JPS61111680A - Apparatus for handling fine particle - Google Patents

Apparatus for handling fine particle

Info

Publication number
JPS61111680A
JPS61111680A JP59233172A JP23317284A JPS61111680A JP S61111680 A JPS61111680 A JP S61111680A JP 59233172 A JP59233172 A JP 59233172A JP 23317284 A JP23317284 A JP 23317284A JP S61111680 A JPS61111680 A JP S61111680A
Authority
JP
Japan
Prior art keywords
cells
electrodes
particles
cell
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233172A
Other languages
Japanese (ja)
Other versions
JPH0658B2 (en
Inventor
Hisashi Tsuruoka
鶴岡 久
Mitsuyoshi Yuasa
湯浅 光義
Masaki Takatsuji
高辻 正基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59233172A priority Critical patent/JPH0658B2/en
Publication of JPS61111680A publication Critical patent/JPS61111680A/en
Publication of JPH0658B2 publication Critical patent/JPH0658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To improve the accuracy and speed of a cell fusion process, and to enable the automation of the process, by applying an electric potential between electrode pairs, thereby moving a fine particle positioned therebetween, stopping the motion of individual particle, and controlling the distance between the particles. CONSTITUTION:The apparatus is composed of a vessel 31 furnished with an inlet and an outlet of a liquid, plural electrodes 41-44 attached to the side wall of the vessel 31, the electric potential generation means 45 to apply electrophoretic potential to the electrodes, and a change-over switch 46 to connect the output of the means 45 to an arbitrary pair of the above electrodes. An electrical potential is applied to the electrode pair between which the objective fine particle is positioned by selecting the switch 46 to start the motion of the fine particle, and the motion is stopped or the distance between particles is controlled by the switch. Since a one-dimensional flow of the fine particles can be formed by this process, the accuracy of a particle counter, flow cytometry, cell sorter, etc., can be improved, and a hybrid cell can be produced exclusively and surely by cell fusion.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は細胞融合における細胞の取扱い、及び融合操作
の自動化、及びフロー型微粒子計測装置の高精度化に適
した微粒子取扱い装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a particle handling device suitable for handling cells in cell fusion, automating the fusion operation, and improving the precision of a flow-type particle measuring device.

〔発明の背景〕[Background of the invention]

従来、細胞の如き微粒子のマニピユレーションは顕微鏡
下でマイクロピペットを使って実施していた0例えば、
医療検査における赤血球、白血球等の各種検査の操作、
植物細胞育種における細胞融合、細胞選抜時の操作がこ
れであり、細胞を1個ずつ取出したり、移すときはマイ
クロピペットによる操作に頼らねばならなかった。
Conventionally, manipulation of microparticles such as cells was performed using a micropipette under a microscope.
Operation of various tests such as red blood cells and white blood cells in medical tests,
This is the procedure used during cell fusion and cell selection in plant cell breeding, and it was necessary to rely on micropipettes to remove or transfer cells one by one.

細胞融合操作では、遺伝的に異なったA、82種類の細
胞から雑種細胞ABを能率的に作り出す必要がある。植
物育種では融合剤としてはポリエチレングリコール(P
 E G)が細胞阻害の少ないものとして良く用いられ
る。
In cell fusion operations, it is necessary to efficiently create hybrid cells AB from genetically different A and 82 types of cells. In plant breeding, polyethylene glycol (P) is used as a fusion agent.
EG) is often used as it causes less cell inhibition.

ところで、この場合、雑種細胞ABのみではなく、同種
細胞同士の融合AA、BBも生成する。
By the way, in this case, not only hybrid cells AB but also fusions AA and BB of homogeneous cells are generated.

このため各種細胞に遺伝子マーカを導入し、色素、電荷
等の特性を利用して雑種細胞のみを選抜する方法が試み
られている。しかしながら、これらの方法は対象細胞が
限定されていたり成功例が限られていたりして、−殺性
がなく、また、前記雑種細胞の選抜はすべて検鏡下での
手作業で行うものであり、能率が非常に悪いという問題
がある。
For this reason, attempts have been made to introduce genetic markers into various cells and select only hybrid cells using characteristics such as pigment and electric charge. However, these methods have limited target cells and limited success stories; they are not cidal; and the selection of the hybrid cells is all done manually under a microscope. , there is a problem of very low efficiency.

