JPS61114097A - Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof - Google Patents

Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof

Info

Publication number
JPS61114097A
JPS61114097A JP23478984A JP23478984A JPS61114097A JP S61114097 A JPS61114097 A JP S61114097A JP 23478984 A JP23478984 A JP 23478984A JP 23478984 A JP23478984 A JP 23478984A JP S61114097 A JPS61114097 A JP S61114097A
Authority
JP
Japan
Prior art keywords
tube
grain boundary
weight
heat exchanger
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23478984A
Other languages
Japanese (ja)
Inventor
Kazuo Yamanaka
和夫 山中
Hiroo Nagano
長野 博夫
Takao Minami
孝男 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23478984A priority Critical patent/JPS61114097A/en
Publication of JPS61114097A publication Critical patent/JPS61114097A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the resistance to intercrystalline damage by a method wherein heat transfer pipe for steam generator employed in pressurized water reactor is made of Ni-base alloy containing the specified amount of Cr and Ni and constituted so as to give residual compressive stress to at least some portion of its outer surface layer part. CONSTITUTION:Heat transfer pipe for steam generator is made of Ni-base alloy containing 14-35% by weight of Cr and not least than 30% by weight of Ni and constituted so as to give residual compressive stress to some portion of its outer surface layer part. Concretely, in order to give residual compressive stress to some portion of the outer surface layer part of Ni-base alloy pipe, said portion is held within the temperature range of 300-600 deg.C for no less one minute by heating from the inside surface while being cooled by water from the outside surface and, after that, the heating is stopped. Or, residual compressive stress is given to the surface layer part by holding the Ni-base alloy pipe within the temperature range of 600-800 deg.C for no less than 0.5min in order to precipitate chrome carbide on the boundaries between the crystal grains and, after that, cooling with water.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、耐粒界損傷性、即ち耐粒界腐食性並びに耐
粒界応力腐食割れ性に優れていて、例えば加圧水型原子
炉等に適用して極めて良好な性能を発揮する蒸気発生器
用伝熱管、及びその製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention has excellent resistance to intergranular damage, that is, resistance to intergranular corrosion and intergranular stress corrosion cracking, and is suitable for use in, for example, pressurized water nuclear reactors. The present invention relates to a heat exchanger tube for a steam generator that exhibits extremely good performance when applied, and a method for manufacturing the same.

〈従来技術とその問題点〉 近年、益々増大するエネルギー需要に対処するとともに
、エネルギーの石油依存度を少なくするため、原子力発
電所の設置が強く推進され、その稼動数も年を追って増
加してきている。
<Conventional technology and its problems> In recent years, in order to cope with the ever-increasing energy demand and to reduce dependence on oil for energy, the installation of nuclear power plants has been strongly promoted, and the number of nuclear power plants in operation has been increasing year by year. There is.

ところで、現在稼動中の加圧水型原子炉の蒸気発生器用
伝熱管には、耐熱性並びに耐食性等を考慮して14〜3
5重量%のC「及び30重撒%以上のNiを含有する合
金材、中でも焼鈍のままの“Attoy600(75N
i −15Cr−9Fe合金)材が多用されているが、
最近になって国の内外から、[このようなNi 160
0合金製伝熱管を使用した蒸気発生器の管支持部や管板
部二次側において、該部分の伝熱管外表面部に粒界損傷
(粒界腐食や粒界応力腐食割れ等)の発生が認められる
]との指摘がなされるようになったことから、これら粒
界損傷を生じることのない蒸気発。
By the way, heat transfer tubes for steam generators of pressurized water nuclear reactors currently in operation have a heat exchanger tube of 14 to 3, considering heat resistance and corrosion resistance.
Alloy materials containing 5% by weight of C and 30% by weight or more of Ni, especially as-annealed Attoy600 (75N
i-15Cr-9Fe alloy) material is often used,
Recently, from inside and outside Japan, [Ni 160 like this]
Occurrence of intergranular damage (intergranular corrosion, intergranular stress corrosion cracking, etc.) on the outer surface of the heat exchanger tube in the tube support section and secondary side of the tube plate of a steam generator using a heat exchanger tube made of 0 alloy. Since it has been pointed out that the occurrence of grain boundary damage has been observed, steam oxidation that does not cause these grain boundary damage.

生器用伝熱管の実現はもちろんのこと、実炉既設プラン
トにも適用可能な“粒界損傷発生及び進展防止対策”も
が強く望まれていたのである。
There was a strong desire for not only the realization of heat exchanger tubes for raw materials, but also ``measures to prevent the occurrence and propagation of grain boundary damage'' that could be applied to existing plants with actual furnaces.

