JPS61114887A - Optical recording layer for low-output semiconductor laser - Google Patents

Optical recording layer for low-output semiconductor laser

Info

Publication number
JPS61114887A
JPS61114887A JP59235233A JP23523384A JPS61114887A JP S61114887 A JPS61114887 A JP S61114887A JP 59235233 A JP59235233 A JP 59235233A JP 23523384 A JP23523384 A JP 23523384A JP S61114887 A JPS61114887 A JP S61114887A
Authority
JP
Japan
Prior art keywords
optical recording
recording layer
layer according
recording medium
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59235233A
Other languages
Japanese (ja)
Inventor
Nagaaki Etsuno
越野 長明
Yasuyuki Goto
康之 後藤
Miyozo Maeda
巳代三 前田
Akira Shioda
明 潮田
Kenichi Ito
健一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59235233A priority Critical patent/JPS61114887A/en
Publication of JPS61114887A publication Critical patent/JPS61114887A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2572Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a high-sensitivity optical recording layer which enables satisfactory information recording to be achieved even with a small-type low- output semiconductor layer, by providing a thin film of a specified chalcogenide and an organic coloring matter capable of sensitizing the thin film. CONSTITUTION:The thin chalcogenide film, which functions as a recording medium, comprises a Group 6B metal or a combination of at least 50% of a Group 6B metal and less than 50% of a Group 5B metal and/or a metal of other Group. An organic coloring matter which can be advantageously used for sensitization is, for example, a phthalocyanine coloring matter, has a quite large absorption, is chemically stable and has favorable orientation property.

Description

【発明の詳細な説明】 C産業上の利用分野) 本発明は光記録技術に関する。本発明は、さらに詳しく
述べると、レーザ光の照射によって惹起される照射部分
の状態の変化により情報を記録する形式の、例えばレー
ザディスク、カードなどの光記録材料において有利に使
用することのできる小出力半導体レーザ光用光記録層に
関する。
DETAILED DESCRIPTION OF THE INVENTION C) Industrial Application Field The present invention relates to optical recording technology. More specifically, the present invention provides a small device that can be advantageously used in optical recording materials such as laser discs and cards that record information by a change in the state of the irradiated area caused by laser beam irradiation. The present invention relates to an optical recording layer for output semiconductor laser light.

〔従来の技術〕[Conventional technology]

従来、例えばセレン系、テルル系等のカルコゲナイド薄
膜を例えばガラス、ポリメチルメタクリレート等の&板
上に有する光記録材料、典型は光ディスク、にレーザ光
を照射し、その薄膜の反射率あるいは透過率を変化させ
て情報を記録している。すなわち、この光記録技術では
、レーザ光の照射によってその照射部分の状態をガラス
状態(非晶質状態)と結晶状態の間で変化させ、両者の
光学的な相異をメモリーとして利用している。
Conventionally, an optical recording material (typically an optical disk) having a thin film of chalcogenide such as selenium-based or tellurium-based chalcogenide on a board made of glass or polymethyl methacrylate is irradiated with a laser beam, and the reflectance or transmittance of the thin film is measured. Information is recorded by changing it. In other words, this optical recording technology uses laser light irradiation to change the state of the irradiated area between a glass state (amorphous state) and a crystalline state, and uses the optical difference between the two as a memory. .

