JPS61115108A - Temperature control method of hot runner multipoint gate - Google Patents

Temperature control method of hot runner multipoint gate

Info

Publication number
JPS61115108A
JPS61115108A JP59235087A JP23508784A JPS61115108A JP S61115108 A JPS61115108 A JP S61115108A JP 59235087 A JP59235087 A JP 59235087A JP 23508784 A JP23508784 A JP 23508784A JP S61115108 A JPS61115108 A JP S61115108A
Authority
JP
Japan
Prior art keywords
gate
temperature
nozzle chip
heating element
current flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59235087A
Other languages
Japanese (ja)
Other versions
JPH0467493B2 (en
Inventor
Yasumitsu Aochi
青地 保光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURASUTORON KK
Original Assignee
PURASUTORON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURASUTORON KK filed Critical PURASUTORON KK
Priority to JP59235087A priority Critical patent/JPS61115108A/en
Publication of JPS61115108A publication Critical patent/JPS61115108A/en
Publication of JPH0467493B2 publication Critical patent/JPH0467493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature

Abstract

PURPOSE:To suppress the fluctuation of an effluent rate of resin and to stabilize quality of a molded good by controlling the conductive current of a heating element in accordance with the gate temperature in a master nozzle chip side and controlling the conductive current of the heating element by holding the prescribed relation with the master nozzle chip in a slave nozzle chip side. CONSTITUTION:The master nozzle chip 14B detects the temperature of the gate 13B by a temperature sensor 19, and a comparator 23 compares the detected value with a set value, its difference being inputted to a phase control circuit 24. Corresponding to the difference, the phase control circuit 24 controls the ignition phase of a TRIAC21 and the conductive current, that is, the impression voltage of the heater 17B. In the slave nozzle chips 14A and 14C, a voltage controlled by the TRIAC21 is impressed to the heaters 17A and 17C, and moreover a current adjusted by variable resistances 22A and 22B flows. In a multipoint gate, if the temperature at each gate is controlled in such a way, a package control can be executed relation is held; therefore the quality by shot can be stabilized.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、射出成形機用の温度制御方法に係り、特に一
つのキャビティにホットランナのゲートが複数箇所ある
、いわゆる多点ゲートを採用する場合の温度制御方法に
関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a temperature control method for an injection molding machine, and particularly to a temperature control method when a single cavity has multiple hot runner gates, so-called multi-point gates. This relates to a control method.

〔従来技術とその問題点〕[Prior art and its problems]

射出成形機においてはランナを加熱して、その中を通る
樹脂を常に溶融状態に保つホントランナが多用されてい
るが、このホントランナ方式で多点ゲートを採用する場
合には、各ゲートの温度を精密に制御することが成形品
の品質を安定させる上で重要である。このため従来は、
各ゲートの温度を検出し、その温度が所定の温度になる
ようにそれぞれの加熱素子の通電電流を個別に制御して
いた。
In injection molding machines, a real runner is often used that heats the runner to keep the resin passing through it in a molten state, but when using this real runner method with multi-point gates, the temperature of each gate is Precise control is important to stabilize the quality of molded products. For this reason, conventionally,
The temperature of each gate was detected, and the current flowing through each heating element was individually controlled so that the temperature reached a predetermined temperature.

しかしこのような個別制御方式では、各ゲートの温度が
制御のずれ等により必ずしも一定の関係に保持されない
ため、ショットによって各ゲートからの樹脂の流出量が
変動してウェルドラインの位置が変わるなど成形品の品
質を高度に安定化させることは困難であった。
However, with this type of individual control method, the temperature of each gate is not necessarily maintained in a constant relationship due to control deviations, etc., so the amount of resin flowing out from each gate varies depending on the shot, and the position of the weld line changes, etc. It has been difficult to highly stabilize the quality of products.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような従来技術の問題点を解決するた
めになされたもので、その制御方法は、多点ゲートを構
成する複数のノズルチップを、王ノズルチップと従ノズ
ルチップに分けると共に、その主ノズルチップの加熱素
子の通電電流と従ノズルチップの加熱素子の通電電流と
の関係を定める関係設定手段を設け、主ノズルチップで
は、ゲートの温度を検出してその温度に応じて加熱素子
の通電電流を制御し、従ノズルチップでは、上記関係設
定手段により主ノズルチップの加熱素子の通電電流と所
定の関係を保って加熱素子の通電電流を制御するように
したことを特徴とするものである。
The present invention has been made to solve the problems of the prior art as described above, and its control method is to divide a plurality of nozzle chips constituting a multi-point gate into a king nozzle chip and a slave nozzle chip, and to , a relationship setting means is provided to determine the relationship between the current flowing through the heating element of the main nozzle chip and the current flowing through the heating element of the slave nozzle chip, and the main nozzle chip detects the temperature of the gate and performs heating according to the temperature. The energizing current of the element is controlled, and the energizing current of the heating element of the secondary nozzle chip is controlled by maintaining a predetermined relationship with the energizing current of the heating element of the main nozzle chip by the above-mentioned relationship setting means. It is something.