1      く問題点を解決するための手段〉本発明
者等は、上述のような観点から、従来の加圧水型原子炉
等の蒸気発生器用伝熱管にみられる前記問題点を解消し
、長期間の使用においても゛粒界損傷゛′、とりわけ“
粒界応力腐食割れ″の進展を来たすことのない蒸気発生
器用伝熱管を提供すべく研究を行なった結果、以下(a
)〜(e)に示される如き知見を得るに至ったのである
。即ち、(a)  “粒界損傷”の中でも、“粒界腐食
”は応力依存性が小さいけれども“粒界応力腐食割れ”
は応力依存性が極めて大きく、引張り応力が作用すると
その大きさの増大とともに応力腐食割れの進展速度も加
速されるが、圧縮応力下では、如何に腐食性の厳しい環
境にあったとしても腐食割れの進展がみられないこと、 (b)通常の管材を、その外面を水冷しながら電熱ヒー
ターや高周波加熱装置等で内面から加熱し、特定温度(
300〜600℃程度の低い温度で良い)に達してから
該加熱を停止するか、或いは管材を特定温度に加熱し、
その後直ちに管外面を水冷するかの手段を講すると、水
冷による管材外面    ′1側部分の収縮作用によっ
てその表層部に圧縮応力が残留した管材を得られること
、 もっとも、この場合、内面側の収縮度合が相対的に小さ
いことから、これに続く中層部には引張り応力が残留す
るが、外面表層部に至ると前記引張り応力が緩和される
上、それ以上の収縮作用を受けることとなるので、比較
的大きな圧縮応力が残留することとなる。
1. Means for solving the problems> From the above-mentioned viewpoints, the present inventors have solved the above-mentioned problems found in conventional heat transfer tubes for steam generators such as pressurized water reactors, and Even during use, “grain boundary damage”, especially “
As a result of our research to provide a heat exchanger tube for steam generators that does not cause the progression of intergranular stress corrosion cracking, we have found the following (a)
) to (e). That is, (a) Among "grain boundary damage,""intergranularcorrosion" has a small stress dependence, but "intergranular stress corrosion cracking"
has extremely high stress dependence, and when tensile stress acts, its magnitude increases and the rate of growth of stress corrosion cracking accelerates.However, under compressive stress, corrosion cracking will occur no matter how severe the corrosive environment is. (b) A normal pipe material is heated from the inside with an electric heater or high-frequency heating device while cooling the outside with water to a specific temperature (
Either stop the heating after reaching a temperature as low as 300 to 600°C, or heat the pipe material to a specific temperature,
If the outer surface of the tube is immediately cooled with water after that, it is possible to obtain a tube with compressive stress remaining in its surface layer due to the shrinkage of the outer surface of the tube due to water cooling.However, in this case, the inner surface shrinks. Because the degree is relatively small, tensile stress remains in the middle layer that follows this, but when it reaches the outer surface layer, the tensile stress is relaxed and it is subjected to further shrinkage. A relatively large compressive stress will remain.

(C)粒界a傷感受性の高い焼鈍のままの高C「含有N
i基合金管材に上記の如き熱処理を施し、管外面表層部
に圧縮応力を残留させると、極めて顕著な粒界損傷進展
防止効果が得られること、(d)この場合、管外面表層
部への残留圧縮応力付与のための熱処理加熱温度を調整
して(例えば600〜800℃程度)管材の結晶粒界に
クロム炭化物を析出せしめるようにすると、その耐粒界
損傷性がより一層向上すること。
(C) High C content as annealed with high grain boundary a scratch sensitivity
(d) In this case, if the above heat treatment is applied to the i-base alloy tube material and compressive stress remains in the surface layer of the outer surface of the tube, an extremely remarkable effect of preventing the progress of grain boundary damage can be obtained; (d) In this case, the If the heating temperature of the heat treatment for imparting residual compressive stress is adjusted (e.g., about 600 to 800°C) to precipitate chromium carbide at the grain boundaries of the pipe material, the grain boundary damage resistance thereof can be further improved.

もつとも、高Cr含有Ni基合金製管に対しては、クロ
ム炭化物の粒界析出熱処理を施すのみでも大きな粒界損
傷進展防止効果が得られることを本発明者等は見出して
いる。つまり、実炉で粒界損傷を起した伝熱管と粒界損
傷を起していない伝熱管について詳細に調査した結果、
粒界損傷を起した伝熱管では粒界及び粒内共にクロム炭
化物の存在は殆んど認められないのに対して、粒界損傷
を起していない伝熱管、即ら健全管では粒界及び粒内共
にクロム炭化物の存在が認められないことから、「粒界
損傷感受性とクロム炭化物の存在の有無との間に相関性
がある」との結論に遅し、更に実験全再現試験でも、「
クロム炭化物を、主として結晶粒界に析出させる熱処理
を施すと、高Or含有Ni基合金の粒界損傷の進展が抑
制される」ことが確認された。
However, the present inventors have discovered that for pipes made from high Cr-containing Ni-based alloys, a significant effect of preventing the progress of grain boundary damage can be obtained simply by subjecting them to grain boundary precipitation heat treatment of chromium carbide. In other words, as a result of detailed investigation of heat exchanger tubes with grain boundary damage and those without grain boundary damage in actual furnaces,
In heat exchanger tubes with grain boundary damage, almost no chromium carbide is observed at the grain boundaries or inside the grains, whereas in heat exchanger tubes without grain boundary damage, that is, sound tubes, the presence of chromium carbides at the grain boundaries and inside the grains is almost absent. Since the presence of chromium carbides was not observed inside the grains, it was too late to conclude that there was a correlation between grain boundary damage susceptibility and the presence or absence of chromium carbides.
It was confirmed that the development of grain boundary damage in high-Or content Ni-based alloys can be suppressed by applying heat treatment to precipitate chromium carbides mainly at grain boundaries.

ところが、このようなりロム炭化物析出熱処理を施した
後、直ちに高Cr含有Ni基合金製管の外面を水冷する
等の処理を施し、管外面表層部に圧縮応力を残留させる
と共に、その結晶粒界にクロム炭化物を存在せしめると
、管外表層部の耐粒界損傷性が飛躍的に向上したのであ
る。
However, after such heat treatment for ROM carbide precipitation, the outer surface of the high Cr-containing Ni-based alloy tube is immediately subjected to water cooling, etc., which causes compressive stress to remain in the surface layer of the outer surface of the tube, and to weaken the grain boundaries. When chromium carbide was present in the tube, the grain boundary damage resistance of the outer surface layer of the tube was dramatically improved.

