JPS6111516A - Turning spray nozzle having variable delivery rate - Google Patents

Turning spray nozzle having variable delivery rate

Info

Publication number
JPS6111516A
JPS6111516A JP13199184A JP13199184A JPS6111516A JP S6111516 A JPS6111516 A JP S6111516A JP 13199184 A JP13199184 A JP 13199184A JP 13199184 A JP13199184 A JP 13199184A JP S6111516 A JPS6111516 A JP S6111516A
Authority
JP
Japan
Prior art keywords
spray
pressure
inlet
flow rate
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13199184A
Other languages
Japanese (ja)
Other versions
JPH0138207B2 (en
Inventor
Yohei Kuwabara
桑原 陽平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP13199184A priority Critical patent/JPS6111516A/en
Publication of JPS6111516A publication Critical patent/JPS6111516A/en
Publication of JPH0138207B2 publication Critical patent/JPH0138207B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To allow the wider range of flow rate control by providing a movable member with a resilient means that biases an inlet toward contractive direction, said movable member being displaced in the direction of the inlet port expansion upon receiving feed liquid pressure. CONSTITUTION:When increasing spray amount, fuel oil is supplied at a high pressure. As the fuel oil pressures the pressurized part 34 of a slitter 18 via the intake port 44 of a flange 42, a movable member 14 is axially displaced toward the end of a spray nozzle 2 against the spring force of a spring 12, and the opening area of inlet 32a of a slit groove 32 is adjusted and expanded by the displaced distance of the movable member 14, and the volume of a vortex chamber 38 is also expanded. Because of this, the opening area of the inlet 32a is expanded, the flow coefficient is also increased, and as a result, the spray amount is increased. When reducing the spray amount, the delivery pressure is reduced. The movable member 14 is biased toward the rear end of the spray nozzle 2 to separate the end 16a from a stopper wall 22 to cause the opening area of the inlet 32a to be reduced. The volume of the vortex chamber 38 is also reduced to cause the flow coefficient to be reduced, and as a result, the spray amount is reduced due to the cross effect of the change of the fuel oil pressure and flow coefficient.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は可変吐出量旋回噴霧ノズルに係り、特に液体
送給手段の吐出圧によって供給液圧を変化させ、噴霧状
態を悪化させることなく噴霧流量を広範囲に制御する可
変吐出量旋回噴震ノズルに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a variable discharge amount rotating spray nozzle, and in particular, the supply liquid pressure is changed by the discharge pressure of the liquid supply means, and the spray can be sprayed without deteriorating the spray condition. This invention relates to a variable discharge amount rotating jet nozzle that controls the flow rate over a wide range.

[従来の技術] 旋回噴霧ノズルはその特性として、噴霧量が決定すると
、平均噴霧粒径、噴霧パターン、噴霧角等の噴霧状態が
一定水準で求められるので、1種類の噴霧ノズルに対し
この噴霧ノズルに適合する定圧定量の液体送給手段であ
る燃料ポンプが決定される。これにより、所定+IJi
i量が供給され、安定した燃焼性が維持されている。
[Prior Art] As a characteristic of the swirling spray nozzle, once the spray amount is determined, the spray conditions such as the average spray particle size, spray pattern, and spray angle are determined at a constant level. A fuel pump, which is a constant pressure and metered liquid delivery means, is determined to fit the nozzle. As a result, the predetermined +IJi
i amount is supplied, and stable combustibility is maintained.

[発明が解決しようとする問題点] ところで、従来の旋回噴霧ノズルにおいては、所定噴霧
量が供給されるが、各使用毎の必要とする熱量に応じた
異なる燃焼性を得るよう噴霧流量を制御させることが困
難であった。すなわち、噴霧流量を制御すべく燃料ポン
プを駆動制御し、燃料ポンプの吐出圧によって供給液圧
を変化させ、この供給液圧に対応して噴霧流量が制御さ
れる。
[Problems to be Solved by the Invention] By the way, in the conventional swirling spray nozzle, a predetermined amount of spray is supplied, but the spray flow rate is controlled to obtain different combustibility depending on the amount of heat required for each use. It was difficult to do so. That is, the fuel pump is driven and controlled to control the spray flow rate, the supply liquid pressure is changed by the discharge pressure of the fuel pump, and the spray flow rate is controlled in accordance with this supply liquid pressure.