ところで、かかる光記録技術の場合、光記録層として用
いられるカルコゲナイド薄膜が比較的に透明でありかつ
感光域が短波長であるので、良好な光吸収を達成するた
め、大出力で短波長(760nm以下)のArレーザ、
)le −Neレーザなどのレーザ光を使用するかもし
くは、光照射と同時に、外部熱源を用いて加熱を併用す
ることが必要である。後者の加熱では、1膜の結晶化を
促進することができ、また、反対に急冷を行なうと、結
晶状態にある薄膜を有利に非晶質状態に変えることがで
きる。
By the way, in the case of such optical recording technology, the chalcogenide thin film used as the optical recording layer is relatively transparent and the photosensitive region is short wavelength. (below) Ar laser,
) It is necessary to use a laser beam such as a le -Ne laser, or to use an external heat source to heat simultaneously with the light irradiation. The latter heating can promote the crystallization of a film, while rapid cooling, on the other hand, can advantageously change a crystalline thin film into an amorphous state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の技術のところで述べたようなレーザ光で記録を行
なう形式の光記録材料は記録材料として非常に有用であ
る。しかしながら、かかるタイプの記録材料では、大出
力で短波長のレーザ光を使用するかもしくは光照射に加
熱を併用することが必須であり、最近開発が進んでおり
かつ注目されている小型・小出力で長波長(780nm
以上)の半導体レーザ光を使用することができない。仮
に、このような半導体レーザ光を使用したとしても、記
録感度が十分でないので、期待通りの情報記録を達成す
ることができない。したがって、今、小型で小出力の半
導体レーザ(波長780〜850 nm)を使用可能な
光記録層を提供することが望まれている。
Optical recording materials in which recording is performed using laser light, as described in the section on the prior art, are very useful as recording materials. However, for this type of recording material, it is essential to use high-output, short-wavelength laser light or to use heating in combination with light irradiation. and long wavelength (780nm
(above) cannot be used. Even if such a semiconductor laser light were used, the recording sensitivity would not be sufficient, so it would not be possible to achieve the expected information recording. Therefore, it is currently desired to provide an optical recording layer that can use a small, low-output semiconductor laser (wavelength: 780 to 850 nm).

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、半導体レーザで容易に情報を書き込むこ
とのできる高感度な光記録層を提供すべく研究の結果、
特定のカルコゲナイド薄膜と、その薄膜を増感、すなわ
ち、780nmもしくはそれよりも長波長の低エネルギ
ーレーザ光に怒光可能にすることのできる有機色素とを
有することを特徴とする小出力半導体レーザ光用光記録
層を見い出した。
As a result of research to provide a highly sensitive optical recording layer on which information can be easily written using a semiconductor laser, the present inventors found that
A low-power semiconductor laser beam characterized by having a specific chalcogenide thin film and an organic dye capable of sensitizing the thin film, that is, making the thin film capable of irradiating low-energy laser light with a wavelength of 780 nm or longer. We have discovered an optical recording layer for use.

前記カルコゲナイド薄膜は、記録媒体として作用するも
のであって、周期表第6B族の金属の単独からなるかも
しくは50%以上の周期表第6B族の金属及び50%未
満の同じ族及び(又は)異なる族の金属の組み合わせか
らなる。周期表第6B族の金属の単独から記録媒体を構
成するのであるならば、セレンを有利に使用することが
できる。また、セレンを他の金属と組み合わせて記録媒
体を構成するのであるならば、50%以上のセレンと、
50%未満のテルル、硫黄、ゲルマニウム、アンチモン
、ビスマス、錫、鉛、珪素、ガリウム、アルミニウム、
インジウム又は亜鉛の最低1種類との組み合わせを有利
に使用することができる。同様に、テルルの単独かもし
くは50%以上のテルルと、50%未満のセレン、硫黄
、ゲルマニウム、アンチモン、ビスマス、錫、鉛、珪素
、ガリウム、アルミニウム、インジウム又は亜鉛の最低
1種類との組み合わせを記録媒体として有利に使用する
ことができる。
The chalcogenide thin film acts as a recording medium and is composed of a metal of group 6B of the periodic table alone, or 50% or more of a metal of group 6B of the periodic table and less than 50% of a metal of the same group and/or Consists of a combination of metals from different groups. Selenium can be advantageously used if the recording medium is composed solely of a metal from Group 6B of the periodic table. Furthermore, if selenium is to be combined with other metals to form a recording medium, 50% or more of selenium and
Less than 50% tellurium, sulfur, germanium, antimony, bismuth, tin, lead, silicon, gallium, aluminum,
A combination with at least one of indium or zinc can be advantageously used. Similarly, tellurium alone or in combination with at least 50% tellurium and less than 50% of at least one of selenium, sulfur, germanium, antimony, bismuth, tin, lead, silicon, gallium, aluminum, indium, or zinc. It can be advantageously used as a recording medium.