(e)上述のような、管外面表層部に圧縮応力を残留さ
せたり、結晶粒界にクロム炭化物を存在せしめたりする
処理は、必ずしも管の全長に対して実施する必要はなく
、その少なくとも一部、即ち粒界損傷を生じやすい箇所
に対して局部的に実施するだけで十分な耐粒界損傷性向
上効果が得られる上、既設プラントの熱気発生器用伝熱
管に対しても容易に実施することが可能であること。
(e) The above-mentioned treatments, such as leaving compressive stress on the outer surface of the tube or causing chromium carbide to exist at the grain boundaries, do not necessarily need to be carried out over the entire length of the tube, but at least part of it. It is possible to obtain a sufficient effect of improving grain boundary damage resistance by applying it locally, that is, to areas where grain boundary damage is likely to occur, and it can also be easily applied to heat exchanger tubes for hot air generators in existing plants. that it is possible.

この発明は、上記知見に基づいてなされたものであり、 蒸気発生器用伝熱管を、C「:14〜35重量%とNi
  :30重量%以上とを含有するNi基合金製とし、
かつその少なくとも一部の外面表層部に圧縮残留応力を
付与した構成とすることにより、前記伝熱管として要求
される緒特性に優れることはもちろん、特に優れた耐粒
界損傷性を備えしめた点、 に特徴を有し、更には、 Cr : 14〜35重ffi%とNi  :30重量
%以上とを含有するNi基合金製管を、外面を水冷し;
    つつ内面から加熱してその少なくとも一部を3
00〜600℃の温度範囲に1分以上保持し、その後加
熱を停止して、外面表層部の少なくとも一部に圧縮残留
応力を付与するか、或いは、前記Ni基合金製管を加熱
することによってその少なくとも一部を600〜800
℃の温度範囲に0.5分以上保持してクロム炭化物を結
晶粒界に析出さ・せた後、直ちに管外面を水冷し、外面
表層部の少なくとも一部に圧縮残留応力をも付与するか
して、前記耐粒界損傷性の優れた蒸気発生器用伝熱管を
製造する点、 に特徴を有するものである。
This invention was made based on the above knowledge, and a heat exchanger tube for a steam generator is made of carbon: 14 to 35% by weight and Ni.
: Made of a Ni-based alloy containing 30% by weight or more,
Moreover, by having a structure in which compressive residual stress is applied to at least a part of the outer surface layer, it not only has excellent mechanical properties required for the heat exchanger tube, but also has particularly excellent grain boundary damage resistance. The outer surface of a Ni-based alloy tube having the following characteristics and further containing Cr: 14 to 35% by weight and Ni: 30% by weight or more is water-cooled;
At least a part of it is heated from the inside while
By maintaining the temperature in the temperature range of 00 to 600°C for 1 minute or more and then stopping the heating to apply compressive residual stress to at least a part of the outer surface layer, or by heating the Ni-based alloy pipe. 600-800 at least part of it
℃ for 0.5 minutes or more to precipitate chromium carbide at grain boundaries, immediately cool the outer surface of the tube with water and apply compressive residual stress to at least a portion of the outer surface layer. The present invention is characterized in that the heat exchanger tube for a steam generator having excellent grain boundary damage resistance is manufactured.

なお、この発明において、蒸気発生器用伝熱管を構成す
るNi基合金のCr含有量及びNL含有mを前記の如く
に限定した理由は、高性能の蒸気発生器用伝熱管には、
通常、上記組成のNi基合金が使用される上、Cr含有
量が14g11%未満では蒸気発生器用伝熱管として必
要な高温耐食性及び耐酸化性が確保できず、逆に35重
量%を越えてCrを含有させてもそれ以上の特性向上効
果$ 1! 、3tL th イ(: 1!: l−7
30エ’C1Ni *@5i#130t4    ”量
%未満では高温耐食性が不十分となるからである。
In addition, in this invention, the reason why the Cr content and NL content m of the Ni-based alloy constituting the heat exchanger tube for a steam generator are limited as described above is that the high performance heat exchanger tube for a steam generator has
Normally, a Ni-based alloy with the above composition is used, and if the Cr content is less than 14g11%, the high temperature corrosion resistance and oxidation resistance necessary for a heat exchanger tube for a steam generator cannot be secured, and conversely, if the Cr content exceeds 35% by weight, Even if it contains, the property improvement effect is $ 1! , 3tL th i(: 1!: l-7
This is because if the amount is less than 30E'C1Ni*@5i#130t4%, the high temperature corrosion resistance will be insufficient.

しかるに、この種Ni基杏金は粒界損傷感受性の高い材
料であるが、少なくともその外面表層部に圧縮残留応力
が付与されていると粒界損傷感受性は極めて低くなり、
実際上の不都合は殆んど皆無に近くなる。
However, although this type of Ni-based anhydride is a material with high sensitivity to grain boundary damage, if compressive residual stress is applied to at least the surface layer of its outer surface, the sensitivity to grain boundary damage becomes extremely low.
Practical inconveniences are almost completely eliminated.

圧縮応力が付与される「管外面表層部」とは、粒界損傷
環境によっても必要厚さが変わるが、通常は外表面から
0.3mm程度の深さ部分と考えれば十分である。
The required thickness of the "tube outer surface surface layer" to which compressive stress is applied varies depending on the grain boundary damage environment, but it is usually sufficient to consider the depth of about 0.3 mm from the outer surface.