これに対して、最近、雑種細胞のみを選択的に生成する
方法として、誘電泳動法(DEP)が提案されている。
In contrast, dielectrophoresis (DEP) has recently been proposed as a method for selectively generating only hybrid cells.

この方法は電極1,2間の交流電界中に第1図に示す如
く、まず、Aの細胞を入れ面接に2分した後、Bの細胞
を注入してAの細胞の先端に付着させ、電気融合により
ABの雑種細胞を生成する方法である(J、Viake
n et al。
In this method, as shown in Fig. 1 in an alternating electric field between electrodes 1 and 2, cells of A are first placed and divided into two on the surface, then cells of B are injected and attached to the tip of the cells of A. A method for generating AB hybrid cells by electrofusion (J, Viake
n et al.

“Electric Field−Induced F
ield:Electro−Hydraulic Pr
ocedure for Production of
Heterokarion Ce1ls in Hig
h Yeild”、FEBSLETTHR5゜Vol、
137 Mat、Jan、1982.ppH=13)。
“Electric Field-Induced F
ield: Electro-Hydraulic Pr
occasion for production of
Heterokarion Cells in High
h Yield”, FEBSLETTHHR5゜Vol.
137 Mat, Jan, 1982. ppH=13).

 この方法では、雑種細胞は作九るが、細胞の注入時期
や、電気パルスの印加時間は顕微鏡下で熟練者の判断を
必要とするという別の問題がある。
Although hybrid cells can be produced using this method, there is another problem in that the timing of cell injection and the duration of electric pulse application require judgment by an expert under a microscope.

また、これとは別に、第2図に示す如く、A。In addition, as shown in FIG. 2, A.

Bの細胞を別々に金属板3,4の孔にセットし、両金属
板を接触させた状態で、融合剤を流す方法も提案されて
いるが、細胞を上記金属板の孔3゜4にセットするのは
顕微鏡下での手作業であり、頬わしい作業である点では
同じ問題がある。
A method has also been proposed in which the cells of B are set separately in the holes of metal plates 3 and 4, and the fusing agent is flowed while the two metal plates are in contact. Setting them up is a manual process under a microscope, which is a tedious task.

以上細胞融合の現状の問題点を述べたが、これとは別に
細胞や血球等の微粒子を高速で流れる浮遊溶液と共に一
次元的に流し、粒子の計数もしくは粒子の性質や構造を
解明する装置に、セルカウンタ、セルソータ、サイトメ
トソ等がある。これらの装置の共通の問題点として本来
微粒子が適当な間隔を置いて流れるべき所、複数個の微
粒子が非常に接近して流れる場合がある。この時粒子数
の計数ミスや、粒子の性質や構造の解析に誤った結果を
導く。
The current problems with cell fusion have been described above, but apart from this, there is also a device that allows microparticles such as cells and blood cells to flow one-dimensionally with a high-speed floating solution to count the particles or elucidate the properties and structure of the particles. , cell counter, cell sorter, cytometso, etc. A common problem with these devices is that, although the particles should normally flow at appropriate intervals, a plurality of particles may flow very close to each other. At this time, the number of particles may be counted incorrectly, and the analysis of particle properties and structures may lead to incorrect results.

・〔発明の目的〕 本発明は上記事情に鑑みてなされたもので、その目的と
するところは、従来の細胞融合方式の問題点を解決し、
融合の高精度化、高速化、自動化を行い、また従来の微
粒子計数装置、フローサイメータ、セルソータ等の装置
の高精度化を達成する手段を提供することにある。
・[Objective of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to solve the problems of the conventional cell fusion method,
The object of the present invention is to provide a means for increasing the precision, speed, and automation of fusion, and for achieving high precision in conventional devices such as particle counters, flow cytometers, and cell sorters.