しかし、例えば1:2の流量比を得たい場合には、燃料
ポンプの吐出圧を1:4の圧力変動幅を必要とする。こ
のため、燃料ポンプ系の駆動制御に要する負荷が大とな
り、エネルギの損失が大になる不都合がある。また、供
給液圧の変化に伴い、供給液である燃料油の噴霧粒径や
噴霧角等の噴霧状態が変化する。このため、燃焼性が低
下するので、噴霧流Iを広範囲に制御し難い不都合があ
った。
However, if it is desired to obtain a flow rate ratio of 1:2, for example, the discharge pressure of the fuel pump needs to have a pressure fluctuation range of 1:4. For this reason, the load required to control the drive of the fuel pump system becomes large, causing a disadvantage that energy loss becomes large. Further, as the supply liquid pressure changes, the spray conditions such as the spray particle size and the spray angle of the fuel oil, which is the supply liquid, change. As a result, combustibility deteriorates, making it difficult to control the spray flow I over a wide range.

また、噴霧流量を制御し得る装置として、バイパスノズ
ルがある。このバイパスノズルは、噴出口に連らなる渦
巻室の供給液圧をバイパス回路部の流量制御機構によっ
て制御しつつ噴霧状態を良好に維持するものである。そ
こで、バイパス回路部では、流量制御機構を精度良く作
動する必要がある。しかし、この流量制御機構を精度良
く作動するためには、特殊な制御機器が必要になるとと
もに、バイパス回路部を構成する配管等の付属部品が必
要になり、構造が複雑化し、また保守点検が困難となり
、しかも高価になる不都合があった。
Furthermore, there is a bypass nozzle as a device that can control the spray flow rate. This bypass nozzle maintains a good spray state while controlling the supply liquid pressure in the swirl chamber connected to the ejection port by a flow rate control mechanism in the bypass circuit section. Therefore, in the bypass circuit section, it is necessary to operate the flow rate control mechanism with high precision. However, in order to operate this flow rate control mechanism with high precision, special control equipment is required, as well as accessory parts such as piping that make up the bypass circuit, making the structure complex and requiring maintenance and inspection. This has the disadvantage of being difficult and expensive.

更に、このような構成の噴霧ノズルにおいて、噴霧状態
を良好に維持することができるのは、可変流量域が1=
3程度であり、噴霧流量を広範囲に制御することができ
ない不都合があった。
Furthermore, in a spray nozzle with such a configuration, a good spray state can be maintained only when the variable flow rate range is 1=
3, and there was an inconvenience that the spray flow rate could not be controlled over a wide range.

[発明の目的] そこでこの発明の目的は、上述の不都合を除去し、液体
送給手段の吐出圧によって供給液圧を変化させ、更に流
入口の開口面積の変化に相俟って流量係数を変化させて
広域流量制御が可能で、また噴霧流量の制御性を向上さ
せるとともに、構成が簡単で、しかも噴霧状態を良好に
維持し得る可変吐出量旋回噴霧ノズルを実現するにある
[Object of the Invention] Therefore, the object of the present invention is to eliminate the above-mentioned disadvantages, change the supplied liquid pressure by the discharge pressure of the liquid feeding means, and further increase the flow coefficient by changing the opening area of the inlet. To provide a variable discharge amount swirling spray nozzle which can control the flow rate over a wide range by changing the flow rate, improves the controllability of the spray flow rate, has a simple configuration, and can maintain a good spray state.

[問題点を解決するための手段] この目的を達成するためこの発明は、アウタボデーとス
ピンドル状のインナボデーとこの両者間に介設した移動
体とによりノズルを構成し、前記移動体にはその先端部
に噴出口を設けるとともに移動体の軸方向移動によって
前記インナポデーとの位置関係により拡縮する流入口を
設け、前記移動体にはこの流入口を縮小方向にイ]勢す
る弾圧手段を設けるとともに、供給液圧を受けて前記移
動体をして前記流入【二1を拡大方向に移動せしめる受
圧部を設けたことを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention constitutes a nozzle by an outer body, a spindle-shaped inner body, and a moving body interposed between the two, and the moving body has a tip end thereof. A spout is provided in the part, and an inflow port is provided that expands and contracts depending on the positional relationship with the inner body as the movable body moves in the axial direction, and the movable body is provided with a pressure means for forcing the inflow port in a contraction direction, The present invention is characterized in that a pressure-receiving portion is provided which causes the movable body to move the inflow (21) in an expanding direction in response to supply liquid pressure.