本発明において増感目的で有利に使用することのできる
有機色素は、フタロシアニン系色素、例えばバナジウム
フタロシアニン、鉛フタロシアニン、錫フタロシアニン
などである。実際、このような有機色素は、かなり大き
な吸収(830nm以上)を示すばかりでな(、化学的
に安定でありかつ配向性が良好であるので、本発明の目
的に適当である。
Organic dyes that can be advantageously used for the purpose of sensitization in the present invention include phthalocyanine dyes, such as vanadium phthalocyanine, lead phthalocyanine, and tin phthalocyanine. In fact, such organic dyes are suitable for the purpose of the present invention because they not only exhibit fairly large absorption (at least 830 nm), but also are chemically stable and have good orientation.

本発明の実施において、記録媒体及び有機色素は、薄い
単一の層に混在させてもよく、さもなければ、それぞれ
の薄い層を交互に積層して多層構造体となしてもよい。
In the practice of the present invention, the recording medium and the organic dye may be intermixed in a single thin layer, or alternatively, the respective thin layers may be stacked alternately to form a multilayer structure.

記録媒体及び有機色素は、前者がことさらに多くなると
吸収が小さいので感度が低下しかつ後者がことさらに多
くなると増感が促進される反面、もう一つの重要な点で
ある結晶状態と非晶質状態の関係がくずれるので、これ
らの不都合を回避し得る量で組み合わせなければならな
い。有機色素の量は、記録媒体がセレン単独からなるも
のかもしくはセレンを主成分とする場合、好ましくは体
積百分率で50%以下であり、また、記録媒体がテルル
単独からなるものかもしくはテルルを主成分とする場合
、好ましくは体積百分率で80%以下である。
In recording media and organic dyes, when the former is particularly large, the absorption is small, resulting in a decrease in sensitivity, and when the latter is large, sensitization is promoted, but on the other hand, another important point is crystalline state and amorphous state Since the relationship between the states will be disrupted, these must be combined in amounts that can avoid these inconveniences. The amount of the organic dye is preferably 50% or less in volume percentage when the recording medium consists only of selenium or mainly consists of selenium, and when the recording medium consists only of tellurium or mainly consists of tellurium. When used as a component, the volume percentage is preferably 80% or less.

本発明による光記録層は、円板、カードなどの形状を有
するガラスやプラスチック材料(例えばポリメチルメタ
クリレート)の基板に蒸着等の手法により付着させるこ
とができる。形成された光記録層の上方には、その層を
湿気等の外気条件から保護して記録媒体の特性低下を防
ぎ、経時変化をなくするため、例えば5i02 J  
^z203などの金属酸化物からなる保護膜を蒸着等の
手法により付着させることができる。
The optical recording layer according to the invention can be applied to a substrate of glass or plastic material (for example polymethyl methacrylate) having the shape of a disk, card, etc. by a technique such as vapor deposition. For example, 5i02 J is placed above the formed optical recording layer in order to protect the layer from outside air conditions such as humidity, prevent deterioration of the characteristics of the recording medium, and eliminate deterioration over time.
A protective film made of a metal oxide such as ^z203 can be deposited by a technique such as vapor deposition.

〔実施例〕〔Example〕

次に、下記の実施例を参照しながら本発明を説明する。 The invention will now be described with reference to the following examples.

