JPS6111216B2 - - Google Patents

Info

Publication number
JPS6111216B2
JPS6111216B2 JP52104029A JP10402977A JPS6111216B2 JP S6111216 B2 JPS6111216 B2 JP S6111216B2 JP 52104029 A JP52104029 A JP 52104029A JP 10402977 A JP10402977 A JP 10402977A JP S6111216 B2 JPS6111216 B2 JP S6111216B2
Authority
JP
Japan
Prior art keywords
gas
reaction
selectivity
tea
acetaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52104029A
Other languages
Japanese (ja)
Other versions
JPS5439006A (en
Inventor
Kyoshi Yasuda
Teruo Itokazu
Juji Kurata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP10402977A priority Critical patent/JPS5439006A/en
Publication of JPS5439006A publication Critical patent/JPS5439006A/en
Publication of JPS6111216B2 publication Critical patent/JPS6111216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はアセトアルデヒドからエチルアミン
類、特にトリエチルアミンを高い選択率をもつて
製造する方法に関する。 エチルアミン類にはモノエチルアミン
(MEA)、ジエチルアミン(DEA)及びトリエチ
ルアミン(TEA)の3種があり、農薬、塗料を
はじめとして多方面の分野にわたり利用されてい
るが、その需要量は利用分野の情勢により変化す
る。 従つて産業の需要に応じて3種のエチルアミン
の必要量を作り分ける技術が求められる。 ニツケル系の水素化触媒の存在下、アセトアル
デヒドをアンモニア及び水素と気相で反応させて
エチルアミンを製造する方法は公知である。この
方法では、一般に反応生成物として3種のエチル
アミンの混合物が得られ、それらの比の一例を示
すとMEA:DEA:TEA=50:35:15である。
(ドイツ有機合成技術PBリポート収録 53頁、
昭和29年丸善)塗料等の分野で需要の大きい
TEAを増産するためには、生成したMEA、DEA
を反応系に循環することがおこなわれるが、製造
コストが増大する不利をまねくだけでなく、
TEAへの転換効果が不十分で、とてもTEAを高
選択率で製造する目的は達せられない。仕込組成
中のアンモニアとアセトアルデヒドの比を小さく
することもTEAへの選択性を増すのに役立つ。
たとえば特開昭49−36608号公報によれば、仕込
アンモニア/アセトアルデヒドのモル比を0.5ま
で下げた実施例4で、TEAが30.5モル%(炭素
2個をもつ原子団−以下C2と略す一のTEAへの
選択率として42.8%)と比較的多い。しかし、ア
ンモニア仕込モル比を減少させただけではTEA
は充分選択的に製造されるには至らず、また、こ
の方法は副生エタノールの増大をまねくなどの不
利をもたらす。 触媒の改良によりDEAとTEAの選択性を増す
発明もなされているが(特公昭45−32408号公
報、特開昭47−25111号公報)、これらの方法では
DEA+TEAの選択率は高くなるが、DEAを減ら
し、TEAをふやすことはできない。また触媒は
反応器に一度入れたら長期間使用するものである
から、触媒種による解決は需要の変化に応じてき
めこまかく3種のエチルアミンの製造比率を変え
るのには不向きである。 本発明者らは上記のような事情をふまえて、需
要の変化に応じて所望の期間TEAを増産できる
〓〓〓〓
エチルアミン製造法を提供すべく鋭意検討した結
果、これまで何人も注目していなかつた反応ガス
線速度について特定の値を選ぶことにより、高い
選択率をもつてTEAを製造できることを見出し
本発明を完成した。即ち、本発明はニツケル系の
水素化触媒の存在下アセトアルデヒド、アンモニ
ア、水素の気相反応によりエチルアミンを製造す
る方法において、触媒層中を通過する反応ガスの
線速度が毎秒0.5m乃至3m、好ましくは0.8m乃
至1.5mであることを特徴とするトリエチルアミ
ンの選択率を高めるためのエチルアミンの製造法
である。 本発明の適用できる反応は、一般に水素化反応
に用いられるニツケル系の触媒を用いたアセトア
ルデヒドの気相還元アミノ化反応である。アセト
アルデヒドの気相還元アミノ化反応で生じた
MEAやDEAがガスの循環や二段反応の形で反応
に供される場合もある。その場合原料モル比の条
件としてはDEA1モルはアンモニア1モルに対応
する1個のN(窒素)原子と、アセトアルデヒド
2モルに対応する2個のC2原子団として評価さ
れる。MEAの場合は1個のN原子と1個のC2
子団である。このようにして原料モル比はアンモ
ニアとアセトアルデヒドの反応に相当するN/
C2の比に換算して表示できる。 触媒としては、先行技術で知られているニツケ
ル系の固定床水素化触媒を用いることができる。
銅、クロムなど他の助触媒金属を含むニツケル系
触媒も用いられる。好ましい形の一例は、けいそ
う土などの担体に担持された還元ニツケル触媒
で、しばしばペレツト状で用いられる。反応器は
所定のガス線速が達成できるものでさえあれば、
管式反応器、フイツシヤー炉式反応器など公知の
適当な形式のものを用いることができる。 触媒層中を通過する反応ガスは、水素、アンモ
ニア、アセトアルデヒドより成る仕込ガス又はこ
れらに由来する転化ガス、又は更にこれに加えら
れた所定量の循環ガスを含む。反応に支障のない
他のガスを含むこともできる。 ガス線速は反応器中に入るこれらガスの体積速
度(0℃、1気圧基準)を触媒層の断面積で除し
て求められ、本発明においてその値は0.5m/sec
以上である。先行技術における反応ガス線速は、
例えば、0.2〜0.3m/sec程度であるから、本発明
は比較的高いガス線速の反応条件を特徴とするも
のであるといえる。得られる3種のエチルアミン
中のエチル基選択率、即ち原料中のC2原子団に
対する取得各エチルアミン中のエチル原子団の割
合は高いガス線速によりTEAが増大し、これに
反してDEAが顕著に下る。 仕込原料モル比がN/C2=1.3の例について説
明すると、ガス線速が0.3、0.5、0.74、0.9m/秒
と増すにつれて、TEAへのエチル基選択率は57
%、62%、67%、76%と上昇し、DEAへの選択
率は30%、30%、24%、2%と下る。選択率はガ
ス線速の他はもちろん仕込ガス組成や循環ガス量
の影響をうける。循環ガスの増加によりガス線速
を増す場合はあるところ迄はガス線速の増大によ
るTEA選択率の向上がみられるが、あまり循環
ガスを多くするとN/C2比の増大により逆に
TEA選択率が低下する場合もある。TEA選択率
向上の効果をもち、かつ所要動力などの点で不利
をもたらさないためには、ガス線速は0.5〜3m/