[作用] このようにこの発明を構成することにより、噴霧流量を
増大したい場合には、液体送給手段を駆動制御して吐出
圧によって供給液圧を高め、この供給液圧を受圧部に作
用させて移動体を流入[1の開口面積及び渦巻室の容積
とを拡大方向に移動させ、これにより流量係数を変化さ
せて噴霧流量を増大させる。そして、供給液は流入口を
経て渦巻室の接線方向に流入するので、供給液は渦巻室
で旋回しつつ噴出口から霧状に噴出される。次に、噴霧
流量を減少したい場合には、液体送給手段を駆動制御し
て吐出圧によって供給液圧を低くすると、移動体は弾圧
手段によって流入口の開口面積と渦巻室の容積とを縮小
方向に移動され、これにより流量係数を変化させて噴霧
流量を減少させる。
[Function] By configuring this invention in this way, when it is desired to increase the spray flow rate, the liquid supply means is driven and controlled to increase the supply liquid pressure by the discharge pressure, and this supply liquid pressure is applied to the pressure receiving part. The moving body is moved in the direction of expanding the opening area of the inflow [1 and the volume of the swirl chamber, thereby changing the flow rate coefficient and increasing the spray flow rate. Since the supply liquid flows in the tangential direction of the swirl chamber through the inlet, the supply liquid swirls in the swirl chamber and is ejected from the spout in the form of mist. Next, when it is desired to reduce the spray flow rate, the liquid supply means is driven and controlled to lower the supply liquid pressure by the discharge pressure, and the movable body reduces the opening area of the inlet and the volume of the swirl chamber by the elastic means. direction, thereby changing the flow coefficient and reducing the spray flow rate.

このように、液体送給手段の吐出圧によって供給液圧を
変化させ、この(j(給液圧に応して移動体を移動さ−
I↓、この結果流慴係数を変化させて噴霧流量を広範囲
に制御することができる。
In this way, the supply liquid pressure is changed by the discharge pressure of the liquid supply means, and the movable body is moved according to the supply liquid pressure.
I↓, as a result, the spray flow rate can be controlled over a wide range by changing the flow coefficient.

[実施例1 以下図面に基づいてこの発明の実施例を詳細■7を具体
的に説明する。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be specifically described in detail (7) based on the drawings.

第1〜4図はこの発明の実施例を示すものである。この
発明は、燃料等の供給液圧を変化させ、この液圧により
燃料等の流体の流量を制御するものである。この発明の
理解を容易とするために、次式を掲載する。つまり、流
量Qは、 Q=A−s−c−fT で表され、 Q:流量 A:パラメータ S:流路の開「1面積 C:流量係数 P:供給液圧 であり、上式の流1?8の開口面msと供給液圧Pとを
調整し、これに相俟って流量係数Cとを変化させて流量
Qを制御するものである。
1 to 4 show embodiments of this invention. This invention changes the supply fluid pressure of fuel, etc., and controls the flow rate of the fluid, such as fuel, by this fluid pressure. In order to facilitate understanding of this invention, the following formula is shown. In other words, the flow rate Q is expressed as Q=A-s-c-fT, Q: flow rate A: parameter S: flow path opening area C: flow coefficient P: supply liquid pressure, The flow rate Q is controlled by adjusting the opening surface ms of 1 to 8 and the supply liquid pressure P, and changing the flow rate coefficient C accordingly.

図において、2は噴霧ノズル、4はアウタホゾ−16は
スピンドル状のインナポデーである。前記アウタボデー
4は円筒形に形成され、このアウタボデー4の先6N、
lの中央には開口部8が形成されている。また、このア
ウタボデー4の内周面には、第1段差部10が形成され
、この第1段差部1゜に弾圧手段である環状のスプリン
グ12の一端が係止されている。
In the figure, 2 is a spray nozzle, 4 is an outer pod, and 16 is a spindle-shaped inner pod. The outer body 4 is formed into a cylindrical shape, and a tip 6N of the outer body 4,
An opening 8 is formed in the center of l. Further, a first stepped portion 10 is formed on the inner circumferential surface of the outer body 4, and one end of an annular spring 12 serving as a pressure means is locked to this first stepped portion 1°.