例1: 直径30c+aのアクリル樹脂製円板を用意し、これを
十分に洗浄した。この円板を真空蒸着機にセットし、そ
して、円板の回転下、5i02の薄膜を膜厚300人で
蒸着した。なお、本例で使用した5i02の薄膜に代え
て、各種の酸化物、弗化物、窒化物等の透明な薄膜もま
た使用可能であった。
Example 1: An acrylic resin disc with a diameter of 30c+a was prepared and thoroughly washed. This disk was set in a vacuum deposition machine, and a thin film of 5i02 was vapor-deposited with a thickness of 300 while the disk was rotating. In place of the 5i02 thin film used in this example, transparent thin films of various oxides, fluorides, nitrides, etc. could also be used.

次いで、同じ真空蒸着機を使用して、下記の3つの蒸着
源から記載の材料を同時に蒸着した。
The materials described below were then simultaneously deposited from the three deposition sources using the same vacuum deposition machine.

第2蒸着源  セレン(Se) 第3蒸着源  Ge −Sn合金(Ge:Sn= 3:
1 )各蒸着源の蒸着スピードを、蒸着された薄膜のう
ちVO−Pcの体積比率が40%、残りの無機質材料の
うちSe 、 Ge及びSnの原子比率がそれぞれ60
%。
Second evaporation source Selenium (Se) Third evaporation source Ge-Sn alloy (Ge:Sn=3:
1) The evaporation speed of each evaporation source was adjusted such that the volume ratio of VO-Pc in the deposited thin film was 40%, and the atomic ratio of Se, Ge, and Sn in the remaining inorganic material was 60% each.
%.

30%及び10%となるように、それぞれ調整した。They were adjusted to 30% and 10%, respectively.

VO−Pc 、 Se 、 Ge及びSnからなる単一
の光記録層(膜厚1000人)が形成された。
A single optical recording layer (thickness: 1000 nm) consisting of VO-Pc, Se, Ge and Sn was formed.

次いで、上記のようにして形成させた光記録層上に、保
護膜としての5i02膜を膜厚500人で蒸着した。な
お、このSi02保護膜に代えて、先に列挙した各種の
透明な薄膜やポリメチルメタクリレート等の透明な高分
子の薄膜もまた使用可能であった。
Next, on the optical recording layer formed as described above, a 5i02 film was deposited as a protective film to a thickness of 500 ml. Note that in place of this Si02 protective film, it was also possible to use the various transparent thin films listed above or a transparent polymer thin film such as polymethyl methacrylate.

上記のようにして加工の完了した光記録層付の円板に、
それを180Orpmで回転させながら、波長830n
mの半導体レーザ光の集束ビーム(ビーム径0.8μm
)を照射した。次いで、このレーザ光照射部分の反射率
を非照射部分のそれと比較するために照射パワー10n
+Hのパルス光(5MIIz)を円板の全面に照射した
ところ、先にレーザ光を照射した部分において著しい反
射率の増加が確認された。
On the disk with the optical recording layer that has been processed as described above,
While rotating it at 180Orpm, the wavelength was 830n.
m focused beam of semiconductor laser light (beam diameter 0.8 μm
) was irradiated. Next, in order to compare the reflectance of the laser beam irradiated part with that of the non-irradiated part, the irradiation power was set to 10n.
When the entire surface of the disk was irradiated with +H pulsed light (5 MIIz), a significant increase in reflectance was confirmed in the portions that were previously irradiated with laser light.

この結果から、蒸着直後の光記録層の薄膜は非晶質状態
であったけれども、半導体レーザ光の照射によって、結
晶性の高い状態に変化したことが判る。さらに、この結
晶状態の光記録層に高強度の短パルス光を照射したとこ
ろ、再び反射率の低い状態、すなわち、非晶質状態に変
化した。このことは、この光記録層では、情報の書き込
みばかりでなく、情報の消去もまた可能であることを意
味する。
From this result, it can be seen that although the thin film of the optical recording layer was in an amorphous state immediately after vapor deposition, it changed to a highly crystalline state by irradiation with semiconductor laser light. Furthermore, when this crystalline optical recording layer was irradiated with high-intensity short pulse light, it changed again to a state with low reflectance, that is, an amorphous state. This means that in this optical recording layer, it is possible not only to write information but also to erase information.