〔発明の概要〕[Summary of the invention]

本発明の要点は対象となる微粒子や細胞を1個ずつ独立
にその位置を制御することによって上述の目的を達成す
ることであり、その手段として誘電泳動力を使用する。
The main point of the present invention is to achieve the above-mentioned object by independently controlling the position of target particles and cells one by one, and dielectrophoretic force is used as a means for achieving this.

以下この原理を図面をもって説明する。This principle will be explained below with reference to the drawings.

第3図において容器31の底面、もしくは側面に2個の
電極32.33を粒子の直径以上の距離を隔てて配置す
る。第3図では電極を容器の内面に貼りつけであるが、
誘電泳動の場合、容器の外側に電極を貼りつけてもよい
、誘電泳動の基本原理については、たとえば青木他li
g=″最新電気泳動法″広用書店pP78〜79昭和5
3年に詳しい。微粒子34は溶液35の中で第3図に示
すような状態にあったとする。この状態で電極32゜3
3の間に電源36より電圧を印加する。電気力線は電極
に近づくにつれて密になるので、第3図では粒子は電極
32の方向へ移動し、電極32に吸着される。電極、容
器が精密に電極間の中心線を境にして左右対称であれば
、この境界線より左にある粒子は電極33へ移動し、右
にある粒子は電極32へ移動する。これが誘電泳動の基
本原理である。
In FIG. 3, two electrodes 32 and 33 are arranged on the bottom or side surface of a container 31 with a distance equal to or larger than the particle diameter. In Figure 3, the electrodes are pasted on the inner surface of the container.
In the case of dielectrophoresis, electrodes may be attached to the outside of the container.For the basic principles of dielectrophoresis, see, for example, Aoki et al.
g = "Latest Electrophoresis Method" General Bookstore pP78-79 Showa 5
I am familiar with the 3rd year. It is assumed that the fine particles 34 are in the state shown in FIG. 3 in the solution 35. In this state, the electrode is 32°3
3, a voltage is applied from the power supply 36. Since the electric lines of force become denser as they approach the electrode, the particles move toward the electrode 32 in FIG. 3 and are attracted to the electrode 32. If the electrodes and the container are precisely symmetrical with respect to the center line between the electrodes, particles to the left of this boundary line will move to the electrode 33, and particles to the right will move to the electrode 32. This is the basic principle of dielectrophoresis.

1個の粒子を左右に任意の位置だけ移動させ、そこで停
止させる機能は最も基本的なものである。
The most basic function is to move a single particle left and right to an arbitrary position and stop it there.

本発明では、第4図に示すように、電極41゜42.4
3,44の4個の電極を配置し、電極45、切り換えス
イッチ46を通して、まず電極41゜43の間に電圧を
印加すれば、前述した原理に従って、粒子は右に移動す
る。印加電圧を零にすれば、その位置で停止するとの原
理を利用する。
In the present invention, as shown in FIG.
If four electrodes 3 and 44 are arranged and a voltage is first applied between the electrodes 41 and 43 through the electrode 45 and the changeover switch 46, the particles will move to the right according to the principle described above. It uses the principle that if the applied voltage is reduced to zero, it will stop at that position.

逆に左に移動させるには、切り換えスイッチによって、
電極42.44の間に電圧を印加すれば′よい。印加電
圧を零にすれば、その位置で停止することは、右に移動
する場合と同様である。
Conversely, to move it to the left, use the selector switch.
A voltage may be applied between the electrodes 42 and 44. If the applied voltage is reduced to zero, stopping at that position is the same as when moving to the right.

以上のように誘電泳動を使って1個の粒子の一次元的位
置を正確に制御する手段の存在が示された。これが本発
明の基本的な考え方である。
As described above, it has been shown that there is a means to accurately control the one-dimensional position of a single particle using dielectrophoresis. This is the basic idea of the present invention.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第5図以下に説明する。 Embodiments of the present invention will be described below with reference to FIG. 5 and below.

