JPS61111867A - Constitution member for machine tool - Google Patents

Constitution member for machine tool

Info

Publication number
JPS61111867A
JPS61111867A JP23306384A JP23306384A JPS61111867A JP S61111867 A JPS61111867 A JP S61111867A JP 23306384 A JP23306384 A JP 23306384A JP 23306384 A JP23306384 A JP 23306384A JP S61111867 A JPS61111867 A JP S61111867A
Authority
JP
Japan
Prior art keywords
temperature
liquid
constitution member
constitution
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23306384A
Other languages
Japanese (ja)
Inventor
Yasuhiro Iwasaki
岩崎 安宏
Ritsuo Hashimoto
律男 橋本
Takayuki Goto
崇之 後藤
Akira Tamai
玉井 明
Toshiaki Kurita
栗田 俊明
Toshiaki Tamaru
田丸 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23306384A priority Critical patent/JPS61111867A/en
Publication of JPS61111867A publication Critical patent/JPS61111867A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • B23Q1/015Frames, beds, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

PURPOSE:To secure the working precision of a machine tool by preventing the thermal deformation of a hollow constitution member due to the difference of the temperature response speed in the same member for the change of the outside air temperature by charging liquid into the hollow part of the hollow constitution member. CONSTITUTION:When a temperature difference is generated between the parts of a constitution member 21, natural convection is generated in the liquid 22 in a hollow part by the change of liquid density. Since the heat transfer from the high-temperature part of the constitution member 21 to the low-temperature part through the liquid 22 in the hollow part by the natural convection in this case, the generated temperature difference is offset, and the max. temperature difference generated between the parts of the constitution member 21 is kept at a small value. Further, by charging liquid into the hollow part of the constitution member 21, the heat capacity of the liquid 22 is added, and the same effect to the increase of the body thickness of the constitution member 21 can be obtained, and the following of the temperature of the constitution member 21 to the change of the outside air temperature can be suppressed, and also the temperature difference generated between the parts of the constitution member 21 is reduced, and the thermal deformation can be suppressed, and a machine tool having a high precision can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は工作機械の構成部材に関し、温度の変化に伴う
構成部材の不均一な熱変形を防止して工作機械の加工精
度の保持を企図したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to structural members of machine tools, and is intended to maintain the machining accuracy of machine tools by preventing uneven thermal deformation of the structural members due to temperature changes. This is what I did.

〈従来の技術〉 一般に、工作機械はコラムやクロスレール、サドル等の
構成部材で構成されている。例えば、門形工作機械の概
観図を表わす第2図に示すように、水平方向前後に移動
可能なテーブル11の両側部に一対のコラム12が立設
されると共にコラム12の上端にはブリッジ13が掛渡
されて門形をかたち作っており、このコラム12には上
下に移動可能にクロスレール14が取付けられる。クロ
スレール14にはこのクロスレール14に沿って水平方
向左右に移動可能にサドル15が取付けられ、サドル1
5に上下動可能にラム16が取付けられると共にその下
端部に工具17が保持されている。このような工作機械
においては、コラム12の断面斜視図を表わす第3図に
示すように、例えばコラム12の前面にはクロスレール
14の上下動を案内する案内面12aが形成されており
、この案内面12aの精度が結果的に工具17の位置精
度を大きく左右することになる。このため、案内面12
aの部分の肉厚を増して剛性を確保することが必要とな
り、これと反対側の面の肉厚とでは大きな寸法上の差異
がある。すなわち、コラム12の案内面12aが形成さ
れている前面は肉厚が厚く、反対側のB面では肉厚が薄
くなっている。乙のような事情はコラム12に限らず、
クロスレール]4やサドル15等においても同様であり
、工作機械の構成部材の肉厚は必ずしも均一ではない。
<Prior Art> Generally, machine tools are composed of structural members such as columns, cross rails, and saddles. For example, as shown in FIG. 2 showing an overview of a portal machine tool, a pair of columns 12 are erected on both sides of a table 11 that can be moved back and forth in the horizontal direction, and a bridge 13 is provided at the upper end of the column 12. are strung across to form a gate shape, and a cross rail 14 is attached to this column 12 so as to be movable up and down. A saddle 15 is attached to the cross rail 14 so as to be movable horizontally left and right along the cross rail 14.
A ram 16 is attached to the ram 5 so as to be movable up and down, and a tool 17 is held at its lower end. In such a machine tool, as shown in FIG. 3 showing a cross-sectional perspective view of the column 12, for example, a guide surface 12a is formed on the front surface of the column 12 to guide the vertical movement of the cross rail 14. As a result, the accuracy of the guide surface 12a greatly influences the positional accuracy of the tool 17. For this reason, the guide surface 12
It is necessary to increase the thickness of the part a to ensure rigidity, and there is a large dimensional difference between this and the thickness of the opposite side. That is, the front surface of the column 12 where the guide surface 12a is formed has a thick wall, and the opposite side B has a thin wall thickness. Circumstances like B are not limited to Column 12.
The same applies to the cross rail 4, the saddle 15, etc., and the thicknesses of the constituent members of the machine tool are not necessarily uniform.