secの範囲内で選択すべきであり、特に0.8〜1.5
m/secの範囲が好ましい。 反応開始直後から高いTEA選択率を得るため
には、アルデヒド仕込前にあらかじめ水素とアン
モニアの高線速ガスで触媒を処理しておくことが
好ましい。 上記範囲のガス線速を用いてアセトアルデヒ
ド、アンモニア、水素の気相接触反応をおこなう
にあたり、反応温度は通常90〜200℃、なかんづ
く110〜160℃、水素:アンモニア:アセトアルデ
ヒドの原料仕込モル比は5〜20:0.3〜5:1と
通常の条件の中から選ぶことができるが、仕込ア
ンモニア/アセトアルデヒドモル比については
2.5以下であることが好ましい。この比が大きす
ぎるとガス線速を増大させたときに得られる
TEA選択率が比較的小さい値で最大値に達す
る。 触媒層には新しい仕込ガスの他に循環ガスも導
入し得る。循環ガスは触媒層から出たガスのまゝ
でも、反応出口ガスから凝縮又は吸収によりエチ
ルアミンを取得した残ガスの形でも使える。後者
の場合もしばしば水素、アンモニアの他、エチル
アミンの一部を含む。需要のバランスに応じ循環
ガスにモノアチルアミンなどを更に加える公知技
術も併用できることは勿論である。 〓〓〓〓
これら触媒層に導入される反応ガスは前記のよ
うに定義されたみかけの線速度0.5m/sec〜3m/
secで触媒層中を通過する。その際の接触時間は
触媒みかけ体積と0℃1気圧基準の仕込ガスの体
積速度とから求めた値で、通常0.1〜5秒であ
る。 接触時間が短かすぎると、取得物中に不純な化
合物が存在し、また、長すぎても空時収率を下げ
るだけで無益である。0.4〜3秒の範囲が好適に
用いられる。 反応は特に圧力に限定されることはない。通常
はいわゆる常圧反応、すなわちガスの流れに伴な
う圧力損失の値だけ加圧されたガスを供給する方
式で好適であるが、必要に応じ減圧、加圧で実施
することもできる。 上記のようにして反応したガスから凝縮、吸
収、蒸溜等公知の分離手段によつてエチルアミン
を分離し、TEAと副生するDEAを得ることがで
きる。 本発明の方法により反応ガス線速度の小さい従
来技術に比べて特にTEAの高い選択率もつてエ
チルアミンを製造することができる。反応生成物
中のTEAへのエチル基選択率は反応ガス線速が
0.3m/secから0.9m/secへと増加するにつれて58
%から76%(仕込N/C2=1.3のとき)、65から86
%(仕込N/C2=0.9のとき)というように増加
する。同時にエタノールの副生率が1.4%から約
0.8%というように低下する。TEAの増加に反し
てDEAへの選択率は低下する。 本発明は触媒の種類等基礎的反応条件の変更に
よらず、反応ガス線速という反応中でも変更容易
な条件を操作して実施できる。例えば、循環ガス
量を変えるだけで反応ガス線速は変るので、需要
の変化に応じ所望の期間だけトリエチルアミンを
増産することが容易にできる。このように本発明
により生産計画の変化に柔軟に対応してトリエチ
ルアミンのみの増産をはかることができる。 次に本発明を実施例について説明する。 実施例 1 ニツケル45%の他に助触媒として少量の銅及び
クロムを含有するケイソウ土担持還元ニツケル触
媒32gを内径19mmのステンレス鋼製反応器に充填
し、温度を120℃に保ちながら、アセトアルデヒ
ド(液として)10ml/時、アンモニア6/時及
び水素60/時よりなる混合ガスを触媒層に供給
し、触媒層を通過してきた反応ガスを720/時
の流量で触媒層入口へ循環した。触媒層での反応
ガスの線速度は0.9m/秒、仕込ガス基準の接触
時間は1.6秒(0℃1気圧換算)であつた。循環
系から流出してきた反応生成ガスを冷却し、得ら
れた液体生成物の分析値にもとづき計算したとこ
ろ、アセトアルデヒド転化率99%、トリエチルア
ミン選択率95.3%、ジエチルアミン、エタノール
及びその副生物4.7%であつた。 但し、エチルアミン選択率は変化したアセトア
ルデヒド分子に対する生成エチルアミン中のエチ
ル原子団の割合である。即ち、アミン選択率=生
成アミンモル数×n÷変化アセトアルデヒドモル
数において、TEAについてはn=3、DAEにつ
いてはn=2、MEAについてはn=1である。 比較例 1 反応生成ガスの循環をせずに、触媒層内を通過
するガスの線速度を0.1m/secになるようにした
以外は実施例1と同様にして反応したところ、ア
セトアルデヒド転化率99%、ジエチルアミン選択
率27%、トリエチルアミン選択率57%、エタノー
ル選択率1.3%であつた。 実施例 2 実施例1と同じ触媒250gを内径27mmのステン
レス鋼製反応器に充填し、アセトアルデヒド65
g/時、アンモニア17/時および水素90/時
よりなる混合ガスを触媒層に供給し、反応で生成
したガスは冷却器を経て、アミン成分の大部分を
凝縮分離したのち、循環ガスとして、2000/時
の流量で仕込系に戻した。 反応温度は最高点で134℃、触媒層を通過する
ガスの線速度は1m/秒、接触時間は0.45秒であ
つた。 得られた液状生成物の分析値より求めたとこ
ろ、アセトアルデヒド転化率99.5%、ジエチルア
ミン選択率15%、トリエチルアミン選択率84%、
エタノール及びその他副生物1%であつた。 実施例3〜11、比較例2〜4 反応温度140℃において、循環ガス量を変えて
線速度を0.2〜0.9m/秒の範囲内で変化させ、実
施例1と同様の試験をおこなつた。 仕込アンモニアとアセトアルデヒドの比はN/
C2=1.3、0.9、2.6の3水準とつた。 〓〓〓〓
結果は第1表のようで、先行技術で用いられて
いた0.2m/秒程度のガス線速ではDEA、MEA、
エタノールへの選択率が相対的に大きいが、0.5
m/秒以上の線速になるとTEAへの選択率が急
激に上昇することが認められる。
This invention relates to a process for producing ethylamines, particularly triethylamine, from acetaldehyde with high selectivity. There are three types of ethylamine: monoethylamine (MEA), diethylamine (DEA), and triethylamine (TEA), and they are used in a wide variety of fields including agricultural chemicals and paints, but the demand for them varies depending on the field of use. Varies depending on Therefore, there is a need for a technology that can produce different amounts of the three types of ethylamine depending on industrial demands. A method for producing ethylamine by reacting acetaldehyde with ammonia and hydrogen in the gas phase in the presence of a nickel-based hydrogenation catalyst is known. In this method, a mixture of three types of ethylamine is generally obtained as a reaction product, and an example of the ratio thereof is MEA:DEA:TEA=50:35:15.