はじめに第5図、第6図を使って第4図を応用すること
によって、微粒子の整列装置が可能であることを示す。
First, using FIGS. 5 and 6, it will be shown that a particle alignment device is possible by applying FIG. 4.

微粒子を適当な濃度の下で、細管に導けば一次元状に配
列させることが可能であり、細胞の間隔を電極間距離よ
り大きくとることができる。しかし、微粒子間の間隔は
ランダムである。
If fine particles are introduced into a capillary at an appropriate concentration, they can be arranged in a one-dimensional manner, and the distance between the cells can be made larger than the distance between the electrodes. However, the spacing between particles is random.

この状態の一例を第5図に示す。01〜C3は微粒子、
P1〜P7は電極である。
An example of this state is shown in FIG. 01 to C3 are fine particles,
P1 to P7 are electrodes.

いまPL−P3間に電圧を印加すれば、第6図に示すよ
うに01はPlへ移動し、C2はP3へ移動する。次に
P2−PS間に電圧を印加すれば、C2はP2へ、C3
はP5へ吸着され、第7図の状態となる6続いて図面は
省略するが、P4−Plに電圧を印加してC3をP4へ
、最後にP3−P6に電圧を印加すれば、C3はP3へ
移動し最終的にC1,C2,C3はPL、P2.P3に
吸着される。電極間距離を等間隔に配置させておけば、
結局微粒子を等間隔に整列させることができる。第5〜
7図では微粒子が3個の場合を示したが、3個以上の場
合も、細胞間隔が電極間距離以上であれば、整列が可能
である。
If a voltage is now applied between PL and P3, 01 moves to Pl and C2 moves to P3 as shown in FIG. Next, if a voltage is applied between P2 and PS, C2 goes to P2 and C3
is attracted to P5, resulting in the state shown in Fig. 7.6Next, although the drawing is omitted, if a voltage is applied to P4-Pl, C3 is transferred to P4, and finally a voltage is applied to P3-P6, C3 becomes Move to P3 and finally C1, C2, C3 are PL, P2. It is adsorbed by P3. If the distance between the electrodes is arranged at equal intervals,
After all, the fine particles can be arranged at equal intervals. 5th~
Although FIG. 7 shows the case where there are three microparticles, alignment is possible even when there are three or more microparticles as long as the cell interval is equal to or greater than the distance between the electrodes.

以上のように本実施例では配列した電極群の任意の2つ
を対として電圧を印加して細胞を整列させるもので、そ
の中心的動作は、配列した電極のうち隣接していない対
と選択して電圧を印加し、その対を順次移動して細胞を
順次送り出すものである。
As described above, in this example, cells are aligned by applying a voltage to any two of the arranged electrodes as a pair, and the main operation is to select a non-adjacent pair of the arranged electrodes. A voltage is applied to the cells, and the pairs are sequentially moved to sequentially send out the cells.

このような整列装置の応用分野として次の3分野が考え
られる。
The following three fields can be considered as application fields for such an alignment device.

(1)微粒子カウンタ 細胞や血球カウンタがこれに属する。整列装置を使えば
、2個以上の粒子が重なって入力することなくなるので
、計数精度が向上する。
(1) Particulate counter cells and blood cell counters belong to this category. If an alignment device is used, two or more particles will not be inputted overlapping each other, so counting accuracy will be improved.

(2)フローサイトメータ、セルソータフロー状態で粒
子の光学測定を行う上記装置はやはり対象粒子が2個以
上重なって流れてくることにより、測定誤差が生ずるの
で、これを防ぐことができる。
(2) Flow Cytometer, Cell Sorter The above-mentioned apparatus that performs optical measurement of particles in a flow state also causes measurement errors due to two or more target particles flowing in an overlapping manner, which can be prevented.

(3)細胞融合装置 細胞融合では、一対の素材細胞A、Bを空間的に独立さ
せた状態で接触させ、融合剤の投与、もしくは電気パル
スの印加によって雑種細胞ABのみが確実に生成する。
(3) Cell fusion device In cell fusion, a pair of material cells A and B are brought into contact in a spatially independent state, and only hybrid cells AB are reliably generated by administering a fusion agent or applying an electric pulse.