また、これは必ずしも管全長に亘る表層部を指す場合に
限らず、管の長手方向の一部分のみを指す場合をも含む
ものである、即ち、蒸気発生器に組込んだ際に“管板部
′或いは゛管支持板部”となる部分(粒界損傷が生じや
すい)のみの管外面表層部に圧縮残留応力が付与されて
いるだけの伝熱管でも、粒界損傷に対して十分な抵抗性
を有するものである。
Furthermore, this term does not necessarily refer to the surface layer over the entire length of the tube, but also includes the case where only a portion of the tube in the longitudinal direction is referred to. Alternatively, even a heat exchanger tube in which compressive residual stress is only applied to the surface layer of the outer surface of the tube in the portion that becomes the "tube support plate" (where grain boundary damage is likely to occur) has sufficient resistance to grain boundary damage. It is something that you have.

そして、このようなNi基合金製蒸気発生器用伝熱管を
製造する1つの有利な手段が、第1図に示されるような
、「前記Ni基合金製管1を、外面を水冷しつつ内面か
らヒーター2等で加熱することによって、長手方向等に
おけるその少なくとも一部を300〜600℃の温度範
囲に1分以上保持し、その後加熱を停止する方法」なの
である。
One advantageous means for manufacturing such a Ni-base alloy heat exchanger tube for a steam generator is as shown in FIG. This is a method in which at least a portion of the material in the longitudinal direction is maintained in a temperature range of 300 to 600° C. for 1 minute or more by heating with a heater 2 or the like, and then the heating is stopped.

なお、第1図において符号3で示されるものは、管の外
面冷却用の水である。
In addition, what is shown by the reference numeral 3 in FIG. 1 is water for cooling the outer surface of the tube.

上記方法によれば、蒸気発生器用組立て後の伝熱管や既
設プラントにおける伝熱管に対しても、また伝熱管の局
部(例えば、管支持板や管板とで隙間を形成することと
なる管支持部や管板部)のみに対しても、極めて簡単に
粒界損傷防止対策を施すことが可能となるのは容易に理
解されよう。
According to the above method, it is possible to treat heat exchanger tubes after assembly for a steam generator or heat exchanger tubes in an existing plant, as well as local parts of heat exchanger tubes (for example, tube supports that form gaps with tube support plates and tube sheets). It is easy to understand that it is possible to extremely easily take measures to prevent grain boundary damage even only for the tube plate portion and the tube plate portion.

さて、この方法において、加熱温度を300〜600℃
に限定するとともに、加熱保持時間を1分以上と定めた
理由は次の通りである。即ち、加熱温度が300℃未満
であったり、加熱保持時間が1分未満であると、Ni基
合金管の表層部に所望の圧縮残留応力が付与されず、良
好な耐粒界損傷性を確保することが困難となり、一方、
加熱温度が600℃を越えても残留する圧縮応力はそれ
以上の増加傾向を見せることがないからである。
Now, in this method, the heating temperature is 300 to 600°C.
The reason why the heating and holding time was set at 1 minute or more is as follows. That is, if the heating temperature is less than 300°C or the heating holding time is less than 1 minute, the desired compressive residual stress will not be imparted to the surface layer of the Ni-based alloy tube, ensuring good intergranular damage resistance. On the other hand,
This is because even if the heating temperature exceeds 600°C, the residual compressive stress does not show any further increasing tendency.

第2図は、外径:22.24I11.厚さ:1.27a
mである焼鈍のままのAttov600 (75Ni 
−15Cr−9Fe合金)製管材の外面を水冷しつつ、
ヒーターで内面を加熱して各種温度に3分間保持後該加
熱を停止した場合の、加熱温度と管外表面の残留応力と
の関係を示すグラフであるが、第2図からも、加熱温度
が300〜600℃(好適には450〜550℃)で管
表面に十分な圧縮応力が残留することは明瞭である。
Figure 2 shows an outer diameter of 22.24I11. Thickness: 1.27a
Attov600 (75Ni) as annealed with m
-15Cr-9Fe alloy) while cooling the outer surface of the pipe material with water,
This is a graph showing the relationship between the heating temperature and the residual stress on the outer surface of the tube when the inner surface is heated with a heater and held at various temperatures for 3 minutes, and then the heating is stopped. It is clear that sufficient compressive stress remains on the tube surface at 300-600°C (preferably 450-550°C).

本発明者等が提案するもう1つのNi基合金製蒸気発生
器用伝熱管の製造方法は、「Ni基合金製管を加熱し、
長手方向等における少なくとも一部を600〜800℃
の温度範囲に0.5分以上保持してクロム炭化物を結晶
粒界に析出させた優、直ちに管外面を水冷する方法」で
□ある。管の加熱、     手段としては如何なる方
法を採用しても良いが、蒸気発生器組立て後の伝熱管や
既設プラントにおける伝熱管をも容易に対象材とできる
ことから、ヒーター等による管内面からの加熱手段を採
用するのが好ましい。
Another method for manufacturing a Ni-base alloy heat exchanger tube for a steam generator proposed by the present inventors is to “heat a Ni-base alloy tube,
600 to 800°C at least in part in the longitudinal direction, etc.
□ is a method in which chromium carbide is precipitated at the grain boundaries by holding the tube in the temperature range for 0.5 minutes or more, and immediately cooling the outer surface of the tube with water. Any method can be used to heat the tubes, but heat transfer tubes after the steam generator is assembled or heat transfer tubes in an existing plant can be easily used as target materials, so heating from the inner surface of the tubes using a heater etc. is recommended. It is preferable to adopt

さて、この方法において、加熱温度を600〜800℃
に限定するとともに、加熱保持時間を0.5分以上と定
めた理由は次の通りである。即ち、この場合には、加熱
温度が600℃未満であったり、加熱保持時間が0.5
分未満であると所望の耐粒界損傷性の確保が困難となり
、一方、加熱温度が800℃を越えても耐粒界損傷性が
劣化する傾向を示すからであるが、好ましくは加熱温度
を650〜750℃に調整するのが良い。
Now, in this method, the heating temperature is 600 to 800°C.
The reason why the heating and holding time was set at 0.5 minutes or more is as follows. That is, in this case, the heating temperature is less than 600°C or the heating holding time is 0.5°C.
If the heating temperature is less than 800°C, it will be difficult to secure the desired grain boundary damage resistance, and on the other hand, even if the heating temperature exceeds 800°C, the grain boundary damage resistance will tend to deteriorate. It is best to adjust the temperature to 650-750°C.

