JPS61114148A - Magnetic field generating device - Google Patents

Magnetic field generating device

Info

Publication number
JPS61114148A
JPS61114148A JP59236970A JP23697084A JPS61114148A JP S61114148 A JPS61114148 A JP S61114148A JP 59236970 A JP59236970 A JP 59236970A JP 23697084 A JP23697084 A JP 23697084A JP S61114148 A JPS61114148 A JP S61114148A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
gap
coordinate system
pole pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236970A
Other languages
Japanese (ja)
Inventor
Seiji Endo
政治 遠藤
Hirobumi Takabayashi
博文 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59236970A priority Critical patent/JPS61114148A/en
Publication of JPS61114148A publication Critical patent/JPS61114148A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain a tomographic image of a necessary object of diagnosis through a relatively small-sized gap by detecting relative positions of a target in the three-axial coordinate system of the object of diagnosis and the three-axial coordinate system of a moving means in a magnetostatic field, and making a uniform magnetic field coincident. CONSTITUTION:A magnetic circuit 1 has a couple of plate type magnetic pole pieces 3 whose main surface face each other at a constant interval, columnar permanent magnets 2 are connected between both end facing parts of the magnetic pole pieces 3 to form the gap 4 between the magnetic pole pieces 4, and pieces of magnetic flux produced by the magnets 2 are equalized in direction and form magnetic fields through the magnetic pole pieces 3, thereby forming a uniform magnetostatic field part 5 which is intense within a sphere having a radius (r) and has extremely high uniformity in the gap 4 as center. The whole of the circuit 1 is moved by a linear motor 6 in three axial directions. The object of diagnosis mounted on a rack which is movable in the three axial directions is sent in the three-axial coordinate system of this moving device and the magnetostatic field part 6 is moved to the necessary target; and the position of the magnetostatic field part 5 is measured 7 by arithmetic on the basis of input electric power to the motor 6, which is controlled 8 according to the measurement result to make the object coincident with target coordinates.

Description

【発明の詳細な説明】 産業分野 この発明は、対象物の断面イメージを得て組織の性質法
で描き出すことのできる医療用核磁気共鳴断層装置(以
下、NMR−CTという)に用いられる永久磁石を使用
した磁界発生装置に係り、特に多くの永久磁石を用いる
ことなく、小型で所要の空隙内に強力かつ高精度で均一
な静磁界を発生する磁界発生装置に関する。
Detailed Description of the Invention [Industrial Field] The present invention relates to a permanent magnet used in a medical nuclear magnetic resonance tomography system (hereinafter referred to as NMR-CT) that can obtain a cross-sectional image of an object and depict it using a tissue property method. The present invention relates to a magnetic field generating device using a magnetic field generating device, and particularly to a magnetic field generating device that is small and generates a strong, highly accurate, and uniform static magnetic field within a required air gap without using many permanent magnets.

背景技術 NMR−CTは、人体の一部または全部を1〜10KG
の強力な磁界を形成する空隙内に挿入して所要の断層イ
メージを得るため、この磁界が強力かつ10−4以下の
精度で一様で安定していることが要求され、NMR−C
T用の磁界発生装置としては、銅またはアルミニウムか
らなる導線を円筒状に巻着した常伝導磁石あるいは、特
殊な導線を用い、絶対零度付近の温度に冷却して使用す
る超伝導磁石が知られている。
BACKGROUND TECHNOLOGY NMR-CT can detect part or all of the human body at 1 to 10 KG.
In order to obtain the desired tomographic image by inserting the NMR-C into a gap that forms a strong magnetic field, this magnetic field must be strong, uniform, and stable with an accuracy of 10-4 or less.
As magnetic field generators for T, there are known normal conducting magnets made of conductive wires made of copper or aluminum wrapped around them in a cylindrical shape, and superconducting magnets that use special conductive wires cooled to a temperature close to absolute zero. ing.

