とも、ボルト9で、クライオに固定されているディス
タンドピース8を介して、クライオに固定される。
As shown in FIG. 3, the central support point in the axial direction is fixed to the cryo using bolts 9 at all four locations in the circumferential direction via distance pieces 8 fixed to the cryo.

他の支持点では、第4図のように1固定ボルトlOとデ
ィスタンドピース8は隙間を持って固定されるため、シ
ールド板の軸方向の動き社、自由である。第3図、第4
図がわかるように、半径方向には動くことはできない。
At other supporting points, the fixing bolt 1 and the distance piece 8 are fixed with a gap as shown in FIG. 4, so that the shield plate can move freely in the axial direction. Figures 3 and 4
As you can see, it cannot move in the radial direction.

また、第5図に示すように周方向の動きも阻止される。Further, as shown in FIG. 5, movement in the circumferential direction is also prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射シールド板が冷却され、熱収縮す
ると、軸方向は、中央の固定点側へ収縮され、半径方向
は、支持点を固定点として支持点間で外筒側ではクライ
オ外筒から離れる方向、内筒側ではクライオ内筒へ近ず
く方向に変形するが、シールド板全体がクライオの軸中
心に対して偏心することはなく、全体の7−ルド効果が
均一で、かつ、分割形のように分割部に隙間が生じて、
シールド効果を下げることもない。
According to the present invention, when the radiation shield plate is cooled and thermally contracted, the radiation shield plate is contracted in the axial direction toward the central fixed point, and in the radial direction, between the supporting points and the outer cylinder side, it is Although the shield plate deforms in the direction away from the cylinder and in the direction towards the cryo-inner cylinder on the inner cylinder side, the entire shield plate does not become eccentric with respect to the axial center of the cryo, and the overall shielding effect is uniform, and There is a gap in the split part like the split type,
It does not reduce shield effectiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるソレノイド形超電導電磁石の上半
分のみを断面した側面図、第2図は第1図の■−■矢視
断面図、第3図は、第1図の■部詳細図、第4図は第1
図の■部詳細図、第5図は、第4図のv−■矢視断面図
である。 1・・・超電導コイル、2・・・サポートシリンダー、
5・・・真空容器(り2イオ)、6・・・放射シールド
板、7・・・断熱材。
Fig. 1 is a side view of only the upper half of the solenoid type superconducting electromagnet according to the present invention in section, Fig. 2 is a cross-sectional view taken along the ■-■ arrow in Fig. 1, and Fig. 3 is a detailed view of the section ■ in Fig. 1. , Figure 4 is the first
5 is a sectional view taken along the line v--■ in FIG. 4. 1... superconducting coil, 2... support cylinder,
5... Vacuum container (RI2IO), 6... Radiation shield plate, 7... Insulating material.

Claims (1)

【特許請求の範囲】 1、ソレノイド形の超電導コイルと、この超電導コイル
の周囲を熱放射シールド板で囲み、さらに、その外周を
内外筒と端板からなるクライオで形成し、かつ、ソレノ
イドの軸が水平になる超電導電磁石において、 前記熱放射シールド板を内筒側と外筒側を別々に、円筒
で形成し、それぞれ前記クライオの前記内外筒に複数の
点で支持する構造とし、この支持点を、半径方向に固定
、軸方向に可動に支持したことを特徴とする超電導磁石
用熱放射シールド板。 2、特許請求の範囲第1項において、前記支持点を、軸
方向−断面における支持点のみを前記半径方向、前記軸
方向とも固定し、他は前記半径方向を固定し、前記軸方
向に可動に支持したことを特徴とする超電導磁石用熱放
射シールド板。
[Claims] 1. A solenoid-shaped superconducting coil, this superconducting coil is surrounded by a heat radiation shield plate, and its outer periphery is formed by cryo consisting of an inner and outer cylinder and an end plate, and the solenoid shaft is In the superconducting electromagnet whose surface is horizontal, the heat radiation shield plate is formed of cylinders on the inner cylinder side and the outer cylinder side separately, and has a structure in which each of the plates is supported at a plurality of points on the inner and outer cylinders of the cryo, and these support points 1. A thermal radiation shield plate for a superconducting magnet, characterized in that it is fixed in the radial direction and movably supported in the axial direction. 2. In claim 1, the supporting points are fixed in the axial direction - only the supporting points in the cross section are fixed in both the radial direction and the axial direction, and the others are fixed in the radial direction and movable in the axial direction. A thermal radiation shield plate for a superconducting magnet characterized by being supported by.
JP59236619A 1984-11-12 1984-11-12 Thermal radiation shield plate for superconducting magnet Pending JPS61115307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236619A JPS61115307A (en) 1984-11-12 1984-11-12 Thermal radiation shield plate for superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236619A JPS61115307A (en) 1984-11-12 1984-11-12 Thermal radiation shield plate for superconducting magnet

Publications (1)

Publication Number Publication Date
JPS61115307A true JPS61115307A (en) 1986-06-02

Family

ID=17003320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236619A Pending JPS61115307A (en) 1984-11-12 1984-11-12 Thermal radiation shield plate for superconducting magnet

Country Status (1)

Country Link
JP (1) JPS61115307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852629B2 (en) 2008-02-29 2010-12-14 Siemens Aktiengesellschaft Suspension device for a superconducting magnet heat shield enclosure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852629B2 (en) 2008-02-29 2010-12-14 Siemens Aktiengesellschaft Suspension device for a superconducting magnet heat shield enclosure

Similar Documents

Publication Publication Date Title
US4516405A (en) Supporting tie configuration for cryostat for cold shipment of NMR magnet
US4492090A (en) Cryostat for NMR magnet
US6011454A (en) Superconducting magnet suspension assembly
US4694663A (en) Low cost intermediate radiation shield for a magnet cryostat
JPH0559565B2 (en)
JPH04252005A (en) Radial supporting system for mr magnet
CN102930946B (en) Conduction cooling device for high-temperature superconducting magnet
US5570723A (en) Support system and method for jacketed multiple cryogenic pipes for cyrogenic fluid transfer
JPS61115307A (en) Thermal radiation shield plate for superconducting magnet
US4622824A (en) Cryostat suspension system
US4819450A (en) Low cost intermediate radiation shield for a magnet cryostat
GB2025029A (en) Vacuum Insulated Vessels or Conduits
GB2482180A (en) Mass damped bore tube
JPS63274117A (en) Very low temperature heat-insulating supporting member
JPS6317214Y2 (en)
US4166990A (en) Core/coil assembly for use in superconducting magnets and method for assembling the same
US3900809A (en) Absorption apparatus for adjacently disposed magnet coils
JP2564155Y2 (en) Ultra low temperature liquid transfer pipe
JPS57180105A (en) Superconductive coil and manufacture thereof
JPS6119089B2 (en)
JPS6254904A (en) Superconducting device
SU1581960A1 (en) Support for cryogenic apparatus
JPS6353907A (en) Superconducting apparatus
SU1668833A1 (en) Cryostat
JPH03135077A (en) Heat insulating supporting device of superconducting coil