(German organic synthesis technology PB report included, page 53,
1955 Maruzen) Demand is high in the field of paints, etc.
In order to increase TEA production, the generated MEA, DEA
However, this not only has the disadvantage of increasing production costs, but also
The conversion effect to TEA is insufficient, and the purpose of producing TEA with high selectivity cannot be achieved. Reducing the ratio of ammonia to acetaldehyde in the feed composition also helps increase selectivity to TEA.
For example, according to JP-A No. 49-36608, in Example 4 in which the molar ratio of charged ammonia/acetaldehyde was lowered to 0.5, TEA was 30.5 mol% (an atomic group having two carbon atoms, hereinafter abbreviated as C2) . The selection rate for TEA is 42.8%), which is relatively high. However, if only the molar ratio of ammonia was reduced, TEA
cannot be produced selectively enough, and this method also has disadvantages such as an increase in by-product ethanol. Although inventions have been made to increase the selectivity between DEA and TEA by improving catalysts (Japanese Patent Publication No. 45-32408, Japanese Patent Application Laid-Open No. 47-25111), these methods
Although the selection rate of DEA + TEA increases, it is not possible to decrease DEA and increase TEA. Furthermore, once the catalyst is placed in the reactor, it is used for a long period of time, so the solution based on the type of catalyst is not suitable for precisely changing the production ratio of the three types of ethylamine in response to changes in demand. Based on the above circumstances, the inventors of the present invention can increase production of TEA for a desired period according to changes in demand.
As a result of intensive studies aimed at providing a method for producing ethylamine, it was discovered that TEA could be produced with high selectivity by selecting a specific value for the reactant gas linear velocity, which no one had paid attention to until now, and the present invention was completed. did. That is, the present invention provides a method for producing ethylamine by a gas phase reaction of acetaldehyde, ammonia, and hydrogen in the presence of a nickel-based hydrogenation catalyst, in which the linear velocity of the reaction gas passing through the catalyst layer is preferably 0.5 m to 3 m/s. is a method for producing ethylamine to increase the selectivity of triethylamine, characterized in that the length is 0.8 m to 1.5 m. A reaction to which the present invention can be applied is a gas phase reductive amination reaction of acetaldehyde using a nickel-based catalyst, which is generally used in hydrogenation reactions. produced in the gas phase reductive amination reaction of acetaldehyde.
In some cases, MEA and DEA are subjected to reactions in the form of gas circulation or a two-step reaction. In this case, the raw material molar ratio conditions are that 1 mol of DEA is evaluated as 1 N (nitrogen) atom corresponding to 1 mol of ammonia and 2 C 2 atomic groups corresponding to 2 mol of acetaldehyde. In the case of MEA, there is one N atom and one C2 atomic group. In this way, the raw material molar ratio is N/, which corresponds to the reaction of ammonia and acetaldehyde.