前者は構造上安価であるが十分な強力磁界を発生させる
ためには、膨大な電力と冷却水が必要であり、ランニン
グコストが高く、コイルが作る漏洩磁界は使用用途によ
っては悪影響の要因となる等のi題があり、一方、後者
の超伝導磁石は、電力の消費が少なく小型で強力な磁界
を発生し得る利点があるが、冷媒として高価な液体ヘリ
ウム等の使用が不可欠であり、いわゆるイニシャルコス
トとともにランニングコストも著しく高い問題がある。
The former is structurally inexpensive, but it requires a huge amount of electricity and cooling water to generate a sufficiently strong magnetic field, resulting in high running costs, and the leakage magnetic field created by the coil can be a factor in adverse effects depending on the application. On the other hand, the latter type of superconducting magnet has the advantage of consuming less power, being compact, and generating a strong magnetic field, but it requires the use of expensive liquid helium as a coolant, and the so-called There is a problem that the running cost is extremely high as well as the initial cost.

本出願人は、先に、磁界強度が上記の常伝導磁石と同等
以上で電力の消費も少なく、漏洩磁界の少ない永久磁石
回路として、空隙を形成して対面する磁極片と、少なく
とも1の永久磁石とを継鉄で磁気的結合し該空隙に磁界
を発生させる磁界発生装置において、上記磁極片の対向
面の各々に環状突起を設けたことを特徴とする磁界発生
装置を提案(特願昭58−196785号)した。
The present applicant previously developed a permanent magnet circuit that has a magnetic field strength equal to or higher than that of the above-mentioned normal conduction magnet, consumes less power, and has less leakage magnetic field. A magnetic field generating device is proposed in which a magnet is magnetically coupled with a yoke to generate a magnetic field in the air gap, and the magnetic field generating device is characterized in that annular protrusions are provided on each of the opposing surfaces of the magnetic pole pieces. No. 58-196785).

上記の磁界発生装置によって、空隙に発生ずる磁界の均
一精度を著しく向上させることができた。
The above-mentioned magnetic field generating device made it possible to significantly improve the uniformity of the magnetic field generated in the air gap.

その構成は、第2図に示す如く、一対の永久磁石(10
)の各々の一方端に磁極片(11)を固着して対向させ
、他方端を継鉄(12)で結合し、磁極片(11)間の
空隙(13)内に、静磁界を発生させる構成であり、一
対の磁極片(11)には、その対向面の周縁に所定の内
径、高さからなる断面略台形の環状突起を突設した構成
において、空隙中心垂直線上では、磁極面に近い程磁界
強度が高くなる性質があるため、通常使用磁界空間、例
えば、半径200mm以上の球形空間で所要の高い均一
磁界を得るためには、永久磁石を大型にしたり、磁極間
距離や磁極面積を大きくするなど、使用磁界空間の10
倍以上の空隙を要し、磁気回路の小型化が困難であった
Its structure consists of a pair of permanent magnets (10
) are fixed to one end of each of the magnetic pole pieces (11) so as to face each other, and the other ends are connected with a yoke (12) to generate a static magnetic field in the gap (13) between the magnetic pole pieces (11). In this configuration, the pair of magnetic pole pieces (11) have an annular protrusion with a substantially trapezoidal cross section having a predetermined inner diameter and height protruding from the periphery of the opposing surfaces. Since the magnetic field strength tends to be higher as the magnetic field is closer, in order to obtain the required high uniform magnetic field in a normally used magnetic field space, for example, a spherical space with a radius of 200 mm or more, it is necessary to increase the size of the permanent magnet, the distance between the magnetic poles, and the magnetic pole area. 10 of the magnetic field space used, such as increasing the
This required more than twice as much air space, making it difficult to miniaturize the magnetic circuit.