前記アウタボデー4とインナボデー6間には、移動体1
4が介設され、この移動体14はスライド16とスリッ
タ18とからなる。前記移動体14の先端であるスライ
l゛16の先端部1にaには、噴出「120が形成され
ている。また前記スライ1−16の先端部16aは、前
記アウタボデー4の先端に位冒し、前記アウタボデー4
先端のストッパ壁22によって前記移動体14の移動が
制限される。また、このスライド16の後端の外周には
第2段差部24が形成され、この第2段差部24に番:
L前記スプリングI2の他端が係止されている。これに
より、移動体14は、後述する流入rl 32 aを縮
小すべく付勢されている。(第2図の1点鎖線で示す)
。前記スライド16の後端には、スリッタ18が螺着さ
れるとともに、このスリツタ18外周には前記アウタボ
デ−4内周面に接触する供給液圧である燃料油の漏洩防
止用の0リング26が装着されている。
A moving body 1 is disposed between the outer body 4 and the inner body 6.
4 is interposed, and this moving body 14 consists of a slide 16 and a slitter 18. A jet 120 is formed at the tip 1 of the slide 1-16, which is the tip of the moving body 14. Also, the tip 16a of the slide 1-16 is disposed at the tip of the outer body 4. , the outer body 4
Movement of the movable body 14 is restricted by a stopper wall 22 at the tip. Further, a second stepped portion 24 is formed on the outer periphery of the rear end of this slide 16, and this second stepped portion 24 has a number:
L The other end of the spring I2 is locked. As a result, the moving body 14 is urged to reduce the inflow rl 32 a, which will be described later. (Indicated by the dashed line in Figure 2)
. A slitter 18 is screwed onto the rear end of the slide 16, and an O-ring 26 is provided on the outer periphery of the slitter 18 to prevent leakage of fuel oil, which is supplied hydraulic pressure, and comes into contact with the inner peripheral surface of the outer body 4. It is installed.

前記スリッタ18の中間部18bには、燃料油の流路を
形成する連通孔28が形成されている。
A communication hole 28 is formed in the intermediate portion 18b of the slitter 18 to form a flow path for fuel oil.

また、このスリッタ1))には、前記連通孔28と連通
ずるとともに軸方向に連通溝30.30が形成されてい
る。この連通溝30.30の先6NAは、後述する渦巻
室38の18線方向に指向する燃*、[油の流入路であ
るスリット溝32.32に連通されている。このとき、
スリン11苗32.32の渦巻室38側の開1−1部位
を〆tε人1132 a、 32 aとする。また、前
記スリッタ18の後端面を受J、’lE部34とする。
Further, this slitter 1)) is formed with communication grooves 30, 30 that communicate with the communication hole 28 and extend in the axial direction. The tip 6NA of this communication groove 30.30 communicates with a slit groove 32.32 which is an inflow path for fuel and oil oriented in the 18-line direction of the swirl chamber 38, which will be described later. At this time,
The open 1-1 part on the spiral chamber 38 side of Surin 11 seedling 32.32 is defined as 1132a, 32a. Further, the rear end surface of the slitter 18 is defined as a receiving portion 34.

前記スリッタ18内には、インナボデー6の突出形成さ
れたロッド3Gが装着される。このロッド36は、噴霧
ノズル2の軸心に配設されるとともに、このロッド36
の先端部36aは前記アウタボデー4の開口部8側に指
向して設けられている。そして、このロッド36の先端
部36aとスライド16の先端部16aとによってアウ
タボデ=2の先端中央部には、渦巻室38が形成される
Inside the slitter 18, a protruding rod 3G of the inner body 6 is installed. This rod 36 is arranged at the axial center of the spray nozzle 2, and this rod 36
The distal end portion 36a is provided facing toward the opening 8 side of the outer body 4. A spiral chamber 38 is formed at the center of the tip of the outer body 2 by the tip 36a of the rod 36 and the tip 16a of the slide 16.