It can be converted and displayed as a ratio of C 2 . As a catalyst, a nickel-based fixed bed hydrogenation catalyst known in the prior art can be used.
Nickel-based catalysts containing other promoter metals such as copper and chromium may also be used. One preferred form is a reduced nickel catalyst supported on a support such as diatomaceous earth, often in pellet form. As long as the reactor can achieve the specified gas linear velocity,
A known suitable type reactor such as a tube reactor or a Fischer furnace reactor can be used. The reaction gas passing through the catalyst bed comprises a feed gas consisting of hydrogen, ammonia, acetaldehyde or a conversion gas derived therefrom, or additionally a predetermined amount of recycle gas added thereto. Other gases that do not interfere with the reaction may also be included. The gas linear velocity is determined by dividing the volume velocity of these gases entering the reactor (0°C, 1 atm standard) by the cross-sectional area of the catalyst layer, and in the present invention, the value is 0.5 m/sec.
That's all. The reactant gas linear velocity in the prior art is
For example, since it is about 0.2 to 0.3 m/sec, it can be said that the present invention is characterized by reaction conditions of relatively high linear gas velocity. The selectivity of ethyl groups in the three types of ethylamines obtained, that is, the ratio of ethyl groups in each obtained ethylamine to the C2 atomic groups in the raw material, is determined by the fact that TEA increases due to high gas line velocity, whereas DEA is significant. go down to Taking an example where the molar ratio of raw materials is N/C 2 = 1.3, as the gas linear velocity increases from 0.3 to 0.5 to 0.74 to 0.9 m/s, the selectivity of ethyl groups to TEA increases by 57 m/s.
%, 62%, 67%, and 76%, and the selection rate for DEA decreases to 30%, 30%, 24%, and 2%. The selectivity is affected not only by the linear gas velocity but also by the composition of the charged gas and the amount of circulating gas. If the gas linear velocity is increased by increasing the circulating gas, TEA selectivity will be improved up to a certain point due to the increase in the gas linear velocity, but if the circulating gas is increased too much, the increase in the N/C 2 ratio will reverse the effect.
TEA selection rate may also decrease. In order to have the effect of improving TEA selectivity and not bring disadvantages in terms of required power, the gas linear velocity must be 0.5 to 3 m/
It should be selected within the range of sec, especially 0.8 to 1.5
A range of m/sec is preferred. In order to obtain a high TEA selectivity immediately after the start of the reaction, it is preferable to treat the catalyst with a high linear velocity gas of hydrogen and ammonia in advance before charging the aldehyde. When performing a gas phase catalytic reaction of acetaldehyde, ammonia, and hydrogen using the gas linear velocity in the above range, the reaction temperature is usually 90 to 200°C, especially 110 to 160°C, and the raw material charging molar ratio of hydrogen: ammonia: acetaldehyde is 5. ~20:0.3 ~ 5:1 can be selected from the usual conditions, but regarding the charged ammonia / acetaldehyde molar ratio