また、この方法によって得られるところの、少なくとも
一部の管外面表層部に圧縮残留応力が付与されている耐
粒界損傷性の優れた蒸気発生器用伝熱管は、結晶粒界に
クロム炭化物(主としてCrCr23Oの析出がなされ
たものであるが、このような粒界炭化物が存在すると、
粒界炭化物と管外面表層部の圧縮残留応力との重畳作用
によっ、□。□あ、□−1゜。え、ゎ  ゛・°゛るこ
とと5なる。なお、クロム炭化物を結晶粒界に析出させ
るには別の手段を必要とするものでなく、前記組成のN
i基合金製管を600〜800℃の温度範囲に0.5分
以上保持することで足りるものである。
In addition, the heat exchanger tube for a steam generator, which is obtained by this method and has excellent grain boundary damage resistance and has compressive residual stress applied to at least a part of the outer surface layer of the tube, has chromium carbide (mainly This is due to the precipitation of CrCr23O, but if such grain boundary carbides exist,
□ due to the superimposed action of grain boundary carbides and compressive residual stress in the surface layer of the outer surface of the tube. □Ah, □-1°. Eh, ゎ ゛・°゛ means 5. Note that no other means are required to precipitate chromium carbide at grain boundaries;
It is sufficient to hold the i-based alloy tube in a temperature range of 600 to 800°C for 0.5 minutes or more.

第3図は、外径: 22.2am、 7gTさ:  1
.2am+である焼鈍のままのAt ! oy600 
(75Ni −15Cr−9Fe合金)製管材を各種の
温度に加熱し、各種時間保持した後、直ちにその外面を
水冷した場合の、加熱温度と加熱保持時間とが粒界損傷
発生に及ぼす影響を示すグラフである。なお、粒界損傷
試験は、40%Na OH及びマグネタイトスラッジを
含有した高温水(325℃)中にて実施したものであり
、第3図中の破線は、クロム炭化物の粒界析出がなされ
ているのみで管外面表層部に圧縮残留応力が付与されて
いない状態のものの試験結果を比較として示すものであ
る。
Figure 3 shows outer diameter: 22.2am, 7gT: 1
.. At as-annealed which is 2am+! oy600
(75Ni-15Cr-9Fe alloy) pipe material is heated to various temperatures, held for various times, and then its outer surface is immediately cooled with water. The effects of heating temperature and heating holding time on the occurrence of grain boundary damage are shown. It is a graph. The grain boundary damage test was conducted in high-temperature water (325°C) containing 40% NaOH and magnetite sludge, and the broken lines in Figure 3 indicate that chromium carbide was precipitated at the grain boundaries. For comparison, the test results are shown for a case in which only the tube was covered with a compressive residual stress and no compressive residual stress was applied to the surface layer of the outer surface of the tube.

この第3図からも、600〜800℃に加熱して0.5
分以上保持した後直ちに水冷した管材が、優れた耐粒界
損傷性を示していることは明瞭である。また、クロム炭
化物の粒界析出処理のみによっても良好な耐粒界損傷性
が得られるが、この場合には比較的高い温度領域に長い
時間の保持を要することも明らかである。
From this figure 3, it can be seen that when heated to 600-800℃,
It is clear that tubes that are water-cooled immediately after being held for more than a minute exhibit superior intergranular damage resistance. Further, although good grain boundary damage resistance can be obtained only by grain boundary precipitation treatment of chromium carbide, it is also clear that in this case, holding in a relatively high temperature range for a long time is required.

次いで、この発明を実施例により比較例と対比しながら
具体的に説明する。
Next, the present invention will be specifically explained using examples and comparing with comparative examples.

〈実施例〉 実施例 1 まず、第1表に示されるような化学成分組成で、外径が
22.2m+φ、肉厚が1.2履である焼鈍のままの管
材を用意し、第1図に示される如く、管外面を水冷しな
がら内面側にニクロム線から成るコイルヒーターを挿入
して管を第2表に示す温度にまで加熱し、該温度に、同
じく第2表に示す時間だけ保持した後加熱を停止した。
<Examples> Example 1 First, an as-annealed pipe material having a chemical composition as shown in Table 1, an outer diameter of 22.2 m + φ, and a wall thickness of 1.2 mm was prepared. As shown in Table 2, a coil heater made of nichrome wire is inserted into the inner surface of the tube while the outer surface of the tube is cooled with water, and the tube is heated to the temperature shown in Table 2, and maintained at that temperature for the time shown in Table 2. After that, heating was stopped.

このようにして管外面表層部に圧縮残留応力を付与した
管材について応力腐食割れ試験を実施し、その結果を第
2表に併せて示した。
A stress corrosion cracking test was conducted on the tube material to which compressive residual stress was applied to the surface layer of the outer surface of the tube in this way, and the results are also shown in Table 2.