このようにすると各ゲートの温度が所定の関係を保った
状態で一括制御イされるため、各ゲートの関係が常に同
じ状態となり、ショット毎の品質のバラツキをきわめて
少なくできる。
In this way, the temperatures of each gate are collectively controlled while maintaining a predetermined relationship, so the relationship between each gate is always the same, and variations in quality from shot to shot can be extremely reduced.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す0図において、11は
射出成形機の金型、12はその中のキャビティ、13A
−13Cはゲート、14A−14cはノズルチップであ
る。この例では14Bが王ノズルチップ、14A・14
Cが従ノズルチップとなっている。各ノズルチップ14
A〜14Cはチップコア15とチップ外筒16とからな
り、各チップコア15内にはそれぞれ抵抗加熱ヒータ1
7A−17Cが内蔵されている。すなわち各ノズルチッ
プ14A〜14Cは内部加熱型で、チップコア15とチ
ップ外筒16との間が樹脂を溶融状態に保つホントラン
ナ18となっている。また主ノズルチップ14Bのチッ
プコア15内にはその先端の温度(ゲートの温度に対応
)を検出する温度センサ(ill常は熱電対) 19が
内蔵されている。各ノズルチップ14A〜14cはマニ
ホルド(図示せず)に接続されている。
FIG. 1 shows an embodiment of the present invention, in which 11 is a mold of an injection molding machine, 12 is a cavity therein, and 13A is a mold of an injection molding machine;
-13C is a gate, and 14A-14c is a nozzle chip. In this example, 14B is the king nozzle tip, 14A.14
C is a slave nozzle tip. Each nozzle tip 14
A to 14C consist of a chip core 15 and a chip outer cylinder 16, and each chip core 15 has a resistance heater 1 inside.
7A-17C is built-in. That is, each of the nozzle chips 14A to 14C is of an internally heated type, and a real runner 18 is formed between the chip core 15 and the chip outer cylinder 16 to keep the resin in a molten state. Further, a temperature sensor (usually a thermocouple) 19 is built into the chip core 15 of the main nozzle chip 14B to detect the temperature at its tip (corresponding to the temperature of the gate). Each nozzle tip 14A-14c is connected to a manifold (not shown).

また、20はヒータ17A〜17C用の交流電源、21
は印加電圧制御用のトライチック、22A〜22Cは電
流比設定用の可変抵抗器、23は温度センサ19の出力
と設定値との比較器、24はトライア7り21の点弧位
相を制御する位相制御回路である。
Further, 20 is an AC power source for the heaters 17A to 17C, and 21
2 is a tritic for controlling the applied voltage, 22A to 22C are variable resistors for setting the current ratio, 23 is a comparator for comparing the output of the temperature sensor 19 and a set value, and 24 is for controlling the firing phase of the trier 7 and 21. This is a phase control circuit.