〈発明が解決しようとする問題点〉 精密加工を行う工作機械は熱剛性」二の必要から恒温室
に設置されることが一般的であったが、近年恒温設備を
有さない工場に設置される工作機械にも高い工作精度が
要求されてきている。温度変化のある環境下におかれる
と工作機械はその温度変化により熱変形を起こし、特に
大型の工作機械にあっては僅かな温度変化でも構成部材
が大きく変形して必要な工作精度が得られないという問
題が発生する。
<Problems to be solved by the invention> Machine tools for precision machining were generally installed in thermostatic chambers due to the need for thermal rigidity, but in recent years they have been installed in factories without constant temperature equipment. High machining accuracy is also required for machine tools. When a machine tool is placed in an environment with temperature changes, the temperature changes cause thermal deformation. Especially in large machine tools, even a slight temperature change causes the component parts to deform significantly, making it difficult to obtain the necessary machining accuracy. The problem arises that there is no.

すなわち、各種肉厚の鋼板温度の室温追従の計算値例の
グラフを表わす第4図に示すように、肉厚の薄いものほ
ど熱容量が小さいtコめ周囲の温度変化に対する応答速
度が大きく、そのため肉厚が均一でない構成部材におい
ては同一部材内で温度差が発生し、これに起因する材料
の熱膨張差による変形が生しる。このことを上述のコラ
ム12を例にとって説明すると、第5図に示すように室
温の変化に対してコラム12の肉厚の薄い8面は肉厚の
厚いA面より早く室温に追従する。そのため、例えば5
P、M、の時点ては8面の温度はA面より高く、一方5
A、M、の時点では8面の温度はA面より低い。従って
、その温度差に起因するA面と8面の熱膨張量の差によ
り、第6図に示すようにコラム12は5P0M、ではA
面側に傾斜し、5A、M、では8面側に傾斜することに
なる。
In other words, as shown in Fig. 4, which is a graph showing an example of the calculated value of the room temperature tracking of steel sheet temperature of various wall thicknesses, the thinner the wall thickness, the smaller the heat capacity, and the faster the response speed to surrounding temperature changes. In structural members whose wall thicknesses are not uniform, temperature differences occur within the same member, and deformation occurs due to differences in thermal expansion of the materials caused by this. To explain this using the above-mentioned column 12 as an example, as shown in FIG. 5, the eight thinner sides of the column 12 follow the room temperature faster than the thicker side A with respect to changes in room temperature. Therefore, for example, 5
At points P and M, the temperature of surface 8 is higher than that of surface A, while the temperature of surface 5 is higher than that of surface A.
At times A and M, the temperature of surface 8 is lower than surface A. Therefore, due to the difference in thermal expansion between the A side and the 8th side due to the temperature difference, the column 12 is 5P0M and the A side is 5P0M as shown in FIG.
It is inclined toward the surface side, and in 5A and M, it is inclined toward the 8th surface side.

く問題点を解決するための手段〉 本発明は、上述したような外気温度変化に対する同一部
材内における温度応答速度差に起因する構成部材の熱変
形を防止することを目的としている。この目的を達成す
るため本発明では、工作機械を構成する中空の構成部材
において、該中空部内に液体を充填するようにjノな。
Means for Solving the Problems> The present invention aims to prevent thermal deformation of structural members due to differences in temperature response speed within the same member to changes in outside air temperature as described above. In order to achieve this object, the present invention provides a method for filling a hollow part of a hollow component of a machine tool with a liquid.