使用した試験材は、第4図に示されるように、長さ30
0Iの上記管の一端を溶接付け(4)シた侵、その中央
部に幅20IMRに対して0.2amだけ削って肉厚を
0.8m+とじたもので、この管にアルゴンガスで内圧
をかけ、管内外の圧力差(差圧)により引張り応力とし
て30に9/−を与えて試験に供した。
The test material used had a length of 30 mm, as shown in Figure 4.
One end of the above-mentioned 0I tube was welded (4) and the center part was cut by 0.2 am from the width of 20 IMR to make the wall thickness 0.8 m+.The internal pressure was applied to this tube with argon gas. The tube was subjected to a test by applying a tensile stress of 30 to 9/- due to the pressure difference between the inside and outside of the tube (differential pressure).

Ct−高温水応力腐食割れ試験(耐C1−8CC性試験
)は、前記試験材の肉厚0.8am+のどころにフッ素
樹脂シートをはさんだ円筒状の当て材をはめて隙間を付
け、オートクレーブ容器を用いて、300℃で5001
)Ell C,t −(Na C1として)の非脱気溶
液中に1000時間浸漬して′実施した。
In the Ct-high temperature water stress corrosion cracking test (C1-8 CC resistance test), a cylindrical backing material with a fluororesin sheet sandwiched between the 0.8 am+ wall thickness of the test material was fitted to create a gap, and the test material was placed in an autoclave container. 5001 at 300℃ using
) Ell C,t - (as Na C1) by immersion in a non-degassed solution for 1000 hours.

アルカリ応力腐食割れ試験(耐アルカリSCC性試験)
は、同じくオートクレーブ容器を用いて、325℃で1
0%Na OHの脱気溶液中に500時間浸漬して実施
した。
Alkali stress corrosion cracking test (alkali SCC resistance test)
was heated at 325°C for 1 hour using the same autoclave container.
It was carried out by immersion in a degassed solution of 0% NaOH for 500 hours.

鉄酸化物(マグネタイト)を添加したアルカリ溶液中で
の耐粒界損傷性の試験は、脱気した0、4%Na OH
(PH13)又は0.04%Na 0H(PH12>に
マグネタイト(Fe 304 )を添加した溶液を用い
、それぞれ5000時間又は1000時間浸漬すること
で実施した。
The grain boundary damage resistance test in an alkaline solution containing iron oxide (magnetite) was conducted using degassed 0.4% NaOH
(PH13) or 0.04% Na OH (PH12>) with magnetite (Fe 304 ) added, and immersion was carried out for 5000 hours or 1000 hours, respectively.

試験後の評価は、各試験終了後の試験材の割れ深さを光
学顕微鏡で観察して行った。
Evaluation after the test was performed by observing the crack depth of the test material after each test using an optical microscope.

第2表に示される結果からも明らかなように、本発明の
方法によると、耐C1−8CC性や耐アルカリSCC性
に優れることはもちろんのこと、優れた耐粒界損傷性を
有する管材が得られるのに対して、管外面表層部に圧縮
残留応力(−20〜−25に9/−>を付与する処理が
なされない従来法や、その処理条件が本発明の範囲から
外れた比較法によって得られた管材は、良好な耐粒界損
傷性を示さないことがわかる。
As is clear from the results shown in Table 2, according to the method of the present invention, pipe materials not only have excellent C1-8CC resistance and alkali SCC resistance, but also have excellent intergranular damage resistance. In contrast, the conventional method that does not apply a compressive residual stress (-20 to -25 to 9/-> to the surface layer of the outer surface of the tube, or the comparative method whose processing conditions are outside the scope of the present invention) It can be seen that the tube material obtained by the method does not exhibit good intergranular damage resistance.

実施例 2 前記第1表のAで示される如き化学成分で、外径が22
.2#φ、肉厚が1.2amである焼鈍のままの管材を
用意し、その内面側にニクロム線から成るコイルヒータ
ーを挿入して管を第3表に示す温度にまで加熱した後、
同じく第3表に示される時間だけ該温度に保持し、一部
についてはそのまま放冷したが(圧縮残留応力付与処理
なし)、残りについては直ちに管外面からの水冷(圧縮
残留応力付与処理)を実施した。
Example 2 The chemical composition is as shown in A in Table 1 above, and the outer diameter is 22
.. Prepare an as-annealed tube material with a diameter of 2 #φ and a wall thickness of 1.2 am, insert a coil heater made of nichrome wire into the inner surface of the tube material, and heat the tube to the temperature shown in Table 3.
Similarly, the temperature was maintained for the time shown in Table 3, and some of the tubes were allowed to cool as they were (no compressive residual stress imparting treatment), but the remaining portions were immediately cooled with water from the outer surface of the tube (compressive residual stress imparting treatment). carried out.

このようにして得られた管材について応力腐食割れ試験
を実施し、その結果を第3表に併せて示した。
A stress corrosion cracking test was conducted on the tube material thus obtained, and the results are also shown in Table 3.

使用した試験材は、実施例1におけると同様の処理(第
4図に示される)を行い、アルゴンガスにて内圧をかけ
て30#/−の引張り応力を与えて試験に供した。
The test material used was subjected to the same treatment as in Example 1 (as shown in FIG. 4), and subjected to the test by applying internal pressure with argon gas to give a tensile stress of 30 #/-.

Ct−高温水応力腐食割れ試験(耐Ct−8CC性試験
)は実施例1におけると同様に実施した。
The Ct-high temperature water stress corrosion cracking test (Ct-8CC resistance test) was carried out in the same manner as in Example 1.