各ゲート13A〜13Cの温度制御はつぎのように行わ
れる。すなわち、王ノズルチップ14Bでは、温度セン
サ19によりゲート13Bの温度を検出し、その検出値
と設定値を比較器23で比較して、その差を位相制御回
路24に人力する0位相制御回路24はその差に応じて
トライアック21の点弧位相を制御し、ヒータ17Bの
印加電圧すなわち通電電流を111?Iする。つまり主
ノズルチップ14Bでは、ゲート13Bの温度が設定値
より高いときはヒータ17Bの通電電流を小さくし、低
いときは通電電流を大きくするフィードバック制御が行
われている。
Temperature control of each gate 13A to 13C is performed as follows. That is, in the king nozzle chip 14B, the temperature of the gate 13B is detected by the temperature sensor 19, the detected value and the set value are compared by the comparator 23, and the difference is input to the phase control circuit 24. controls the firing phase of the triac 21 according to the difference, and changes the applied voltage or current to the heater 17B to 111? I do. In other words, in the main nozzle chip 14B, feedback control is performed to reduce the current flowing through the heater 17B when the temperature of the gate 13B is higher than the set value, and to increase the current flowing through the heater 17B when the temperature is lower than the set value.

一方、従ノズルチップ14A−14cでは、ヒータ17
A −17Cにトライア7り21で制御された電圧が印
加され、さらに可変抵抗器22A・22Bで調節された
tfLが流れるようになっている。つまりヒータ17A
・17Cには、可変抵抗器22A〜22Cによってヒー
タ17Bの通電を流に対して所定の比に保たれた電流が
流れるようになっており、これによりゲート13A・1
3cの温度はゲート13Bの温度に対して所定の関係に
保たれた状態でis御される。
On the other hand, in the slave nozzle chips 14A-14c, the heater 17
A voltage controlled by a trier 721 is applied to A-17C, and tfL adjusted by variable resistors 22A and 22B flows. In other words, heater 17A
- Through variable resistors 22A to 22C, a current that is kept at a predetermined ratio to the current of the heater 17B flows through the gates 13A and 17C.
The temperature of the gate 3c is controlled by IS while maintaining a predetermined relationship with the temperature of the gate 13B.

多点ゲートにおいては各ゲートの温度を、キャビティの
形、ゲートの位置、ゲートの特性などに応じて定める必
要があるが、上記のような制御をすれば、各ゲートの温
度を予め設定された所定の関係を保ったまま一括制御が
行えるため、ショット毎の品質の安定が図れる。
In multi-point gates, it is necessary to set the temperature of each gate according to the cavity shape, gate position, gate characteristics, etc., but if the above control is performed, the temperature of each gate can be set in advance. Since batch control can be performed while maintaining a predetermined relationship, the quality of each shot can be stabilized.

第2図および第3図はそれぞれ本発明の他の実施例を示
す、これらの図において、第1図の各部に対応する部分
には同一符号を付しである。また金型、キャビティ、ゲ
ートおよびノズルチップなどの図示を省略し、電気系統
のみを示しであるが、ヒータ17A〜17Cがそれぞれ
のノズルチップおよびゲートに対応していることは第1
図と同様である。
2 and 3 each show another embodiment of the present invention. In these figures, parts corresponding to those in FIG. 1 are given the same reference numerals. Although the mold, cavity, gate, nozzle chip, etc. are not shown and only the electrical system is shown, it is important to note that the heaters 17A to 17C correspond to the respective nozzle chips and gates.
It is similar to the figure.

第2図の実施例では、各ヒータ17A−17cの印加電
圧はそれぞれトライフック21A〜21Cによって制御
され、トライアック21A〜21Cはそれぞれ位相制御
回路24A〜24Cによって個別に点弧位相を制御され
るようになっている。主ノズルチップのヒータ17Bの
通電電流が温度センサ19の出力に応じて比較器23、
位相制御回路24B、トライアック21Bによりフィー
ドバック制御される点は第1図の場合と同様であるが、
従ノズルチップのヒータ17A−17Cの通電電流はそ
れぞれ、位相制御回路24Bの出力位相と所定の関係に
ある出力位相を発生する位相fi制御回路24A・24
Cによって制御されるようになっている。位相制御回路
24Bの出力位相に対する同24Aの出力位相の関係な
らびに同24Bの出力位相に対する同24Cの出力位相
の関係は、キャビティの形やゲートの位置などを考慮し
て予め設定される。
In the embodiment of FIG. 2, the voltage applied to each heater 17A-17c is controlled by tri-hooks 21A-21C, and the firing phase of triacs 21A-21C is individually controlled by phase control circuits 24A-24C, respectively. It has become. The current flowing through the heater 17B of the main nozzle chip is determined by the comparator 23,
The point that feedback control is performed by the phase control circuit 24B and the triac 21B is the same as in the case of FIG. 1, but
The current flowing through the heaters 17A to 17C of the slave nozzle chips is controlled by phase fi control circuits 24A and 24, respectively, which generate output phases having a predetermined relationship with the output phase of the phase control circuit 24B.
It is controlled by C. The relationship between the output phase of the phase control circuit 24A and the output phase of the phase control circuit 24B and the relationship between the output phase of the phase control circuit 24C and the output phase of the phase control circuit 24B are set in advance in consideration of the shape of the cavity, the position of the gate, and the like.