発明の目的 この発明は、かかる現状に鑑み、強力な磁界が得られる
永久磁石を使用した磁界発生装置の空隙において、所要
の被診断対象物の断層イメージを得るのに、高精度で均
一かつ安定な磁界の拡大を計ることなく、比較的小型の
空隙でこれを可能となし、装置の小型化をilっだ磁界
発生装置を目的としている。
Purpose of the Invention In view of the current situation, the present invention provides a highly accurate, uniform, and stable method for obtaining a tomographic image of a desired object to be diagnosed in the air gap of a magnetic field generator using a permanent magnet capable of generating a strong magnetic field. The purpose of the present invention is to create a magnetic field generating device that can achieve this with a relatively small air gap without having to expand the magnetic field, allowing for miniaturization of the device.

発明の構成と効果 この発明は、空隙を形成する永久磁石あるいは永久磁石
に接続された磁極片にJ:す、該空隙に静磁界を発生さ
せる核磁気共鳴断層装置用磁気回路と、該磁気回路を3
軸方向に移動させる移動手段と、被診断対象物の3軸座
標系における目標と。
Structure and Effects of the Invention The present invention provides a magnetic circuit for a nuclear magnetic resonance tomography apparatus that generates a static magnetic field in a permanent magnet forming an air gap or a magnetic pole piece connected to the permanent magnet, and the magnetic circuit. 3
A moving means for moving in the axial direction, and a target in a three-axis coordinate system of the object to be diagnosed.

静磁界内の均一磁界域を中心とする3軸座標系との相対
位置を検知する測定手段と、測定手段の検知に伴ない前
記移動手段を作動して該目標へ均一磁界を一致させる制
卸手段とからなることを特徴とする磁界発生装置である
A measuring means for detecting a relative position with a three-axis coordinate system centered on a uniform magnetic field area in a static magnetic field, and a control for aligning the uniform magnetic field with the target by operating the moving means in accordance with the detection by the measuring means. A magnetic field generating device is characterized in that it consists of means.

この発明によって、被診断対象物の所要個所を目標に、
磁気回路空隙内の高精度均一磁界域を上記目標へ移動さ
ゼるため、比較的小型の静磁界空隙であっても、被診断
対象物の全であるいは必要個所の断層イメージを得るこ
とができ、被診断対象物の大半を均−磁界内に収容でき
るほどに、磁気回路を大型にする必要がな(、実施例に
示す如く、1 ton程度の磁気回路でよく、フェライ
ト磁石を使用する従来装置と比較すると1/ 100以
下に小型化できる。
With this invention, targeting the required part of the object to be diagnosed,
Since the highly accurate uniform magnetic field area within the magnetic circuit gap is moved to the above target, it is possible to obtain a tomographic image of the entire or necessary part of the object to be diagnosed, even with a relatively small static magnetic field gap. It is not necessary to make the magnetic circuit large enough to accommodate most of the object to be diagnosed within the uniform magnetic field (as shown in the example, a magnetic circuit of about 1 ton is sufficient, compared to conventional methods using ferrite magnets). The size can be reduced to less than 1/100 compared to other devices.

磁気回路は、実施例に示す回路のぼが、永久磁石にて静
磁界発生空隙を形成したり、永久磁石に接続されたvA
磁極片よって静磁界発生空隙を形成するなど、静磁界発
生空隙を有すれば、いがなる磁気回路であってもよく、
所要空隙での必要な均一磁界の大きさ、磁気回路を3軸
方向に移動させる駆動装置の構成等に応じて適宜選定す
ればよい。
The magnetic circuit includes a circuit shown in the example, a static magnetic field generating gap formed by a permanent magnet, and a vA connected to a permanent magnet.
Any magnetic circuit may be used as long as it has a static magnetic field generating gap, such as a static magnetic field generating gap formed by a magnetic pole piece,
It may be selected as appropriate depending on the magnitude of the uniform magnetic field required in the required gap, the configuration of the drive device for moving the magnetic circuit in three axial directions, etc.