く作   用〉 このようにすると、構成部材内の液体の自然対流により
構成部材の各部分間の熱伝達が促進され、構成部材内の
温度差が減少する。
In this way, heat transfer between the respective parts of the component is promoted by natural convection of the liquid within the component, and the temperature difference within the component is reduced.

また、液体の熱容量により構成部材の見かけの肉厚が増
大(ッ、外気温度変化に対する構成部材の温度追従が抑
制される。
In addition, the apparent thickness of the component increases due to the heat capacity of the liquid (i.e., the ability of the component to follow temperature changes in the outside air is suppressed).

く実 施 例〉 以下本発明の実施例を第1図により具体的に説明する。Example of implementation Embodiments of the present invention will be described in detail below with reference to FIG.

第1図ta+は本発明の第1の実施例の縦断面図である
。本実施例は工作機械を構成するコラム等の柱状構成部
材z1の中空部内に水、’nb等の液体22をそのM面
22aが構成部材21の略天井面に到るまで充填したも
のである。
FIG. 1 ta+ is a longitudinal sectional view of a first embodiment of the present invention. In this embodiment, a hollow portion of a columnar structural member z1 such as a column constituting a machine tool is filled with a liquid 22 such as water or 'nb until its M surface 22a reaches approximately the ceiling surface of the structural member 21. .

また、第1図[blは本発明の第2の実施例の縦断面図
である。本実施例も前例と同様にコラム等の柱状構成部
材21の中空部内に液体22を充填するものであるが、
本実施例では、中空部内に吸液性が無く且つ軽量の例え
ば発泡スチロール等のダミー装人材23を取付け、液体
22の液量の節約及び全体の重量低減を図ったものであ
る。ダミー装人材23は構成部材21の中央部に図示し
ない取付具により保持され、液体22は構成部材21の
内面とダミー装人材23の外面の間に充填される。
Further, FIG. 1 [bl is a longitudinal cross-sectional view of a second embodiment of the present invention. In this embodiment, as in the previous example, the liquid 22 is filled into the hollow portion of a columnar structural member 21 such as a column.
In this embodiment, a dummy mounting member 23 that is non-absorbent and lightweight, such as foamed polystyrene, is installed in the hollow portion in order to save the amount of liquid 22 and reduce the overall weight. The dummy personnel 23 is held in the center of the component 21 by a fixture (not shown), and the liquid 22 is filled between the inner surface of the component 21 and the outer surface of the dummy personnel 23.

第1図(clは本発明の第3の実施例の横断面図であり
、本実施例は工作機械を構成するブリッジ、クロスレー
ル等の横梁状構成部材21の中空部内に液体22を充填
したものである。
FIG. 1 (CL is a cross-sectional view of a third embodiment of the present invention, in which a liquid 22 is filled into the hollow part of a cross-beam-like structural member 21 such as a bridge or a cross rail constituting a machine tool. It is something.

また、中空部内には前例と同様にタミー装人材23を設
けている。
Further, a tammy-equipped human body 23 is provided in the hollow portion as in the previous example.

このような構成によれば、構成部材21の各部分間に温
度差が生しると、中空部内の液体22内に液体密度の変
化によって自然対流が発生する。この際、自然対流熱伝
達によって構成部材21の高温部分から中空部内液体2
2を介して低温部分への熱移動が行われるため、発生し
た温度差が相殺され、構成部材21の部分間に生じる最
大温度差が小さい値に保持される。
According to such a configuration, when a temperature difference occurs between each part of the component 21, natural convection occurs in the liquid 22 in the hollow part due to a change in liquid density. At this time, the liquid 2 in the hollow part 2 is transferred from the high temperature part of the component 21 by natural convection heat transfer.
2 to the colder parts, the temperature differences that occur are canceled out and the maximum temperature difference occurring between the parts of the component 21 is kept at a small value.