この制御方法は第1図のものに比べると、可変抵抗器を
使用していないため、電力損失が少ない。
Compared to the control method shown in FIG. 1, this control method does not use a variable resistor, so power loss is small.

第3図の実施例は、従ノズルチップにも温度センサ19
A −19Cおよび比較器23A・23Cを設け、温度
によって位相制御回路24A・24Cの出力位相を補正
するようにしたものである。その他の構成は第2図のも
のと同様である。このホ制御方法は、王ノズルチップの
ヒータ17Bと従ノズルチップのヒータ17A・17c
との通電電流の関係を温度によって変化させる必要のあ
る場合に有効である。
In the embodiment shown in FIG. 3, a temperature sensor 19 is also provided on the slave nozzle chip.
A-19C and comparators 23A and 23C are provided, and the output phases of the phase control circuits 24A and 24C are corrected depending on the temperature. The rest of the configuration is the same as that in FIG. 2. This control method is based on the heater 17B of the king nozzle chip and the heaters 17A and 17c of the slave nozzle chips.
This is effective when it is necessary to change the relationship between the applied current and the current depending on the temperature.

なお上記実施例では、ゲート数すなわちノズルチップ数
が3個の場合を説明したが、本発明はこれに限定される
ものではなく、一つのキャビティに2以上のゲートがあ
る場合すべてに通用可能である。
In the above embodiment, the case where the number of gates, that is, the number of nozzle chips is three, has been described, but the present invention is not limited to this, and can be applied to all cases where one cavity has two or more gates. be.

また上記実施例では、内部加熱型のノズルチップを存す
る場合について説明したが、本発明は外部加執型のもの
にも同様に適用可能である。
Further, in the above embodiments, the case where an internally heated nozzle tip is provided is described, but the present invention is equally applicable to an externally heated nozzle tip.

さらに上記実施例では、ノズルチップの加熱素子として
抵抗加熱ヒータを使用する場合について説明したが、本
発明は同加熱素子として誘導加軌コイルを使用する場合
にも同様に適用できる。
Further, in the above embodiments, a case has been described in which a resistance heater is used as the heating element of the nozzle tip, but the present invention can be similarly applied to a case where an induction tracking coil is used as the heating element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、多点ゲートを構成
する複数のノズルチップを、主ノズルチップと従ノズル
チップに分け、主ノズルチップでは、ゲートの温度を検
出してその温度に応じて加熱素子の通電電流を制御し、
従ノズル千ノブでは、主ノズルチップの加熱素子の通電
電流に応してそれと所定の関係を保つように加熱素子の
通電tiを制御nするようにしたので、各ゲートの温度
が所定の関係を保った状態で一括制御されることになり
、このため各ゲートの関係が常にほぼ同し状態に保たれ
るようになり、ンヨノト毎の成形品の品質を高度に安定
化できる利点がある。
As explained above, according to the present invention, a plurality of nozzle chips constituting a multi-point gate are divided into a main nozzle chip and a sub-nozzle chip, and the main nozzle chip detects the temperature of the gate and controls the temperature according to the temperature. Controls the current flowing through the heating element,
In the secondary nozzle 1000 knobs, the energization of the heating element is controlled according to the energization current of the heating element of the main nozzle tip so as to maintain a predetermined relationship with it, so that the temperature of each gate maintains the predetermined relationship. Therefore, the relationship between each gate is always maintained in almost the same state, which has the advantage of highly stabilizing the quality of each molded product.