It is preferably 2.5 or less. If this ratio is too large, the result obtained when increasing the gas linear velocity is
TEA selectivity reaches its maximum value at a relatively small value. In addition to fresh feed gas, recycled gas can also be introduced into the catalyst bed. The circulating gas can be used either as the gas emitted from the catalyst bed or in the form of residual gas obtained by condensing or absorbing ethylamine from the reaction outlet gas. The latter often also contains hydrogen, ammonia, and some ethylamine. Of course, it is also possible to use a known technique in which monoacylamine or the like is further added to the circulating gas depending on the balance of demand. 〓〓〓〓
The reaction gas introduced into these catalyst layers has an apparent linear velocity of 0.5 m/sec to 3 m/sec as defined above.
It passes through the catalyst layer in seconds. The contact time at that time is a value determined from the apparent volume of the catalyst and the volume velocity of the charged gas at 0° C. and 1 atm, and is usually 0.1 to 5 seconds. If the contact time is too short, impure compounds will be present in the obtained product, and if the contact time is too long, it will only lower the space-time yield and is useless. A range of 0.4 to 3 seconds is preferably used. The reaction is not particularly limited to pressure. Usually, a so-called normal pressure reaction, that is, a method in which a gas pressurized by the value of the pressure loss accompanying the gas flow is supplied, is suitable, but it can also be carried out under reduced pressure or increased pressure, if necessary. Ethylamine can be separated from the gas reacted as described above by a known separation means such as condensation, absorption, or distillation to obtain TEA and DEA as a by-product. By the method of the present invention, ethylamine can be produced with a particularly high selectivity for TEA compared to conventional techniques in which the reactant gas linear velocity is low. The selectivity of ethyl groups to TEA in the reaction product is determined by the linear velocity of the reaction gas.
58 as increasing from 0.3m/sec to 0.9m/sec
% to 76% (when preparation N/C 2 = 1.3), 65 to 86
% (when charge N/C 2 =0.9). At the same time, the ethanol by-product rate has increased from 1.4% to approx.
This decreases to 0.8%. Contrary to the increase in TEA, the selection rate for DEA decreases. The present invention can be carried out by manipulating the reaction gas linear velocity, a condition that can be easily changed even during the reaction, without changing the basic reaction conditions such as the type of catalyst. For example, since the reaction gas linear velocity can be changed simply by changing the amount of circulating gas, it is possible to easily increase the production of triethylamine for a desired period of time in response to changes in demand. Thus, according to the present invention, it is possible to flexibly respond to changes in the production plan and increase the production of only triethylamine. Next, the present