一方、i11記にトッド36を装着した際に、このロッ
ド36とスリッタ18との間には、燃料油を供給する環
状の導入通路40が形成され、この導入通路40 It
前記連1ffl孔28と連通されている。
On the other hand, when the tod 36 is installed in I11, an annular introduction passage 40 for supplying fuel oil is formed between the rod 36 and the slitter 18, and this introduction passage 40 It
It communicates with the continuous 1ffl hole 28.

前記インナボデー6の後端には、フランジ部42が形成
され、このフランジ部42外周は前記アウタボデー4に
螺着されている。また、このフランジ部イ2には、軸方
向で円周等間隔に複数の導入孔44が突設されている。
A flange portion 42 is formed at the rear end of the inner body 6, and the outer periphery of the flange portion 42 is screwed onto the outer body 4. Further, a plurality of introduction holes 44 are provided in the flange portion A2 in the axial direction at equal intervals around the circumference.

フランジ部42の前記スリッタ18の受圧部34側面を
インナ部壁46とし、このインナ部壁46と前記スリッ
タ1Bの受圧部34との間には、移動体14が供給液圧
によって移動した際に形成される空間部48が設けられ
ている。更に、前記インナボデー6の後端には、フィル
タ50が装着されている。噴霧ノズル2の最後端には、
図示しないが液体送給手段である燃料ポンプに連結した
燃料管が接続されている。
The side surface of the pressure receiving part 34 of the slitter 18 of the flange part 42 is an inner part wall 46, and between this inner part wall 46 and the pressure receiving part 34 of the slitter 1B, when the movable body 14 is moved by the supplied liquid pressure, A space 48 is provided. Furthermore, a filter 50 is attached to the rear end of the inner body 6. At the rear end of the spray nozzle 2,
Although not shown, a fuel pipe is connected to a fuel pump serving as a liquid supply means.

次に、この実施例の作用について説明する。Next, the operation of this embodiment will be explained.

噴霧流量を増大する際に、燃*I曲は燃料ポンプによっ
て高圧で送給され、フィルタ50を通過し7てインナボ
デー〔jの後端側に至る。この燃料油はフランジ部42
の導入孔44を経て、スリッタ18の受圧部34を押圧
するので、移動体14がスプリング12の弾圧力に抗し
て噴霧ノズル2の軸方向で先+?lil側に移動する。
When increasing the spray flow rate, the fuel is fed at high pressure by the fuel pump, passes through the filter 50, and reaches the rear end side of the inner body [j]. This fuel oil
Since the moving body 14 presses the pressure receiving part 34 of the slitter 18 through the introduction hole 44 of the spray nozzle 2, the movable body 14 resists the elastic force of the spring 12 and moves forward in the axial direction of the spray nozzle 2. Move to lil side.

そして、燃111油は空間部48を充填するとともに導
入油1/340 、連通孔28、連通溝30を経゛ζス
リソ1溝32に至る。
Then, the fuel 111 oil fills the space 48 and reaches the ζ slit 1 groove 32 through the introduced oil 1/340, the communication hole 28, and the communication groove 30.

このスリット溝32において、移動体14は燃*1油圧
に対応して移動するので、スリソl−溝32の流入ロ3
28開ロ面積は移動体14の移動距離によって調整され
て拡大するとともに、渦巻室38の容積も拡大する。最
高圧時には移動体14の先端がストッパ壁22に当接し
、つまりスライド16の先端部16aがアウタボデー4
の先端に当接して移動体14が停止する(第1.2図参
照)。
In this slit groove 32, the movable body 14 moves in accordance with the fuel *1 oil pressure, so the inflow hole 3 of the slit groove 32
The open area 28 is adjusted and expanded by the moving distance of the moving body 14, and the volume of the swirl chamber 38 is also expanded. At the highest pressure, the tip of the moving body 14 comes into contact with the stopper wall 22, that is, the tip 16a of the slide 16 touches the outer body 4.
The movable body 14 stops when it comes into contact with the tip of the (see Fig. 1.2).