さらに、上記の手法を、第3薄着源であるGe −Sn
合金を省略して実施しても、上記と同様の満足し得る結
果が得られた。
Furthermore, the above method is applied to Ge-Sn, which is a third thin deposition source.
Even when the alloy was omitted, satisfactory results similar to those described above were obtained.

±に 前記例1に記載の手法を繰り返した。但し、本例の場合
、3つの蒸着源から同時に蒸着を行なうのではなく、第
1.第2及び第3の蒸着源を順次使用して3層からなる
光記録層を形成した。VO−Pc膜の膜厚は300人、
Se膜の膜厚は400人、そしてGe −Sn膜の膜厚
は200人であった。
The procedure described in Example 1 above was repeated for ±. However, in the case of this example, vapor deposition is not performed simultaneously from three vapor deposition sources, but from the first... A three-layer optical recording layer was formed by sequentially using the second and third deposition sources. The thickness of the VO-Pc film is 300 people,
The thickness of the Se film was 400 mm, and the thickness of the Ge-Sn film was 200 mm.

得られた多層光記録層材の円板に前記例1と同様に半導
体レーザ光及びパルス光を照射して光照射部分の反射率
の変化を測定した。前記例1と同様に、レーザ光照射部
分における反射率の増加、そして高強度短パルス光の照
射による反射率の低下が確認された。
The disc of the obtained multilayer optical recording layer material was irradiated with semiconductor laser light and pulsed light in the same manner as in Example 1, and the change in reflectance of the light irradiated portion was measured. As in Example 1, it was confirmed that the reflectance increased in the laser beam irradiated area and that the reflectance decreased due to the irradiation with high-intensity short pulse light.

±1上 前記例1に記載の手法を繰り返した。但し、本例の場合
、円板上の5i02の膜厚を200人とし、また、下記
の3つの蒸着源を使用した。
The procedure described in Example 1 above was repeated on ±1. However, in the case of this example, the film thickness of 5i02 on the disk was 200, and the following three evaporation sources were used.

第1蒸着源  vO−Pc 第2蒸着源  テルル(Te) 第3蒸着m、   Ge−Sn合金(Ge:Sn= 2
:l )本例では、蒸着された薄膜のうちVO−Pcの
体積比率が50%、残りの無機質材料のうちTe 、 
Ge及びSnの原子比率がそれぞれ70%、20%及び
10%となるように、各蒸着源の蒸着スピードを調整し
た。
First vapor deposition source vO-Pc Second vapor deposition source Tellurium (Te) Third vapor deposition m, Ge-Sn alloy (Ge:Sn=2
:l) In this example, the volume ratio of VO-Pc in the deposited thin film is 50%, and of the remaining inorganic material, Te,
The evaporation speed of each evaporation source was adjusted so that the atomic ratios of Ge and Sn were 70%, 20%, and 10%, respectively.

さらに、本例では、保護膜としての5i02の膜厚を1
500人とした。
Furthermore, in this example, the film thickness of 5i02 as a protective film is 1
The number of people was 500.

得られた光記録層材の円板に前記例1と同様に半導体レ
ーザ光及びパルス光を照射して光照射部分の反射率の変
化を測定した。前記例1と同様に、レーザ光照射部分に
おける反射率の増加、そして高強度短パルス光の照射に
よる反射率の低下が確認された。
The disc of the obtained optical recording layer material was irradiated with semiconductor laser light and pulsed light in the same manner as in Example 1, and the change in reflectance of the light irradiated portion was measured. As in Example 1, it was confirmed that the reflectance increased in the laser beam irradiated area and that the reflectance decreased due to the irradiation with high-intensity short pulse light.