磁気回路の3軸方向の移動手段は、該磁気回路の空隙に
おける高精度均一磁界域を移動中心として、これをX軸
、Y軸、Z軸の3軸方向に、移動させ得る構成であれば
いずれの構成であってもよく、例えば、移動位置検出及
び制御が容易なボイスコイル型すニア゛モーターが利用
できる。
The means for moving the magnetic circuit in the three-axis directions may be configured to move the magnetic circuit in the three-axis directions of the X-axis, Y-axis, and Z-axis, with the high-precision uniform magnetic field area in the air gap of the magnetic circuit as the center of movement. Any configuration may be used; for example, a voice coil type linear motor that is easy to detect and control the moving position can be used.

また、被診断対象物の目標と磁気回路の3軸方向中心と
の相対的位置関係を検知する測定手段は、載置された被
診断対象物をある3軸座標軸系に取り込むか、あるいは
被診断対象物を載置した架台を3軸方向に移動可能して
3軸座標系に取り込む等、種々設定し1qるある3軸座
標系における被診断目標と、上記の高精度均一磁界との
同一座標系あるいは別座標系における相対的位置関係を
測定検知するもので、被診断対象物の断層イメージを得
たい個所へ磁気回路の高精度均一磁界を移動させ得るよ
うに、採用した磁気回路の移動手段に応じて、これに対
応制卸できる測定手段及び制御手段を適宜選定すればよ
い。
In addition, the measuring means for detecting the relative positional relationship between the target of the object to be diagnosed and the center of the three-axis direction of the magnetic circuit is configured to incorporate the placed object to be diagnosed into a certain three-axis coordinate axis system, or Various settings can be made, such as making the pedestal on which the object is placed movable in three axes directions and incorporating it into the three-axis coordinate system. It measures and detects the relative positional relationship in the system or another coordinate system, and the magnetic circuit moving means is adopted to move the high-precision uniform magnetic field of the magnetic circuit to the location where you want to obtain a tomographic image of the object to be diagnosed. Depending on the situation, measuring means and control means that can handle this can be appropriately selected.

発明に用いる永久磁石 この発明の磁界発生装置に用いる永久磁石は、フェライ
ト磁石、アルニコ系磁石、希土類コバルト系磁石が使用
できるが、先に出願人が提案した、高価なSmやらを含
有しない新しい高性能永久磁石としてFe−B −R系
(RはYを含む希土類元素のうち少なくともiFり永久
磁石(特願昭57−145012号)は、その最大エネ
ルギー積が大きいだけでなく、残留磁束密度(Br )
の温度係数が、0.07%/℃〜0.15%/℃なる温
度特性を有するため、この永久磁石を上記のNMR−C
Tに適用することにより、装置の小形化が達成でき、す
ぐれた性能を得られ、さらに、この永久磁石の磁気特性
は、特にO′C以下に冷却して使用することにより、著
しく高い最大エネルギー積を得ることができる性質を有
効に利用できる。
Permanent magnet used in the invention The permanent magnet used in the magnetic field generator of the invention can be a ferrite magnet, an alnico magnet, or a rare earth cobalt magnet. As a performance permanent magnet, a permanent magnet of the Fe-B-R system (where R is at least iF among rare earth elements including Y) not only has a large maximum energy product but also a residual magnetic flux density ( Br)
Since this permanent magnet has a temperature coefficient of 0.07%/°C to 0.15%/°C, it can be used in the above NMR-C
By applying it to T, the device can be made smaller and excellent performance can be obtained.Furthermore, the magnetic properties of this permanent magnet have a significantly high maximum energy, especially when used after being cooled to below O'C. The property of being able to obtain products can be effectively used.