【図面の簡単な説明】 第1図ないし第3図はそれぞれ本発明の制御方法の実施
例を示す制御系統図である。 11〜金型、12〜キヤビテイ、13A −13B −
13c〜ゲート、14B〜玉ノズルチツプ、14A −
149〜従ノズルチツプ、17B〜玉ノズルチツプのヒ
ータ、+7A・17B〜従ノズルチツプのヒータ、19
〜温度センサ、20〜交流電源、21・21A・21B
・21C〜トライアツク、22A・22B・22C〜可
変抵抗器(関係設定手段)、24・24B〜位相制御回
路、24A24C〜位相制御回路(関係設定手段)。 第1図 第2図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are control system diagrams showing embodiments of the control method of the present invention. 11 ~ Mold, 12 ~ Cavity, 13A -13B -
13c ~ Gate, 14B ~ Ball nozzle tip, 14A -
149 ~ slave nozzle chip, 17B ~ ball nozzle chip heater, +7A/17B ~ slave nozzle chip heater, 19
~Temperature sensor, 20~AC power supply, 21/21A/21B
・21C~triack, 22A/22B/22C~variable resistor (relationship setting means), 24/24B~phase control circuit, 24A24C~phase control circuit (relationship setting means). Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 多点ゲートを構成する複数のノズルチップを、主ノズル
チップと従ノズルチップに分けると共に、その主ノズル
チップの加熱素子の通電電流と従ノズルチップの加熱素
子の通電電流との関係を定める関係設定手段を設け、主
ノズルチップでは、ゲートの温度を検出してその温度に
応じて加熱素子の通電電流を制御し、従ノズルチップで
は、上記関係設定手段により主ノズルチップの加熱素子
の通電電流と所定の関係を保って加熱素子の通電電流を
制御するようにしたことを特徴とするホットランナ多点
ゲートの温度制御方法。
A relationship setting method that divides a plurality of nozzle chips constituting a multi-point gate into a main nozzle chip and a sub-nozzle chip, and determines the relationship between the current flowing through the heating element of the main nozzle chip and the current flowing through the heating element of the sub-nozzle chip. In the main nozzle chip, the temperature of the gate is detected and the current flowing through the heating element is controlled according to the detected temperature, and in the secondary nozzle chip, the current flowing through the heating element of the main nozzle chip and the current flowing through the heating element are controlled by the above-mentioned relationship setting means. A temperature control method for a hot runner multi-point gate, characterized in that the current flowing through a heating element is controlled while maintaining a predetermined relationship.
JP59235087A 1984-11-09 1984-11-09 Temperature control method of hot runner multipoint gate Granted JPS61115108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235087A JPS61115108A (en) 1984-11-09 1984-11-09 Temperature control method of hot runner multipoint gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235087A JPS61115108A (en) 1984-11-09 1984-11-09 Temperature control method of hot runner multipoint gate

Publications (2)

Publication Number Publication Date
JPS61115108A true JPS61115108A (en) 1986-06-02
JPH0467493B2 JPH0467493B2 (en) 1992-10-28

Family

ID=16980870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235087A Granted JPS61115108A (en) 1984-11-09 1984-11-09 Temperature control method of hot runner multipoint gate

Country Status (1)

Country Link
JP (1) JPS61115108A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398007A (en) * 1986-10-14 1988-04-28 Sumitomo Heavy Ind Ltd Power quantity adjusting device
JPH02113359U (en) * 1989-02-27 1990-09-11
JPH0524077A (en) * 1991-07-18 1993-02-02 Meisei Kinzoku Kogyosho:Kk Direct molding
JPH0516255U (en) * 1991-08-07 1993-03-02 株式会社明星金属工業所 1-chip multi-point gate structure in injection molding die for direct molding
JPH06210689A (en) * 1992-12-10 1994-08-02 Husky Injection Molding Syst Ltd Injection molding system
WO1996006719A1 (en) * 1994-09-01 1996-03-07 Fanuc Ltd Temperature control method for injection molding machine
WO2002047887A1 (en) * 2000-12-12 2002-06-20 Netstal-Maschinen Ag Method for controlling/regulating the distribution of the injection molding compound, and multi-cavity injection mold
WO2005116791A1 (en) * 2004-05-14 2005-12-08 D-M-E Company Improved temperature control
EP1939705A1 (en) * 2006-12-01 2008-07-02 Incoe International Inc. Electric regulating assembly for heaters of numerous nozzles and/or manifold portions in an injection moulding facility
CN104275785A (en) * 2014-09-23 2015-01-14 格力电器(武汉)有限公司 Temperature control device and hot runner mold
CN109341898A (en) * 2018-12-13 2019-02-15 盐城市沿海新能源汽车科技有限公司 A kind of dedicated temperature-detecting device of hot flow path