これにより、流入口32aの開口面積が拡大するととも
に、流量係数が大に変化し、この結果噴霧流量が増大す
る。そして、燃料油はスリット溝32から411S室3
8の接線方向に流入する。この渦巻室38においては、
燃料油が旋回作用を受け、噴出1−18から霧状に噴出
される。このとき、前記移動体14とアウタボデー4と
の摺動部位において人なる燃料油圧によって燃料油が侵
入しようとするが、この燃料油はOリング26によって
阻lにされる。
As a result, the opening area of the inlet 32a is expanded, and the flow rate coefficient changes greatly, resulting in an increase in the spray flow rate. Then, the fuel oil flows from the slit groove 32 to the 411S chamber 3.
8 in the tangential direction. In this spiral chamber 38,
The fuel oil is subjected to swirling action and is ejected in a mist form from the jets 1-18. At this time, fuel oil attempts to enter the sliding portion between the movable body 14 and the outer body 4 due to the fuel oil pressure, but this fuel oil is blocked by the O-ring 26.

噴霧流量を減少する際には、燃料ポンプを駆動制御して
用出圧を低(すると、燃料油に作用する圧力は低くなる
。これにより、移動体14はスプリング12の弾圧力に
よって噴霧ノズル2の後輪側に弾圧され、スライド16
の先端部16aはストッパ壁22から離間するとともに
、スリッタ18の受圧部34がインナ部壁46に接近し
て空間部48を縮小する。このとき、移動体14の移動
により、流入口32aの開口面積が縮小するとともに、
渦巻室38の容積も縮小しく第2図の1点鎖線で示す)
、この結果流量係数が小となり、燃料油圧のの変化と流
量係数との相乗効果によって噴霧流量を減少させること
ができる。これによす、噴霧状態を良好に維持し、安定
した燃焼性を得ることができる。
When reducing the spray flow rate, the fuel pump is driven and controlled to lower the output pressure (thereby, the pressure acting on the fuel oil is lowered. As a result, the movable body 14 is moved to the spray nozzle 2 by the elastic force of the spring 12. Slide 16 is pressed against the rear wheel side.
The tip portion 16a of the slitter 18 moves away from the stopper wall 22, and the pressure receiving portion 34 of the slitter 18 approaches the inner wall 46 to reduce the space 48. At this time, due to the movement of the moving body 14, the opening area of the inlet 32a is reduced, and
The volume of the volute chamber 38 is also reduced (as shown by the dashed line in Fig. 2).
As a result, the flow coefficient becomes small, and the spray flow rate can be reduced by the synergistic effect of the change in fuel oil pressure and the flow coefficient. In addition, it is possible to maintain a good spray condition and obtain stable combustibility.

また、噴11冒120の位置が、噴霧流量の大小に対応
して前後に移動するので第4図に示す如(、噴霧ノズル
24.二複数のスリン1−52を有するフレームボルダ
54を設置J’ζハーリ′を形成した場合、噴霧圧力が
低−[シた場合でも、噴霧角αの変化を極力防止し得て
、また、フレームボルダ54の内周面近傍に拡1を交火
炎fへの空気の供給をスリット52から効果的に行わせ
、混合気の撹乱を助卜するとともに、燃焼性の向上を図
る。
Furthermore, since the positions of the spray nozzles 11 and 120 move back and forth in accordance with the magnitude of the spray flow rate, the frame boulder 54 having a plurality of spray nozzles 24 and 2 is installed as shown in FIG. When a 'ζ hurly' is formed, even if the spray pressure is low, the change in the spray angle α can be prevented as much as possible, and the flame 1 can be spread near the inner circumferential surface of the frame boulder 54 to the exchange flame f. The air is effectively supplied from the slit 52 to help disturb the air-fuel mixture and improve combustibility.