脱気高温応力腐食割れ試験(脱気高温水SCC性試験)
は、第5図に示されるような、10%引張り予歪を付与
したリバースリベンド試験片(管の内面を外側として引
張り応力が加わるようにU曲げ加工をしたもの)を用い
て、オートクレーブ容器中で、50001)I Bs+
+1E)I)1m Li ” (7)IIQ気溶液溶液
中60℃)にて1000時間浸漬して実施した。
Degassed high temperature stress corrosion cracking test (Degassed high temperature water SCC test)
As shown in Fig. 5, a reverse rebend test piece with a 10% tensile prestrain (a U-bend processed so that tensile stress is applied with the inner surface of the tube as the outside) was used to test the autoclave container. Among them, 50001) I Bs+
+1E)I)1m Li'' (7) IIQ gas solution at 60°C) for 1000 hours.

耐粒界損傷性の試験は、第4図に示した試験材に30K
g/−の引張り応力を付加した後、鉄酸化物(マグネタ
イト:Fe304)を添加した脱気40%Na OH又
は10%Na OH溶液中に、それぞれ200時間又は
1000時間浸漬することで実施した。
The grain boundary damage resistance test was conducted on the test material shown in Figure 4 at 30K.
After applying a tensile stress of g/-, the samples were immersed in a degassed 40% Na OH or 10% Na OH solution to which iron oxide (magnetite: Fe304) was added for 200 hours or 1000 hours, respectively.

試験後の評価は、各試験終了後の試験材又は試験片の割
れ深さを光学顕微鏡で観察して行った。
Evaluation after the test was performed by observing the crack depth of the test material or specimen after each test using an optical microscope.

第3表に示される結果からも明らかなように、供試管を
600〜800℃に加熱して結晶粒界にクロム炭化物を
析出させると、腐食性の厳しい〔高濃度Na OH+マ
グネタイト〕溶液環境で粒界損傷抑制効果がみられるが
、この熱処理を施した後直ちに管外面を水冷して外面表
層部に圧縮残留応力(−20〜−25幻/−)を付与さ
せると、前記加熱保持時間が極めて短時間であったとし
ても粒界損傷性が飛躍的に向上することがわかる。
As is clear from the results shown in Table 3, when the test tube is heated to 600 to 800°C to precipitate chromium carbide at the grain boundaries, it will not react in a highly corrosive [high concentration NaOH + magnetite] solution environment. The effect of suppressing grain boundary damage is observed, but if the outer surface of the tube is water-cooled immediately after this heat treatment to impart compressive residual stress (-20 to -25 phantom/-) to the outer surface layer, the heating holding time will be reduced. It can be seen that the grain boundary damage property is dramatically improved even if the time is extremely short.

1    しかも、この方法における熱処理は極く短時
間で済むため、蒸気発生器−次側の耐脱気高温水SCC
性や二次側の耐Ct−高温水SCC性を劣化させる弊害
は全く認められない。
1 Moreover, since the heat treatment in this method takes only a very short time, the degassing-resistant high-temperature water SCC next to the steam generator
No adverse effect of deteriorating the properties or secondary side Ct-high temperature water SCC properties was observed.

以上、2つの実施例で説明したいずれの方法も、実炉既
設プラントにおける粒界損傷感受性の大きい伝熱管の耐
粒界ill性改善手段として十分に適用できるものであ
り、また、これらの適用範囲は原子炉等の蒸気発生器用
伝熱管のみならず、一般の化学工業用熱交換器管材にも
及ぶことは言うまでもない。
Any of the methods described above in the two embodiments can be fully applied as a means for improving the grain boundary illumination resistance of heat exchanger tubes that are highly sensitive to grain boundary damage in existing plants with actual reactors, and the scope of their application is Needless to say, this applies not only to heat exchanger tubes for steam generators such as nuclear reactors, but also to general heat exchanger tube materials for the chemical industry.

〈総括、的な効果〉 上述のように、この発明によれば、長期間の使用におい
ても粒界損傷を発生することがなく、耐熱特性にも優れ
た蒸気発生器用伝熱管を簡単かつ容易に提供することが
でき、しかも蒸気発生器組立て後の伝熱管や実か既設プ
ラントの伝熱管をも素材対象とし得るなど、産業上極め
て有用な効果がもたらされるのである。
<Summary and Effects> As described above, according to the present invention, it is possible to easily and easily produce a heat exchanger tube for a steam generator that does not cause grain boundary damage even after long-term use and has excellent heat resistance properties. In addition, extremely useful effects can be brought about industrially, such as heat exchanger tubes after steam generator assembly and heat exchanger tubes in actual or existing plants can be used as materials.

【図面の簡単な説明】[Brief explanation of the drawing]

鴫、+1 第1図は、外面を水冷しつつ内面から加熱することによ
って耐粒界損傷性の優れた蒸気発生器用伝熱管を製造す
る本発明方法の概略説明図、第2図は、管の加熱温度と
その外表面の残留応力との関係を示すグラフ、 第3図は、管の加熱温度と加熱保持時間とが粒界損傷発
生に及ぼす影響を示すグラフ、第4図は、実施例におけ
る応力腐食割れ試験で使用した試験材の形状を示す概略
縦断面図、第5図は、実施例における脱気高温水SCC
性、 試験で使用した試験片の概略斜視説明図である。 図面において、 1・・・伝熱管、      2・・・ヒーター。 3・・・冷却用水、    4・・・溶接部。 5・・・試験片、     6・・・ボルト。 7・・・ナツト。 出願人  住友金属工業株式会社 代理人  富 1)和 夫 外2名 儂1図 学2図 1xi轄湯濱(’Cン
+1 Figure 1 is a schematic explanatory diagram of the method of the present invention for manufacturing a heat exchanger tube for a steam generator with excellent grain boundary damage resistance by water-cooling the outer surface and heating from the inner surface. A graph showing the relationship between heating temperature and residual stress on its outer surface. Figure 3 is a graph showing the influence of tube heating temperature and heating holding time on the occurrence of grain boundary damage. Figure 4 is a graph showing the relationship between heating temperature and residual stress on the outer surface. Figure 5 is a schematic vertical cross-sectional view showing the shape of the test material used in the stress corrosion cracking test.
FIG. 2 is a schematic perspective view of a test piece used in the test. In the drawings: 1... Heat exchanger tube, 2... Heater. 3...Cooling water, 4...Welding part. 5... Test piece, 6... Bolt. 7...Natsuto. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo et al.