invention will be explained with reference to examples. Example 1 A stainless steel reactor with an inner diameter of 19 mm was filled with 32 g of a reduced nickel catalyst supported on diatomaceous earth containing 45% nickel and small amounts of copper and chromium as promoters, and acetaldehyde ( A mixed gas consisting of 10 ml/hour (as a liquid), 60 ml/hour of ammonia/hour, and 60/hour of hydrogen was supplied to the catalyst bed, and the reaction gas that had passed through the catalyst bed was circulated to the inlet of the catalyst bed at a flow rate of 720/hour. The linear velocity of the reaction gas in the catalyst layer was 0.9 m/sec, and the contact time based on the charged gas was 1.6 seconds (calculated at 0°C and 1 atm). Calculations were made based on the analysis values of the liquid product obtained by cooling the reaction product gas flowing out from the circulation system, and the conversion rate of acetaldehyde was 99%, the selectivity of triethylamine was 95.3%, and diethylamine, ethanol, and their by-products were 4.7%. It was hot. However, the ethylamine selectivity is the ratio of ethyl atomic groups in the produced ethylamine to the changed acetaldehyde molecules. That is, amine selectivity=number of moles of amine produced×n÷number of moles of changed acetaldehyde, n=3 for TEA, n=2 for DAE, and n=1 for MEA. Comparative Example 1 When the reaction was carried out in the same manner as in Example 1 except that the reaction product gas was not circulated and the linear velocity of the gas passing through the catalyst layer was set to 0.1 m/sec, the acetaldehyde conversion rate was 99. %, diethylamine selectivity was 27%, triethylamine selectivity was 57%, and ethanol selectivity was 1.3%. Example 2 250 g of the same catalyst as in Example 1 was charged into a stainless steel reactor with an inner diameter of 27 mm, and acetaldehyde 65
A mixed gas consisting of 17 g/hour of ammonia and 90 g/hour of hydrogen is supplied to the catalyst bed, and the gas produced by the reaction passes through a cooler to condense and separate most of the amine components, and then as a circulating gas. It was returned to the preparation system at a flow rate of 2000/hour. The reaction temperature was 134°C at the highest point, the linear velocity of the gas passing through the catalyst layer was 1 m/sec, and the contact time was 0.45 sec. As determined from the analytical values of the obtained liquid product, the acetaldehyde conversion rate was 99.5%, the diethylamine selectivity was 15%, the triethylamine selectivity was 84%,
Ethanol and other by-products were 1%. Examples 3 to 11, Comparative Examples 2 to 4 At a reaction temperature of 140°C, the same tests as in Example 1 were conducted by changing the amount of circulating gas and changing the linear velocity within the range of 0.2 to 0.9 m/sec. . The ratio of charged ammonia to acetaldehyde is N/
There were three levels of C 2 = 1.3, 0.9, and 2.6. 〓〓〓〓
The results are shown in Table 1, and at the gas linear velocity of about 0.2 m/sec used in the prior art, DEA, MEA,
Although the selectivity to ethanol is relatively large, 0.5
It is observed that the selectivity to TEA increases rapidly when the linear velocity is higher than m/sec.