このように噴霧流量を制御する際に、例えば燃料ポンプ
を駆動制御して吐出圧を1=2の域で変化すると、噴霧
ノズル2の移動体14を供給液圧Pに応じて摺動せしめ
、流路の開口面積である流入口32aの開口面積S及び
渦巻室38の容積とを変化させることができ、これによ
り流量係数Cを1ニアに変化させ、そしてこの流量係数
Cと供給液圧Pとの変化の相乗効果によって噴霧流量比
を1:10に制御する。つまり、噴霧流量を広範囲に制
御することが可能となる。
When controlling the spray flow rate in this way, for example, if the fuel pump is driven and controlled to change the discharge pressure in the range of 1=2, the movable body 14 of the spray nozzle 2 is caused to slide in accordance with the supply fluid pressure P, It is possible to change the opening area S of the inlet 32a, which is the opening area of the flow path, and the volume of the swirl chamber 38, thereby changing the flow coefficient C to 1 linear, and the flow coefficient C and the supply liquid pressure P. The spray flow rate ratio is controlled to 1:10 by the synergistic effect of the change. In other words, it becomes possible to control the spray flow rate over a wide range.

なお、この発明は上述実施例に限定されず種々の応用改
変が可能であることは勿論である。
It goes without saying that the present invention is not limited to the above-mentioned embodiments and can be modified in various ways.

例えば、前記移動体14をスライド16とスリック18
との絹合せ体により構成したが、この移りす1体14を
一体化することが可能である。
For example, the movable body 14 is connected to the slide 16 and the slick 18.
Although it is constructed from a silk composite body, it is possible to integrate this transfer body 14 into one body.

また、この発明の噴霧ノズル2は燃焼器に使用したが、
伯の噴霧装置にも使用することが可能である。
Furthermore, although the spray nozzle 2 of the present invention was used in a combustor,
It is also possible to use it with a spray device.

[発明の効果] 以ト詳細な説明から明らかなようにこの発明によれば、
液体送給手段の吐出圧によって供給液圧を変化させ、流
量係数との相乗効果により、広域流量制御が可能で、し
かも噴霧状態を良好に維持させ、燃焼性を向上し得る。
[Effects of the Invention] As is clear from the detailed description below, according to the present invention,
The supplied liquid pressure is changed by the discharge pressure of the liquid feeding means, and due to the synergistic effect with the flow rate coefficient, it is possible to control the flow rate over a wide range, maintain a good spray state, and improve combustibility.

また、噴霧流量の制御は、(Jt給液圧の調整だけで、
極めて制御性が良い。
In addition, the spray flow rate can be controlled (just by adjusting the Jt liquid supply pressure,
Extremely good controllability.

また、噴霧ノズル本体の容積及び形状は従来のものと略
同−であり、しかも特殊な制御機器や複雑な配管構造が
必要でないので、構造が簡単で製作コストを低減し得て
、しかも、保守点検が容易になる。また、燃焼器への組
付けも容易である。
In addition, the volume and shape of the spray nozzle body are almost the same as conventional ones, and there is no need for special control equipment or complicated piping structures, so the structure is simple and manufacturing costs can be reduced. Inspection becomes easier. Furthermore, it is easy to assemble into the combustor.

更に、供給液圧と流量係数との相乗効果によって噴霧流
量を制御するので、従来のオン・オフ制御に比し省エネ
ルギに寄与するとともに、有害ガス、煤等の生成物の発
生を極力減少させ、環境衛生上有利である。
Furthermore, since the spray flow rate is controlled by the synergistic effect of the supply liquid pressure and the flow rate coefficient, it contributes to energy savings compared to conventional on/off control, and also minimizes the generation of harmful gases, soot, and other products. , which is advantageous in terms of environmental hygiene.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図はこの考案の実施例を示すもので、第1図ば
噴霧ノズルの半断面図、第2図は噴霧ノズルの要部拡大
半断面図、第3図は第1図の■=■線による拡大断面図
、第4図は噴霧ノズルフレームホルダを付設した状態の
m略断面図である。 図において、2は噴霧ノズル、4はアウタボデー、6は
インナボデー、14は移動体、32はスリット溝、32
aは流入口、36はロッド、38は渦巻室、そして48
は空間部である。
Figures 1 to 4 show examples of this invention. Figure 1 is a half-sectional view of the spray nozzle, Figure 2 is an enlarged half-sectional view of the main part of the spray nozzle, and Figure 3 is the same as in Figure 1. Fig. 4 is an enlarged cross-sectional view taken along the = ■ line, and Fig. 4 is a schematic cross-sectional view of the spray nozzle frame holder attached thereto. In the figure, 2 is a spray nozzle, 4 is an outer body, 6 is an inner body, 14 is a moving body, 32 is a slit groove, 32
a is an inlet, 36 is a rod, 38 is a swirl chamber, and 48
is the spatial part.