上記のFe−B−R系永久磁石は、R(但しRはYを含
む希土類元素のうち少なくとも1種ン 8原子%〜30
原子%、B2原子%〜28原子%、Fe42原子%〜9
0原子%を主成分とし、主相が正方晶相からなる永久磁
石であり、Rとして+4や門を中心とする資源的に豊富
な軽希土類を用い、El、Feを主成分として25MG
Oa以上の極めて高いエネルギー積を示す、すぐれた永
久磁石である。
The above Fe-B-R permanent magnet is composed of R (where R is at least one kind of rare earth elements including Y, and 8 atomic % to 30
atomic%, B2 atomic% to 28 atomic%, Fe42 atomic% to 9
It is a permanent magnet whose main component is 0 atomic % and whose main phase is a tetragonal phase, and uses resource-rich light rare earths such as +4 and metal as R, and 25MG with El and Fe as its main components.
It is an excellent permanent magnet that exhibits an extremely high energy product of Oa or more.

図面に基づ〈発明の開示 第1図はこの発明による磁界発生装置を示す斜視図であ
る。
Disclosure of the Invention Based on the Drawings FIG. 1 is a perspective view showing a magnetic field generating device according to the present invention.

磁気回路(1)は、板状磁極片(3)の一対を、主面同
士で一定間隔で対向させ、板状磁極片(3)の両端対向
部に、柱状の一対のFe −[3−R系永久磁石(21
を接続し、板状磁極片(3)間に空隙(4)を形成して
あり、Fe  B  R系永久磁石(2)の磁束は同一
方向で、これらが発生する磁束は、磁極片(3)を介し
て磁界形成する構成となり、空隙(4)中心に、半径r
からなる球形内が強力で極めて高い均一度を有する均−
静磁界部(5)が得られる。
The magnetic circuit (1) has a pair of plate-shaped magnetic pole pieces (3) facing each other at a constant interval on their main surfaces, and a pair of columnar Fe-[3- R-based permanent magnet (21
are connected to form a gap (4) between the plate-shaped magnetic pole pieces (3), and the magnetic fluxes of the Fe BR permanent magnets (2) are in the same direction, and the magnetic flux generated by these is connected to the magnetic pole pieces (3). ), the magnetic field is formed through the air gap (4), and the radius r
The inside of the sphere is strong and has an extremely high degree of uniformity.
A static magnetic field section (5) is obtained.

!1気回路(1)の移動装置は、下側の磁極片(3)の
底面及び各側面に、ボイスコイル型リニアモーター(6
)を付設し、磁気回路(1)全体がリニアモーター(6
)により3軸方向に移動可能に懸架された構成からなる
! The moving device of the 1-air circuit (1) is equipped with a voice coil type linear motor (6
), and the entire magnetic circuit (1) is connected to a linear motor (6
), it is suspended movably in three axes.

3軸方向に移動可能な架台に載置されている被診断対象
物は、上記の移動装置の3軸座標系に取り込まれ、所要
目標へ、均−静磁界部(5)を移動させるように、リニ
アモーター(6)を作動させる。この際、各リニアモー
ター(6)への電気入力量によって、可動子の移動量を
検出し、この検出に基づいて均−静磁界部(5)の位置
を演算測定する測定装置(7)を有し、さらに、測定装
置(刀の信号に従って、上記目標座標と一致するように
各リニアモーター(6)の作動を制御する制御装置(8
)を設けである。
The object to be diagnosed, which is placed on a stand movable in three axes, is incorporated into the three-axis coordinate system of the above-mentioned moving device, and the uniform static magnetic field section (5) is moved to a desired target. , operate the linear motor (6). At this time, a measuring device (7) is installed that detects the amount of movement of the mover based on the amount of electrical input to each linear motor (6), and calculates and measures the position of the uniform static magnetic field section (5) based on this detection. and a control device (8) that controls the operation of each linear motor (6) to match the target coordinates according to the signal from the measuring device (sword).
) is provided.