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398007A (en) * 1986-10-14 1988-04-28 Sumitomo Heavy Ind Ltd Power quantity adjusting device
JPH02113359U (en) * 1989-02-27 1990-09-11
JPH0524077A (en) * 1991-07-18 1993-02-02 Meisei Kinzoku Kogyosho:Kk Direct molding
JPH0516255U (en) * 1991-08-07 1993-03-02 株式会社明星金属工業所 1-chip multi-point gate structure in injection molding die for direct molding
JPH06210689A (en) * 1992-12-10 1994-08-02 Husky Injection Molding Syst Ltd Injection molding system
WO1996006719A1 (en) * 1994-09-01 1996-03-07 Fanuc Ltd Temperature control method for injection molding machine
US5762839A (en) * 1994-09-01 1998-06-09 Fanuc Ltd. Temperature control method for an injection molding machine
US7507359B2 (en) 2000-12-12 2009-03-24 Nestal-Maschinen Ag Method and apparatus for controlling and regulating the distribution of an injection molding compound
CN100406233C (en) * 2000-12-12 2008-07-30 内兹塔尔机械公司 Method for controlling/regulating distribution of injection molding compound and multicavity injection mold
WO2002047887A1 (en) * 2000-12-12 2002-06-20 Netstal-Maschinen Ag Method for controlling/regulating the distribution of the injection molding compound, and multi-cavity injection mold
WO2005116791A1 (en) * 2004-05-14 2005-12-08 D-M-E Company Improved temperature control
US7020540B2 (en) * 2004-05-14 2006-03-28 D-M-E Company Temperature control
EP1939705A1 (en) * 2006-12-01 2008-07-02 Incoe International Inc. Electric regulating assembly for heaters of numerous nozzles and/or manifold portions in an injection moulding facility
CN104275785A (en) * 2014-09-23 2015-01-14 格力电器(武汉)有限公司 Temperature control device and hot runner mold
CN109341898A (en) * 2018-12-13 2019-02-15 盐城市沿海新能源汽车科技有限公司 A kind of dedicated temperature-detecting device of hot flow path
CN109341898B (en) * 2018-12-13 2021-06-01 盐城市沿海新能源汽车科技有限公司 Dedicated temperature-detecting device of hot runner

Also Published As

Publication number Publication date
JPH0467493B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
JPS61115108A (en) Temperature control method of hot runner multipoint gate
US7418992B2 (en) Controller for at least one heater utilized in an injection molding system and an associated method of use
EP0605975B1 (en) Temperature control system for hot nozzle used in runner-less moulding process and method of temperature control of same
US4604516A (en) Cascaded arrangement for electrically heating fluids to high temperature
US6167728B1 (en) Method and apparatus for controlling heating and cooling in segments of a fiber glass bushing
CA1231747A (en) Joule heating of glass by cycloconverter with vlf output
US4376623A (en) Extruder with temperature control
JPS5926462B2 (en) Thermoplastic resin molding equipment
US6107610A (en) Power factor correction system for a resistive load device
JP2007276189A (en) Temperature control method of injection moulding machine
US3291969A (en) Temperature control system for a diffusion furnace
JP3259449B2 (en) Heater control device
JP2000500269A (en) Heating furnace power control
JPH01151778A (en) Method and device for controlling temperature of glow plug
US4405894A (en) Voltage control and balancing circuit
GB1314839A (en) Thermal bonding apparatus
US1873421A (en) Method and apparatus for controlling temperatures
US2802084A (en) Moulding machine adapted for plasticising a thermo-plastic material or a thermo-setting material which is subsequently to be moulded
JPS62191117A (en) Manifold block
JPH0557769A (en) Mold temperature-regulating device of injection molding machine
JPS6398007A (en) Power quantity adjusting device
JPS5680640A (en) Temperature controlling apparatus for floor heating system
JPS61252124A (en) Heating control of screw heating cylinder in injection molding machine
JPH0412450Y2 (en)
US3354257A (en) Furnace heating apparatus