【表】【table】

【表】 実施例 12 ニツケル含量40%のアルミナ担持ニツケル触媒
52gを用いて実施例1と同様の試験をおこなつ
た。アセトアルデヒド転化率98.6%、TEA選択
率54.7%、DEA選択率35.4%、MEA選択率1.3%
であつた。 反応ガスの循環を行なわず、約0.1m/秒の低
線速で反応させたところアセトアルデヒド転化率
99.8%、各アミンへの選択率はTEA46.6%、
DEA36.7%、MEA13.1%であつた。 〓〓〓〓
[Table] Example 12 Nickel catalyst supported on alumina with nickel content of 40%
A test similar to that in Example 1 was conducted using 52 g. Acetaldehyde conversion rate 98.6%, TEA selectivity 54.7%, DEA selectivity 35.4%, MEA selectivity 1.3%
It was hot. When the reaction was carried out at a low linear velocity of approximately 0.1 m/sec without circulation of the reaction gas, the acetaldehyde conversion rate was
99.8%, selectivity to each amine is TEA 46.6%,
DEA was 36.7% and MEA was 13.1%. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケル系の水素化触媒の存在下、アセトア
ルデヒド、アンモニア、水素の気相反応によりエ
チルアミンを製造する方法において、触媒層中を
通過する反応ガスの線速度が毎秒0.5m乃至3m
であることを特徴とするトリエチルアミンの選択
率を高めるためのエチルアミンの製造法。
1 In a method for producing ethylamine by a gas phase reaction of acetaldehyde, ammonia, and hydrogen in the presence of a nickel-based hydrogenation catalyst, the linear velocity of the reaction gas passing through the catalyst layer is 0.5 m to 3 m per second.
A method for producing ethylamine for increasing the selectivity of triethylamine, characterized in that:
JP10402977A 1977-08-29 1977-08-29 Preparation of ethylamine Granted JPS5439006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10402977A JPS5439006A (en) 1977-08-29 1977-08-29 Preparation of ethylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10402977A JPS5439006A (en) 1977-08-29 1977-08-29 Preparation of ethylamine

Publications (2)

Publication Number Publication Date
JPS5439006A JPS5439006A (en) 1979-03-24
JPS6111216B2 true JPS6111216B2 (en) 1986-04-01

Family

ID=14369811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10402977A Granted JPS5439006A (en) 1977-08-29 1977-08-29 Preparation of ethylamine

Country Status (1)

Country Link
JP (1) JPS5439006A (en)

Also Published As

Publication number Publication date
JPS5439006A (en) 1979-03-24

Similar Documents

Publication Publication Date Title
JP3380295B2 (en) Method for producing 1,3-propanediol
US4002650A (en) Preparation of maleic anhydride from n-butane
US4739051A (en) Preparation of morpholine
US3087964A (en) Vapor phase oxidation of acrolein to acrylic acid
JP2001187773A (en) Acrylonitrile composition
US2423180A (en) Process for the reduction of nitronaphthenes
US4359587A (en) Method for preparing carbonyl compounds
US20160009633A1 (en) Process for preparing eda using so2-free hydrocyanic acid
US3935276A (en) Process for the manufacture of methyl mercaptan
US4754049A (en) Process for preparing unsaturated nitriles from alkanes
US3972938A (en) Manufacture of hexamethylene diamine
US4058571A (en) Continuous process for the production of d,l'menthol
JP3095293B2 (en) Method for producing gamma-butyrolactone
JPS6111216B2 (en)
US3372986A (en) Process for producing hydrocyanic acid and acrylonitrile from acrolein-cyanohydrin
JPH0514710B2 (en)
JPH02279657A (en) Production of aniline
JPS59118745A (en) Manufacture of amine
JPH0449549B2 (en)
JPS5923306B2 (en) Method for producing indole or indole derivatives
CN112250542A (en) Process for preparing 2-cyclohexylcyclohexanol
RU2178781C1 (en) 2-etylhexanal-into-2-ethylhexanol hydrogenation process
JPS5980630A (en) Preparation of oxalic acid diester
JP3795974B2 (en) Process for producing α, β-cyclic unsaturated ether
JP3919044B2 (en) Method for producing 3,5-dimethylphenol