すなわち、内部に流体を封入しtコ容器内壁” による
自然対流熱伝達の予測式は、Ra−’βΔtD’   
        、、、Llla ν Nu = 0.0516 Ra           
 −f2)λ α= Nu −−431 ここで、Ra:  レーレ−数[−コ Δt:壁、流体間温度差[℃] D:代表寸法[mコ Nu: ヌセルト数[−] a:熱伝達係数[kcal/m’h℃]β:流体の体膨
張率[1/k ] a:流体の温度伝導率[m’/s] ν:流体の動粘性係数[m’/s]    ′λ:流体
の熱伝導率[kcal/mh’c ]で与えられる。い
ま、(1)〜(3)式により流体として水、空気をそれ
ぞれ封入した場合について計算した結果を第7図に示す
。第7図に示すように、液体(水)を封入した場合の熱
伝達は空気の場合の10倍以上と々す、従って温度差は
10分の1以下に低減される。
In other words, the prediction formula for natural convection heat transfer due to the inner wall of a container with a fluid sealed inside is Ra - 'βΔtD'
,,,Llla ν Nu = 0.0516 Ra
-f2)λ α= Nu −-431 where, Ra: Ray number [-koΔt: temperature difference between wall and fluid [℃] D: Representative dimension [mko Nu: Nusselt number [-] a: Heat transfer Coefficient [kcal/m'h°C] β: Body expansion coefficient of fluid [1/k] a: Temperature conductivity of fluid [m'/s] ν: Kinematic viscosity coefficient of fluid [m'/s] 'λ: It is given by the thermal conductivity of the fluid [kcal/mh'c]. Now, FIG. 7 shows the results calculated using equations (1) to (3) for cases in which water and air are respectively sealed as fluids. As shown in FIG. 7, the heat transfer when liquid (water) is sealed is more than 10 times that of air, so the temperature difference is reduced to less than one-tenth.

さらに、構成部材21の中空部内に液体22を充填する
ことにより、液体22の熱容量が付加されるのであたか
も構成部材21の肉厚が厚くなったのと同等の効果があ
り、第4図に示したように外気温度変化に対する構成部
材21の温度追従そのものが抑制され、従って構成部材
21の各部分間に生じる温度差も小さくなる。例えば、
100mmの厚みの水膜の熱容量は約100mmの鋼板
に相当し、それによる温度差の低下は顕著である。
Furthermore, by filling the hollow part of the component 21 with the liquid 22, the heat capacity of the liquid 22 is added, so there is an effect equivalent to increasing the thickness of the component 21, as shown in FIG. As described above, the temperature tracking of the component 21 itself with respect to changes in the outside air temperature is suppressed, and therefore the temperature difference occurring between the respective parts of the component 21 is also reduced. for example,
The heat capacity of a water film with a thickness of 100 mm is equivalent to that of a steel plate with a thickness of approximately 100 mm, and the resulting reduction in temperature difference is significant.

〈発明の効果〉 以上実施例を挙げて詳細に説明したように本発明によれ
ば、工作機械を構成する中空の構成部材において、該中
空部内に液体を充填するようにしたので、外気温度変化
に対して同−構成部材内において生じる各部分間の渇7
一 度差が低減し、構成部材の熱変形が防止できるので、精
度の高い工作機械を提供することができる。
<Effects of the Invention> As described above in detail with reference to the embodiments, according to the present invention, in a hollow structural member constituting a machine tool, the hollow part is filled with a liquid, so that changes in outside temperature can be avoided. For the same - the depletion between each part within the component 7
Once the difference is reduced, thermal deformation of the constituent members can be prevented, making it possible to provide a highly accurate machine tool.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、(bl、fc)はそれぞれ本発明の第1
、第2、第3の実施例の断面図、第2図は門形工作機械
の概観図、第3図はそのコラムの断面斜視図、第4図は
室温変化を振幅10℃のサイン曲線状と仮定したときの
各種肉厚の鋼板温度の室温追従の計算値例を表わすグラ
フ、第5図は室温変化に対するコラムのA面及びB面の
温度変化を表わすグラフ、第6図はコラム変形の説明図
、第7図は水及び空気を封入した場合の内部対流熱伝達
の計算値例を表わすグラフである。 図 面 中、 21は工作機械の構成部材、 22は液体、 23はダミー装人材である。 (り。)軍事− 9μ遡 、J−、、、、・。
FIG. 1 (al, (bl, fc)) is the first embodiment of the present invention.
, sectional views of the second and third embodiments, Fig. 2 is an overview of the column type machine tool, Fig. 3 is a cross-sectional perspective view of the column, and Fig. 4 shows room temperature changes in the form of a sine curve with an amplitude of 10°C Figure 5 is a graph showing the temperature change of the A side and B side of the column with respect to the room temperature change. Figure 6 is the graph showing the temperature change of the column deformation. The explanatory diagram, FIG. 7, is a graph showing an example of calculated values of internal convection heat transfer when water and air are enclosed. In the drawing, 21 is a component of the machine tool, 22 is a liquid, and 23 is a dummy personnel. (ri.)Military-9μ retroactive, J-,,,,.