微粒子カウンタ、フローサイトメータ、セルソータに対
する整列装置の応用に関する装置形態は明らかであると
思われるので、具体的実施例として細胞融合装置を示す
Since the device form for application of the alignment device to particle counters, flow cytometers, and cell sorters is considered to be obvious, a cell fusion device will be shown as a specific example.

第8図において二種類の細胞A、BがそれぞれA貯蔵器
、B貯蔵器にあるとする。これから一対の細胞A、Bの
融合を実現させるものとする。管路81,82はA、B
の貯蔵器に結合し、細胞A。
In FIG. 8, it is assumed that two types of cells A and B are in the A reservoir and the B reservoir, respectively. Let us now realize the fusion of a pair of cells A and B. Pipe lines 81 and 82 are A and B
cell A.

Bを一次元的に整列させるものである。構成の詳細は第
5〜7図に例を示した通りである。電極の配置は図面上
では省略するが、等間隔に複数個配列しているものとす
る。
B is arranged one-dimensionally. The details of the configuration are as shown in examples in FIGS. 5-7. Although the arrangement of the electrodes is omitted in the drawing, it is assumed that a plurality of electrodes are arranged at equal intervals.

電極への電圧印加は切り換えスイッチ84゜85を通し
て電源85より行われる。管路にA。
Voltage is applied to the electrodes from a power source 85 through changeover switches 84 and 85. A in the conduit.

Bが整列し終った所で、電源をオフし、管路の水溶液を
右方向へ押し出せば、細胞A、Bが管路より次々に噴射
される。これを仕切り容器87でとれば、容器の中にA
、B一対の細胞を入れることができる。仕切り容器87
はA、Bの細胞の噴射にあわせて、−次元、もしくは二
次元的に移動させれば、A、Bの一対細胞の入った容器
が多数得られる。この容器の中にはあらかじめポリエチ
レングリコールなどの融合剤を入れておくか、もしくは
細胞の噴射と同時に融合剤貯蔵器86より融合剤を噴射
すればよい。
When cells B are lined up, the power is turned off and the aqueous solution in the tube is pushed out to the right, and cells A and B are injected one after another from the tube. If this is taken in the partition container 87, there will be A in the container.
, B can contain a pair of cells. Partition container 87
If the cells are moved in a -dimensional or two-dimensional manner in accordance with the injection of cells A and B, a large number of containers containing paired cells A and B can be obtained. A fusion agent such as polyethylene glycol may be placed in this container in advance, or the fusion agent may be injected from the fusion agent reservoir 86 simultaneously with the injection of cells.

次に電気融合による構成例を第9図に示す。管路91,
92に第5〜7図に示した原理に従って細胞Al、Bl
が電極93.94に位置しているものとする。この状態
で電極95.96の間に電圧を印加し、細胞B1は電極
96に移動する。次に電極97.98の間に電圧を印加
すると、細胞A1は電極98に移動する。管路99が細
胞径に対して適当な大きさであると、A1と81は細胞
の分極によって相互に接着する。
Next, FIG. 9 shows an example of a configuration using electric fusion. conduit 91,
In 92, cells Al and Bl were prepared according to the principles shown in Figures 5 to 7.
is located at the electrodes 93 and 94. In this state, a voltage is applied between the electrodes 95 and 96, and the cell B1 moves to the electrode 96. A voltage is then applied between electrodes 97 and 98, causing cell A1 to move to electrode 98. If the conduit 99 has an appropriate size relative to the cell diameter, A1 and 81 will adhere to each other due to cell polarization.