ある1枚の断層イメージを得るには、被診断対象物の目
標個所の大きさに応じて、複数個所へ順次、均−静磁界
部を移動させ、各個所での断層データを得、かつ、例え
ばコンピューターにおいて、磁気回路の座標系での移動
量及び被診断対象物の目標座標のデータを基に、上記複
数個所での測定データを再編成して、1枚の断層イメー
ジを形成する。
In order to obtain a certain tomographic image, the uniform static magnetic field section is sequentially moved to multiple locations depending on the size of the target location of the object to be diagnosed, and tomographic data at each location is obtained, and For example, in a computer, the measurement data at the plurality of locations is reorganized to form one tomographic image based on the amount of movement in the coordinate system of the magnetic circuit and the data on the target coordinates of the object to be diagnosed.

ちなみに、第1図に示した構成のNMR−CTに、最大
エネルギー積35MGOeの特性を有するFe−B−R
系永久磁石を用い、外形寸法高さ500mm×幅138
0mmX長さ350mmの磁気回路を組立だところ、空
隙中央部での磁界強度は1,5 kQであり、3軸方向
の均一磁界(300ppIIILJ、下)範囲が半径2
5mmの均−静磁界部を得た。磁気回路の重量は約1t
onであり、人体の任意の個所の断層イメージを容易に
得ることができる。
Incidentally, in the NMR-CT having the configuration shown in Fig. 1, Fe-B-R having a characteristic of a maximum energy product of 35 MGOe
Using permanent magnets, external dimensions: height 500mm x width 138mm
When a magnetic circuit of 0 mm x 350 mm length is assembled, the magnetic field strength at the center of the air gap is 1.5 kQ, and the uniform magnetic field range in the 3-axis directions (300 ppIIILJ, bottom) is a radius of 2.
A uniform static magnetic field section of 5 mm was obtained. The weight of the magnetic circuit is approximately 1 ton.
is on, and a tomographic image of any part of the human body can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による磁界発生装置を示す斜視図であ
る。第2図は他の磁界発生装置用磁気回路の縦断説明図
である 1・・・磁気回路、2・・・Fs−B−R系永久磁石、
3・・・磁極片、4・・・空隙、5・・・均−静磁界部
、6・・・リニアモーター、1・・・測定装置、8・・
・制御装置。
FIG. 1 is a perspective view showing a magnetic field generating device according to the present invention. FIG. 2 is a longitudinal cross-sectional explanatory diagram of a magnetic circuit for another magnetic field generator. 1...Magnetic circuit, 2...Fs-BR system permanent magnet,
3... Magnetic pole piece, 4... Air gap, 5... Uniform static magnetic field part, 6... Linear motor, 1... Measuring device, 8...
·Control device.

Claims (1)

【特許請求の範囲】[Claims] 1 空隙を形成する永久磁石あるいは永久磁石に接続さ
れた磁極片により、該空隙に静磁界を発生させる核磁気
共鳴断層装置用磁気回路と、該磁気回路を3軸方向に移
動させる移動手段と、被診断対象物の3軸座標系におけ
る目標と、静磁界内の均一磁界域を移動中心とする移動
手段の3軸座標系との相対位置を検知する測定手段と、
測定手段の検知に伴ない前記移動手段を作動して該目標
へ均一磁界を一致させる制御手段とからなることを特徴
とする磁界発生装置。
1. A magnetic circuit for a nuclear magnetic resonance tomography apparatus that generates a static magnetic field in the gap using a permanent magnet that forms a gap or a magnetic pole piece connected to the permanent magnet, and a moving means that moves the magnetic circuit in three axial directions. a measuring means for detecting a relative position between a target in a three-axis coordinate system of the object to be diagnosed and a three-axis coordinate system of a moving means whose movement center is a uniform magnetic field area within a static magnetic field;
A magnetic field generating device comprising: a control means that operates the moving means in response to detection by the measuring means to bring a uniform magnetic field to the target.
JP59236970A 1984-11-09 1984-11-09 Magnetic field generating device Pending JPS61114148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236970A JPS61114148A (en) 1984-11-09 1984-11-09 Magnetic field generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236970A JPS61114148A (en) 1984-11-09 1984-11-09 Magnetic field generating device