Claims (1)

【特許請求の範囲】[Claims] アウタボデーとスピンドル状のインナボデーとこの両者
間に介設した移動体とによりノズルを構成し、前記移動
体にはその先端部に噴出口を設けるとともに移動体の軸
方向移動によって前記インナボデーとの位置関係により
拡縮する流入口を設け、前記移動体にはこの流入口を縮
小方向に付勢する弾圧手段を設けるとともに、供給液圧
を受けて前記移動体をして前記流入口を拡大方向に移動
せしめる受圧部を設けたことを特徴とする可変吐出量旋
回噴霧ノズル。
A nozzle is constituted by an outer body, a spindle-shaped inner body, and a moving body interposed between the two, and the moving body is provided with a spout at its tip, and the positional relationship with the inner body is adjusted by axial movement of the moving body. an inlet that expands and contracts by the movable body, and the movable body is provided with a pressure means for biasing the inflow port in a direction of contraction, and the movable body receives supply fluid pressure to move the inlet in the direction of expansion. A variable discharge amount rotating spray nozzle characterized by being provided with a pressure receiving part.
JP13199184A 1984-06-28 1984-06-28 Turning spray nozzle having variable delivery rate Granted JPS6111516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13199184A JPS6111516A (en) 1984-06-28 1984-06-28 Turning spray nozzle having variable delivery rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13199184A JPS6111516A (en) 1984-06-28 1984-06-28 Turning spray nozzle having variable delivery rate

Publications (2)

Publication Number Publication Date
JPS6111516A true JPS6111516A (en) 1986-01-18
JPH0138207B2 JPH0138207B2 (en) 1989-08-11

Family

ID=15070996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13199184A Granted JPS6111516A (en) 1984-06-28 1984-06-28 Turning spray nozzle having variable delivery rate

Country Status (1)

Country Link
JP (1) JPS6111516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005256A1 (en) * 2000-02-05 2001-08-09 Kromschroeder Ag G Fuel burner nozzle for plant burner has two nozzle parts sealed along parting plane with second part slidably axially under fuel pressure and made of heatproof material.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005256A1 (en) * 2000-02-05 2001-08-09 Kromschroeder Ag G Fuel burner nozzle for plant burner has two nozzle parts sealed along parting plane with second part slidably axially under fuel pressure and made of heatproof material.
DE10005256B4 (en) * 2000-02-05 2010-04-29 Elster Gmbh Burner for gaseous or liquid fuels

Also Published As

Publication number Publication date
JPH0138207B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
CA1063894A (en) Attemperator
US5607626A (en) Spring assisted multi-nozzle desuperheater
EP0224066B1 (en) Air spray gun
US3675853A (en) Fuel nozzle with modulating primary nozzle
US5242117A (en) Fuel injector for a gas turbine engine
KR20010049864A (en) Injection apparatus for gas-liquid mixed flow
US3081952A (en) Fuel nozzle
JPS6111516A (en) Turning spray nozzle having variable delivery rate
CA2233546C (en) Spring assisted multi-nozzle desuperheater
KR950012266B1 (en) Flow rate control valve device
US3632047A (en) Fuel injection nozzle valve
JP2005103367A (en) Spraying nozzle
JPH01228564A (en) Nozzle for spraying liquid adjustable for spraying distance
JP2587999B2 (en) Pre-evaporation type liquid fuel sprayer
JPS6111515A (en) Turning spray nozzle having variable delivery rate
ITRM940695A1 (en) "FUEL INJECTION NOZZLE IN INTERNAL COMBUSTION ENGINES"
JPH0422450A (en) Liquid jet nozzle
EP0651156B1 (en) An air-assisted single jet injector
JP3072762B2 (en) Flow control nozzle
EP0709621B1 (en) Air-atomized oil burner
JP3059559U (en) Variable nozzle type atomizer
JPH0410386B2 (en)
JPH0347461A (en) Fuel injection valve
JP3450890B2 (en) Return type spray nozzle
JP2602981Y2 (en) Spray nozzle