細胞Al、Blが接着した状態で、パルス発生器90よ
り直流パルスを電極96.98の間に印加すれば、電気
融合により細胞融合する。このような融合細胞を右方へ
抽出するには、第4〜7図で説明した方法を応用すれば
よい。電極93゜94へ次々に新しい細胞を送り込むに
は第5〜7図で説明した方法にすればよい。
When the cells Al and Bl are adhered to each other, when a DC pulse is applied between the electrodes 96 and 98 from the pulse generator 90, the cells are fused by electric fusion. In order to extract such fused cells to the right, the method explained in FIGS. 4 to 7 may be applied. In order to send new cells one after another to the electrodes 93 and 94, the method explained in FIGS. 5 to 7 may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微粒子の個別の移vJ停止、微粒子間
の距離を確実に制御して、微粒子の一次元状の流れを形
成できるので、微粒子カウンタやフローサイトメトリ、
セルソータの精度の向上が可能であり、また細胞融合で
雑種細胞のみを確実に生成できる効果がある。
According to the present invention, it is possible to form a one-dimensional flow of particles by reliably controlling the movement and stop of individual particles and the distance between particles, so that it is possible to form a one-dimensional flow of particles.
It is possible to improve the accuracy of the cell sorter, and it also has the effect of reliably generating only hybrid cells through cell fusion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の微粒子取扱方法を示す図、第2図は従来
の細胞融合装置の例を示す断面図、第3図は誘電泳動の
原理である細胞を電極に吸着する過程を示す断面図、第
4図、第5図、第6図、第7図は本発明の原理である細
胞の移動過程を示す断面図、第8図は本発明の実施例で
ある細胞融合装置のブロック図、第9図は細胞融合装置
の断面図である。 31・・・容器、41〜44・・・電極、45・・・電
源、46・・・スイッチ、87・・・仕切り容器、9o
・・・パル第1 口 ! 第20 ′X30 I 第4[2] 箪S口 草4 口 $ 71!1 茅宮口 手  続  補  正  書  (方 式)%式% 補正をする者 事件との関係   特 許 出 願 人名称(510)
    株式会社 日  立  製  作  所代  
理  人 居所〒100    東京都千代田区丸の内−丁目5番
1号株式会社 日 立 製 作 所 内 電  話 東 京212−1111(大代表)補正命令
の日付   昭和60年2月26日補正の内容 1、明細書第3頁3行r(DEP)が」の後に、「エフ
・イー・ビー・ニス・レターズ(F E B 5LET
TER8)第137巻、第1号(1982)第11〜1
3頁に掲載されたエレクトリック・フィールドインデユ
ースト・フュージョン・エレクトロハイドロ−リック・
プロシージャー・フォー・プロダクション・オブ・ヘテ
ロカリオン(Electric Field−Indu
ced Fusion: Electr。 −Hydraulic  Procedure  fo
r  Producjion  ofHetaroca
rion Ce1ls)と題する文献に」を挿入する。 2、同頁第8〜12行r (J 、 Vieken・・
=−・pρ11〜13)」を削除する。
Figure 1 is a diagram showing a conventional method for handling microparticles, Figure 2 is a cross-sectional view showing an example of a conventional cell fusion device, and Figure 3 is a cross-sectional view showing the process of adsorbing cells to an electrode, which is the principle of dielectrophoresis. , FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are cross-sectional views showing the cell migration process that is the principle of the present invention, and FIG. 8 is a block diagram of a cell fusion device that is an embodiment of the present invention. FIG. 9 is a cross-sectional view of the cell fusion device. 31... Container, 41-44... Electrode, 45... Power supply, 46... Switch, 87... Partition container, 9o
... Pal's first mouth! No. 20' )
Hitachi Manufacturing Co., Ltd.
Address: 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo 100 Hitachi Manufacturing Co., Ltd. Telephone: Tokyo 212-1111 (main representative) Date of amendment order: February 26, 1985 Contents of amendment 1 , page 3, line 3 r (DEP) of the specification," followed by "F E B 5LET
TER8) Volume 137, No. 1 (1982) No. 11-1
Electric Field Industrious Fusion Electro-Hydraulic published on page 3
Procedure for Production of Heterokaryon (Electric Field-Indu)
ced Fusion: Electr. -Hydraulic Procedure for
rProduction of Hetaroca
Insert ``into the document entitled ``Rion Cells''. 2, same page lines 8-12 r (J, Vieken...
=-・pρ11-13)" is deleted.