Publications (1)

Publication Number Publication Date
JPS61114148A true JPS61114148A (en) 1986-05-31

Family

ID=17008460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236970A Pending JPS61114148A (en) 1984-11-09 1984-11-09 Magnetic field generating device

Country Status (1)

Country Link
JP (1) JPS61114148A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325907A (en) * 1986-07-18 1988-02-03 Toshiba Corp Magnetic field generating apparatus
JPS6343304A (en) * 1986-08-09 1988-02-24 Fuji Electric Co Ltd Uniform field magnet of permanent magnet type
EP0373000A2 (en) * 1988-12-09 1990-06-13 Picker International Limited Magnetic resonance apparatus
DE102005061558A1 (en) * 2005-12-22 2007-07-05 Siemens Ag Magnetic resonance device with a patient support table and a main field magnet
CN104094368A (en) * 2012-01-30 2014-10-08 三菱电机株式会社 Magnetic circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561342A (en) * 1979-06-01 1981-01-09 Instrumentarium Oy Nmr diagnosis device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561342A (en) * 1979-06-01 1981-01-09 Instrumentarium Oy Nmr diagnosis device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325907A (en) * 1986-07-18 1988-02-03 Toshiba Corp Magnetic field generating apparatus
JPS6343304A (en) * 1986-08-09 1988-02-24 Fuji Electric Co Ltd Uniform field magnet of permanent magnet type
EP0373000A2 (en) * 1988-12-09 1990-06-13 Picker International Limited Magnetic resonance apparatus
DE102005061558A1 (en) * 2005-12-22 2007-07-05 Siemens Ag Magnetic resonance device with a patient support table and a main field magnet
US7609062B2 (en) 2005-12-22 2009-10-27 Siemens Aktiengesellschaft Magnetic resonance device with a patient support table and a main field magnet
CN104094368A (en) * 2012-01-30 2014-10-08 三菱电机株式会社 Magnetic circuit
JPWO2013114993A1 (en) * 2012-01-30 2015-05-11 三菱電機株式会社 Magnetic circuit
EP2816573A4 (en) * 2012-01-30 2015-12-02 Mitsubishi Electric Corp Magnetic circuit
US9691533B2 (en) 2012-01-30 2017-06-27 Mitsubishi Electric Corporation Magnetic circuit
US10008315B2 (en) 2012-01-30 2018-06-26 Mitsubishi Electric Corporation Magnetic circuit

Similar Documents

Publication Publication Date Title
Ravaud et al. Analytical calculation of the magnetic field created by permanent-magnet rings
US4672346A (en) Magnetic field generating device for NMR-CT
US5959454A (en) Magnet arrangement for an NMR tomography system, in particular for skin and surface examinations
Miyamoto et al. A development of a permanent magnet assembly for MRI devices using Nd-Fe-B material
JP2008061940A (en) Electronic spin resonance ct
JP2008061940A5 (en)
JPS61114148A (en) Magnetic field generating device
Blache et al. New structures for linear displacement sensor with high magnetic field gradient
JPS60239005A (en) Magnetic field generating device
JPS61218120A (en) Magnetic field generator
JPH0537446Y2 (en)
JPS6088407A (en) Magnetic field generating device
JPS61102544A (en) Magnetic field generating device
JPH0246001Y2 (en)
JP3098044B2 (en) Magnetic resonance imaging equipment
JPH0249683Y2 (en)
JPH0244486Y2 (en)
JPH0246002Y2 (en)
JPH0314207B2 (en)
JPH0246003Y2 (en)
JPH0244484Y2 (en)
JPH03109702A (en) Magnetic field generator
Trequattrini et al. A novel 0.25 T dedicated MRI apparatus
JPH0241841Y2 (en)
JP2587146Y2 (en) Electron spin resonance coil device