Claims (1)

【特許請求の範囲】[Claims] 工作機械を構成する中空の構成部材において、該中空部
内に液体が充填されたことを特徴とする工作機械の構成
部材。
1. A hollow structural member constituting a machine tool, characterized in that the hollow portion thereof is filled with a liquid.
JP23306384A 1984-11-07 1984-11-07 Constitution member for machine tool Pending JPS61111867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23306384A JPS61111867A (en) 1984-11-07 1984-11-07 Constitution member for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23306384A JPS61111867A (en) 1984-11-07 1984-11-07 Constitution member for machine tool

Publications (1)

Publication Number Publication Date
JPS61111867A true JPS61111867A (en) 1986-05-29

Family

ID=16949215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23306384A Pending JPS61111867A (en) 1984-11-07 1984-11-07 Constitution member for machine tool

Country Status (1)

Country Link
JP (1) JPS61111867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1537941A2 (en) * 2002-10-17 2005-06-08 Toyoda Koki Kabushiki Kaisha Hollow bed structure for a machine tool formed through casting
JP2009061564A (en) * 2007-09-07 2009-03-26 Makino Milling Mach Co Ltd Method and apparatus for cooling movable body of machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1537941A2 (en) * 2002-10-17 2005-06-08 Toyoda Koki Kabushiki Kaisha Hollow bed structure for a machine tool formed through casting
EP1537941A3 (en) * 2002-10-17 2005-06-15 Toyoda Koki Kabushiki Kaisha Hollow bed structure for a machine tool formed through casting
JP2009061564A (en) * 2007-09-07 2009-03-26 Makino Milling Mach Co Ltd Method and apparatus for cooling movable body of machine tool

Similar Documents

Publication Publication Date Title
Frederking et al. Natural convection film boiling on a sphere
Gupta et al. Bounds for heat transport in a porous layer
Hamadah et al. Analysis of laminar fully developed mixed convection in a vertical channel with opposing buoyancy
Emara et al. A numerical investigation of thermal convection in a heat-generating fluid layer
IT1110858B (en) IMPROVEMENT IN THE MOLDS FOR THE FORMATION OF GLASS OBJECTS WITH FLUID COOLING AND MANUFACTURING PROCEDURE
JPS61111867A (en) Constitution member for machine tool
IT8023721A0 (en) SERVOCONTROL SYSTEM TO MINIMIZE ERRORS IN THE TRACKING OF MACHINE TOOL SLIDE DRIVE DEVICES.
DE2943140A1 (en) PRESSURE MEASURING DEVICE WITH TEMPERATURE COMPENSATION
Johnson et al. Numerical simulation of flows past periodic arrays of cylinders
Cottingham et al. Bubble nucleation rates in first-order phase transitions
Liauw et al. Torsion of core walls of nonuniform section
JPS6138832A (en) Machine tool taking measure for heat
Lienhard An Improved Approach to Conductive Boundary Conditions for the Rayleigh-Be´ nard Instability
Lienhard et al. Laminar natural convection under nonuniform gravity
Kops et al. Effect of shear stiffness of fixed joints on thermal deformation of machine tools
IT1108974B (en) HEAT EXCHANGE DEVICE FOR FLUID FLUIDS, PREFERABLY IN AIRCRAFTS AND SPACE VEHICLES
Sneddon Temperature effects in hydrostatic levelling
IT1166678B (en) HEAT EXCHANGER FOR HEAT EXCHANGE BETWEEN TWO FLUIDS AND BOILER INCLUDING SUCH EXCHANGER
Akinrelere Forced convection near laminar separation
Holland et al. Prediction of vaporization efficiencies for multicomponent mixtures by use of existing correlations for the vapor and liquid film coefficients
Olander et al. Migration of Gas-liquid inclusions in single crystals of potassium and sodium chlorides
Lee et al. Laminar Boundary∼ Layer Free Convection along an Inclined, Isothermal Surface
Boley Estimate of errors in approximate temperature and thermal stress calculations
GB1000270A (en) Process for machining tubular elements with fins for heat exchangers
IT1069128B (en) IMPROVEMENTS IN HEAT EXCHANGERS BETWEEN FLUIDS, PARTICULARLY FOR SYSTEMS WITH THERMAL MOTORS