Claims (1)

【特許請求の範囲】[Claims] 1、液体の流入口と流出口とを有する容器と、前記容器
の側壁に複数に配置された電極と、前記電極に泳動電圧
を与えるための電圧発生手段と、前記電極の任意の対に
前記電圧発生手段の出力を接続するための切り換えスイ
ッチを有し、前記切り換えスイッチを選択して微粒子を
はさむ電極対に電圧を印加することによつて、微粒子を
移動させ、もつて前記微粒子の移動停止タイミング及び
微粒子間の間隔を制御する制御手段を有することを特徴
とする微粒子取扱い装置。
1. A container having a liquid inlet and an outlet, a plurality of electrodes arranged on the side wall of the container, voltage generating means for applying electrophoretic voltage to the electrodes, and a It has a changeover switch for connecting the output of the voltage generating means, and by selecting the changeover switch and applying a voltage to a pair of electrodes sandwiching the fine particles, the fine particles are moved, and the movement of the fine particles is stopped. A particle handling device comprising control means for controlling timing and spacing between particles.
JP59233172A 1984-11-07 1984-11-07 Cell handling equipment Expired - Lifetime JPH0658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233172A JPH0658B2 (en) 1984-11-07 1984-11-07 Cell handling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233172A JPH0658B2 (en) 1984-11-07 1984-11-07 Cell handling equipment

Publications (2)

Publication Number Publication Date
JPS61111680A true JPS61111680A (en) 1986-05-29
JPH0658B2 JPH0658B2 (en) 1994-01-05

Family

ID=16950855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233172A Expired - Lifetime JPH0658B2 (en) 1984-11-07 1984-11-07 Cell handling equipment

Country Status (1)

Country Link
JP (1) JPH0658B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370165A (en) * 1986-09-12 1988-03-30 Advance Co Ltd Fluid integrated element
JPS63269977A (en) * 1987-04-30 1988-11-08 Hitachi Ltd Cell fusion apparatus
JPH01247075A (en) * 1988-03-30 1989-10-02 Shimadzu Corp Cell fusion apparatus
JPH01285184A (en) * 1988-05-10 1989-11-16 Advance Co Ltd Treating device of fine particle
JPH04126081A (en) * 1990-06-20 1992-04-27 P C C Technol:Kk Cell fusion system and fused cell selection system
WO1999043782A1 (en) * 1998-02-27 1999-09-02 The Babraham Institute Electropermeabilisation method and apparatus
EP0968275A1 (en) * 1997-06-10 2000-01-05 Richard E. Walters Method and apparatus for treating materials with electrical fields having varying orientations
WO1999061594A3 (en) * 1998-05-22 2001-07-26 Evotec Biosystems Ag Method and device for permeating biological objects
DE10127247A1 (en) * 2001-06-05 2002-12-19 Eppendorf Ag Electrode chamber, for the electromanipulation of suspended biological cells, has an electrode carrier at the suspension container with paired electrodes at the flat carrier sides
EP1329502A2 (en) * 1997-06-10 2003-07-23 Cyto Pulse Sciences, Inc. Method and apparatus for treating materials with electrical fields having varying orientations
JP2008194029A (en) * 2007-01-19 2008-08-28 Tosoh Corp Cell fusion apparatus and cell fusion method using the same
US9260269B2 (en) 2011-11-22 2016-02-16 Lincoln Global, Inc. Wire retaining ring for a welding system
CN110465339A (en) * 2019-09-03 2019-11-19 浙江大学 A method of it flowing solid two-phase and transports middle particle positioning

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918500B (en) * 2018-07-14 2020-10-23 北京航空航天大学青岛研究院 SERS sorting method based on immunomagnetic bead labeling