Claims (3)

【特許請求の範囲】[Claims] (1)Cr:14〜35重量%、 Ni:30重量%以上 を含有するNi基合金から成り、かつ少なくとも一部の
管外面表層部に圧縮残留応力が付与されていることを特
徴とする、耐粒界損傷性の優れた蒸気発生器用伝熱管。
(1) It is made of a Ni-based alloy containing 14 to 35% by weight of Cr and 30% by weight or more of Ni, and is characterized by having compressive residual stress applied to at least a portion of the outer surface layer of the tube. Heat exchanger tubes for steam generators with excellent grain boundary damage resistance.
(2)Cr:14〜35重量%、 Ni:30重量%以上 を含有するNi基合金製管を、外面を水冷しつつ内面か
ら加熱することによってその少なくとも一部を300〜
600℃の温度範囲に1分以上保持し、その後加熱を停
止することを特徴とする、耐粒界損傷性の優れた蒸気発
生器用伝熱管の製造法。
(2) A Ni-based alloy tube containing Cr: 14 to 35% by weight and Ni: 30% by weight or more is heated from the inside while cooling the outside with water, so that at least a part of it is heated to 300 to 300% by weight.
A method for manufacturing a heat exchanger tube for a steam generator with excellent resistance to intergranular damage, characterized by maintaining the temperature in a temperature range of 600° C. for 1 minute or more and then stopping heating.
(3)Cr:14〜35重量%、 Ni:30重量%以上 を含有するNi基合金製管を加熱し、その少なくとも一
部を600〜800℃の温度範囲に0.5分以上保持し
てクロム炭化物を結晶粒界に析出させた後、直ちに管外
面を水冷することを特徴とする、耐粒界損傷性の優れた
蒸気発生器用伝熱管の製造法。
(3) Heating a Ni-based alloy tube containing Cr: 14-35% by weight and Ni: 30% by weight or more, and holding at least a portion of it in a temperature range of 600-800°C for 0.5 minutes or more. A method for manufacturing a heat exchanger tube for a steam generator with excellent grain boundary damage resistance, which is characterized in that the outer surface of the tube is immediately water-cooled after chromium carbide is precipitated at grain boundaries.
JP23478984A 1984-11-07 1984-11-07 Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof Pending JPS61114097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23478984A JPS61114097A (en) 1984-11-07 1984-11-07 Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23478984A JPS61114097A (en) 1984-11-07 1984-11-07 Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61114097A true JPS61114097A (en) 1986-05-31

Family

ID=16976405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23478984A Pending JPS61114097A (en) 1984-11-07 1984-11-07 Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61114097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746655A1 (en) * 2012-08-10 2014-06-25 Hitachi Ltd. Heat treatment method for boiler membrane panel and boiler processed by the same heat treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746655A1 (en) * 2012-08-10 2014-06-25 Hitachi Ltd. Heat treatment method for boiler membrane panel and boiler processed by the same heat treatment

Similar Documents

Publication Publication Date Title
Bulischeck et al. Stress corrosion cracking of alloy 600 using the constant strain rate test
JP2664692B2 (en) Nickel-base alloy tubular body and its heat treatment method
OTOGURO et al. Oxidation behavior of austenitic heat-resisting steels in a high temperature and high pressure steam environment
JP2007327138A (en) Corrosion-resistant alloy and component made therefrom
JP3727240B2 (en) Austenitic stainless steel strip with good weldability as casting
JPS6044387B2 (en) Heat treatment method for zirconium-based alloy objects
JPS61114097A (en) Heat transfer pipe with excellent resistance to intercrystalline damage and manufacture thereof
JPH0524985B2 (en)
CA1080513A (en) Zirconium alloy heat treatment process and product
JPH0247249A (en) Heat treatment of stainless steel for heater tube
JPS583941A (en) Ni-cr-w alloy with improved fatigue strength at high temperature and its manufacture
JPH01159362A (en) Heat treatment of heat exchanger tube made of ni alloy
JPS59107068A (en) Treatment in weld zone of nickel alloy
JP2006118862A (en) Manufacturing method of stress corrosion cracking sample and test piece for non-destructive test
JPS60245773A (en) Manufacture of highly corrosion resistant ni base alloy
JPH0447008B2 (en)
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
JPS649379B2 (en)
JPH0233781B2 (en)
CN109848242A (en) A kind of nuclear power station separator seamless finned tube manufacturing process of TP439
CN113684424B (en) NIAL strengthened ferritic heat-resistant steel and preparation method thereof
Cannon et al. Simulated transient behavior of HT9 cladding
CN113430344B (en) Grain boundary engineering process method for improving intergranular corrosion resistance of 321stainless steel
JPS6169938A (en) Grain boundary damage resistant ni base alloy and its manufacture
Shargay et al. Heat Treatment Issues on Stainless Steel Heat Exchanger Tubes