さらに、上記の手法を、第3蒸着源であるGe −Sn
合金を省略して実施しても、上記と同様の満足し得る結
果が得られた。
Furthermore, the above method is applied to Ge-Sn, which is a third evaporation source.
Even when the alloy was omitted, satisfactory results similar to those described above were obtained.

比較■± 比較のため、バナジウムフタロシアニンの不存在下にお
いて前記例1、例2及び例、3に記載の手法を繰り返し
た。しかし表から、いずれの場合にも、光記録層の半導
体レーザ光に対する感度が乏しく、前記した例のほぼ3
倍の照射パワーを適用してはじめて結晶状態を変化させ
ることができた。
Comparison ■± For comparison, the procedure described in Examples 1, 2 and 3 above was repeated in the absence of vanadium phthalocyanine. However, the table shows that in all cases, the sensitivity of the optical recording layer to semiconductor laser light is poor, and almost all
Only by applying twice the irradiation power could the crystal state be changed.

また、光記録層そのものも安定でなく、その蒸着直後に
おいて早くも部分的な結晶化が確認された。
Furthermore, the optical recording layer itself was not stable, and partial crystallization was observed even immediately after its deposition.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、小型で小出力の半導体レーザでも満足
し得る程度に情報を記録可能な高感度の光記録層を得る
ことができ、また、この光記録層を使用して種々の有用
な光記録材料を製造することができる。さらに、本発明
によれば、小型の半導体レーザを使用することができる
ので、装置の小型化及び低価格化を計ることができる。
According to the present invention, it is possible to obtain a highly sensitive optical recording layer that can record information to a satisfactory degree even with a small and low-output semiconductor laser, and this optical recording layer can be used to perform various useful purposes. Optical recording materials can be produced. Further, according to the present invention, since a small semiconductor laser can be used, the device can be made smaller and lower in price.

Claims (1)