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370165A (en) * 1986-09-12 1988-03-30 Advance Co Ltd Fluid integrated element
JPS63269977A (en) * 1987-04-30 1988-11-08 Hitachi Ltd Cell fusion apparatus
JPH01247075A (en) * 1988-03-30 1989-10-02 Shimadzu Corp Cell fusion apparatus
JPH01285184A (en) * 1988-05-10 1989-11-16 Advance Co Ltd Treating device of fine particle
JP2756677B2 (en) * 1988-05-10 1998-05-25 株式会社アドバンス Particle handling equipment
JPH04126081A (en) * 1990-06-20 1992-04-27 P C C Technol:Kk Cell fusion system and fused cell selection system
EP1329502A2 (en) * 1997-06-10 2003-07-23 Cyto Pulse Sciences, Inc. Method and apparatus for treating materials with electrical fields having varying orientations
EP0968275A1 (en) * 1997-06-10 2000-01-05 Richard E. Walters Method and apparatus for treating materials with electrical fields having varying orientations
EP0968275A4 (en) * 1997-06-10 2002-01-23 Cyto Pulse Sciences Inc Method and apparatus for treating materials with electrical fields having varying orientations
EP1329502A3 (en) * 1997-06-10 2004-02-11 Cyto Pulse Sciences, Inc. Method and apparatus for treating materials with electrical fields having varying orientations
WO1999043782A1 (en) * 1998-02-27 1999-09-02 The Babraham Institute Electropermeabilisation method and apparatus
WO1999061594A3 (en) * 1998-05-22 2001-07-26 Evotec Biosystems Ag Method and device for permeating biological objects
US6542778B1 (en) 1998-05-22 2003-04-01 Evotec Oai Ag. Process and device for permeation of biological objects
DE10127247A1 (en) * 2001-06-05 2002-12-19 Eppendorf Ag Electrode chamber, for the electromanipulation of suspended biological cells, has an electrode carrier at the suspension container with paired electrodes at the flat carrier sides
DE10127247B4 (en) * 2001-06-05 2006-12-07 Eppendorf Ag Apparatus and method for the electrical treatment of suspended biological particles
JP2008194029A (en) * 2007-01-19 2008-08-28 Tosoh Corp Cell fusion apparatus and cell fusion method using the same
US9260269B2 (en) 2011-11-22 2016-02-16 Lincoln Global, Inc. Wire retaining ring for a welding system
CN110465339A (en) * 2019-09-03 2019-11-19 浙江大学 A method of it flowing solid two-phase and transports middle particle positioning

Also Published As

Publication number Publication date
JPH0658B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPS61111680A (en) Apparatus for handling fine particle
US5968820A (en) Method for magnetically separating cells into fractionated flow streams
CN108387488B (en) Particulate matter detection device and detection method
Dura et al. Deformability-based microfluidic cell pairing and fusion
US6727451B1 (en) Method and device for manipulating microparticles in fluid flows
AU754781B2 (en) Method and apparatus for magnetically separating selected particles, particularly biological cells
JP4331591B2 (en) Method, element and apparatus for wet separation of magnetic fine particles
US20070207548A1 (en) Microflow System for Particle Separation and Analysis
JP2014174139A (en) Flow channel device, particle sorter, particle outflow method, and particle sorting method
JPS61293562A (en) Separator for magnetically removing magnetizable particle
JP2005515455A5 (en)
CN111699394B (en) Biological detection substrate, microfluidic chip, driving method and microfluidic detection assembly
CN206627336U (en) A kind of unicellular full-automatic continuous capture and collection device
CN110540933B (en) Circulating rare cell integrated microfluidic separation device and method
CN210945550U (en) Integrated micro-fluidic separation device for circulating rare cells
US7776357B1 (en) Vesicle-based method for collecting, manipulating, and chemically processing trace macromolecular species
CN102703373A (en) Method and system for separating image recognition cell of computer
JP2004113223A (en) Method for separating cell, apparatus for separating the cell and method for producing the apparatus for separating the cell
WO2007105784A1 (en) Dielectrophoresis device
US4971910A (en) Magnetic device for the fusion of cells
JPS60251874A (en) Apparatus for handling fine particle
JPS6158579A (en) Apparatus for handling fine particle
JPS63160574A (en) Apparatus for controlling fine particle
JPS60184387A (en) Method of handling of fine particle
JPS60251877A (en) Device for cell fusion