【特許請求の範囲】 1、小出力半導体レーザ光の照射によって惹起される照
射部分の状態の変化により情報を記録する形式の光記録
層であって、周期表第6B族の金属の単独からなるかも
しくは50%以上の周期表第6B族の金属及び50%未
満の同じ族及び(又は)異なる族の金属の組み合わせか
らなる記録媒体と、該記録媒体の前記レーザ光に対する
感度を増大させ得る有機色素とを有することを特徴とす
る小出力半導体レーザ光用光記録層。 2、単層からなる、特許請求の範囲第1項に記載の光記
録層。 3、多層からなりかつ前記記録媒体の層及び前記有機色
素の層が交互に積層されている、特許請求の範囲第1項
に記載の光記録層。 4、前記記録媒体がセレンだけからなる、特許請求の範
囲第1項〜第3項のいずれか1項に記載の光記録層。 5、前記記録媒体が、50%以上のセレンと、50%未
満のテルル、硫黄、ゲルマニウム、アンチモン、ビスマ
ス、錫、鉛、珪素、ガリウム、アルミニウム、インジウ
ム又は亜鉛の最低1種類との組み合わせからなる、特許
請求の範囲第1項〜第3項のいずれか1項に記載の光記
録層。 6、前記有機色素が体積百分率で50%以下である、特
許請求の範囲第4項又は第5項に記載の光記録層。 7、前記有機色素がフタロシアニン系色素である、特許
請求の範囲第6項に記載の光記録層。 8、前記記録媒体がテルルだけからなる、特許請求の範
囲第1項〜第3項のいずれか1項に記載の光記録層。 9、前記記録媒体が、50%以上のテルルと、50%未
満のセレン、硫黄、ゲルマニウム、アンチモン、ビスマ
ス、錫、鉛、珪素、ガリウム、アルミニウム、インジウ
ム又は亜鉛の最低1種類との組み合わせからなる、特許
請求の範囲第1項〜第3項のいずれか1項に記載の光記
録層。 10、前記有機色素が体積百分率で80%以下である、
特許請求の範囲第8項又は第9項に記載の光記録層。 11、前記有機色素がフタロシアニン系色素である、特
許請求の範囲第10項に記載の光記録層。
[Claims] 1. An optical recording layer of a type that records information by a change in the state of the irradiated part caused by irradiation with a low-output semiconductor laser beam, which is made solely of a metal of Group 6B of the periodic table. or a recording medium consisting of a combination of 50% or more of a metal from group 6B of the periodic table and less than 50% of a metal from the same group and/or a different group, and an organic material capable of increasing the sensitivity of the recording medium to the laser light. 1. An optical recording layer for low output semiconductor laser light, comprising a dye. 2. The optical recording layer according to claim 1, which consists of a single layer. 3. The optical recording layer according to claim 1, which is composed of multiple layers and in which the recording medium layer and the organic dye layer are alternately laminated. 4. The optical recording layer according to any one of claims 1 to 3, wherein the recording medium is made only of selenium. 5. The recording medium consists of a combination of 50% or more selenium and less than 50% at least one of tellurium, sulfur, germanium, antimony, bismuth, tin, lead, silicon, gallium, aluminum, indium, or zinc. , an optical recording layer according to any one of claims 1 to 3. 6. The optical recording layer according to claim 4 or 5, wherein the organic dye is 50% or less in volume percentage. 7. The optical recording layer according to claim 6, wherein the organic dye is a phthalocyanine dye. 8. The optical recording layer according to any one of claims 1 to 3, wherein the recording medium is made only of tellurium. 9. The recording medium consists of a combination of 50% or more tellurium and less than 50% at least one of selenium, sulfur, germanium, antimony, bismuth, tin, lead, silicon, gallium, aluminum, indium, or zinc. , an optical recording layer according to any one of claims 1 to 3. 10. The organic dye is 80% or less in volume percentage,
The optical recording layer according to claim 8 or 9. 11. The optical recording layer according to claim 10, wherein the organic dye is a phthalocyanine dye.
JP59235233A 1984-11-09 1984-11-09 Optical recording layer for low-output semiconductor laser Pending JPS61114887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235233A JPS61114887A (en) 1984-11-09 1984-11-09 Optical recording layer for low-output semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235233A JPS61114887A (en) 1984-11-09 1984-11-09 Optical recording layer for low-output semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61114887A true JPS61114887A (en) 1986-06-02

Family

ID=16983048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235233A Pending JPS61114887A (en) 1984-11-09 1984-11-09 Optical recording layer for low-output semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61114887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470626A (en) * 1995-02-21 1995-11-28 Eastman Kodak Company Optical recording layers containing sulfur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470626A (en) * 1995-02-21 1995-11-28 Eastman Kodak Company Optical recording layers containing sulfur

Similar Documents

Publication Publication Date Title
JP2512087B2 (en) Optical recording medium and optical recording method
JPH0429135B2 (en)
JP2000231724A (en) Use method of optical recording medium and optical recording medium
JPH08153339A (en) Optical disk
JP4509431B2 (en) Information recording medium
JPS62246788A (en) Information recording medium
JPS61114887A (en) Optical recording layer for low-output semiconductor laser
JP2002298433A (en) Phase change optical recording medium
JPS60157894A (en) Optical information recording medium
JPS6339387A (en) Optical recording medium
JPH02113451A (en) Optical information recording medium
JPH0776171A (en) Write-once optical disk
JPS59113535A (en) Optical recording medium
JPH04232780A (en) Phase change optical recording medium
JP2923036B2 (en) Information recording medium
JPH0416355B2 (en)
JPS59218644A (en) Optical recording medium
JP2948899B2 (en) Optical recording medium and optical recording method
JPS60109039A (en) Optical information recording medium
JPS63167440A (en) Method for recording or recording and erasing information
JP2001126312A (en) Information recording medium
JPS6326466B2 (en)
JPS59171689A (en) Optical recording method
JPS62275334A (en) Information recording medium
JPH0254443A (en) Information carrier disk