JPS61111449A - Thermogravimetric analysis method - Google Patents

Thermogravimetric analysis method

Info

Publication number
JPS61111449A
JPS61111449A JP23244784A JP23244784A JPS61111449A JP S61111449 A JPS61111449 A JP S61111449A JP 23244784 A JP23244784 A JP 23244784A JP 23244784 A JP23244784 A JP 23244784A JP S61111449 A JPS61111449 A JP S61111449A
Authority
JP
Japan
Prior art keywords
temp
rate
activation energy
ozawa
elevating rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23244784A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
健一 佐藤
Sadao Ida
井田 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23244784A priority Critical patent/JPS61111449A/en
Publication of JPS61111449A publication Critical patent/JPS61111449A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To calculate activation energy having interchangeability without variance even if measuring apparatus and measuring conditions vary by limiting a weight decrease in a prescribed range and calculating the activation energy by an Ozawa's method using the thermo-balance data in the linear range of a relatively low temp. elevating rate. CONSTITUTION:The Ozawa's calculation is executed with the low range of a weight decrease rate by using data on the temp. elevating rate only wethin the specified value range by which the activation energy DELTAE is calculated. More specifically, the temp. elevating rate is first set at 1 deg.C/min and the sample is heated. Each temp. T03 and time when the weight decrease rate attains 3%, 4%, 5% with the weight at the temp. T0 when the actual temp. elevating rate is constant as a reference are measured and the temp. elevating rate beta=dT/dt is calculated. The similar measurement is executed with the case of 2 deg.C/min and 5 deg.C/min stemp. elevating rate. The data is further subjected offline to processing and the Ozawa's calculation is executed, by which the activation energy DELTAE of the sample is calculated.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は王として電気絶縁材料の短時間耐熱性試験の之
めの熱重量分析方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates primarily to a thermogravimetric analysis method for short-term heat resistance testing of electrically insulating materials.

[発明の技術的背景とその問題点] 絶縁材料の耐熱性評価を短時間で行うための短時間耐熱
性試l@1:対する要望が高まり、その方法の一つとし
て熱重量分析による耐熱性評価方法が開発されて来てい
る。
[Technical background of the invention and its problems] Short-time heat resistance test 1@1 for evaluating the heat resistance of insulating materials in a short time: As the demand for this test increases, one of the methods is to evaluate heat resistance by thermogravimetric analysis. Evaluation methods have been developed.

熱重量分析方法として、熱天秤(以下TGと呼ぶ)を用
いて加熱による絶縁材料の重量低減の時−量的経過を測
定し、このTO曲線から劣化の活性化エネルギΔE [
Kcal /mol ]を算出する方法があるが、使用
するTGの種類や測定条件によってΔEの測定結果にば
らつきがあり、共通のデータとしての一義的なΔEを求
めることが困難であった。
As a thermogravimetric analysis method, a thermobalance (hereinafter referred to as TG) is used to measure the time-quantitative progress of weight reduction of the insulating material due to heating, and from this TO curve, the activation energy of deterioration ΔE [
Although there is a method for calculating ΔE], there are variations in the measurement results of ΔE depending on the type of TG used and measurement conditions, making it difficult to obtain a unique ΔE as common data.

ΔEの測定結果にばらつきの生ずる理由の1つとして、
TGにおける昇温速度の変動がある。
One of the reasons for the variation in the measurement results of ΔE is
There is a variation in the rate of temperature rise in the TG.

第1表〜第3表はそれぞれA社、B社、C社製(DTG
を用いてPVF (ポリビニールホルマール)を100
’から200°まで〜100°から600°までの各温
度範囲および1℃/分〜20℃/分の各昇温速度設定値
で加熱した場合の実際の昇温速度平均値(”C/分〕を
本発明者らが測定した結果を示したものであり、TGの
種類、加熱温度範囲および昇温速度設定値に応じて実際
の昇温速度にばらつきがあることが分った。なお試料名
の中の数字は昇温速度設定値C℃/分〕である。
Tables 1 to 3 are manufactured by Company A, Company B, and Company C (DTG), respectively.
100% of PVF (polyvinyl formal) using
Actual heating rate average value ("C/min ] is shown by the present inventors, and it was found that the actual heating rate varies depending on the type of TG, heating temperature range, and heating rate setting value. The number in the name is the temperature increase rate set value C°C/min].

第1表 第2表 第3表 本発明者らの検討結果によると、昇温速度の平均値がば
らつくのは、王として加熱初期における温度上昇の立上
りの遅れによるものである。
Table 1 Table 2 Table 3 According to the study results of the present inventors, the variation in the average temperature increase rate is mainly due to the delay in the rise of temperature at the initial stage of heating.

一方TG曲線からΔBを算出する方法として、複数のT
G曲線に数学的な処理を行う小沢の方法〔電気学会技術
報告(■部)134号(昭和57年8月)参照〕が推奨
されているが、この場合も測定条件に応じて解析結果に
ばらつきがある0第2図は計算に用いるTG曲線の数を
変えた場合の、また第3図は昇温速屁の異なるTG0曲
線本を用いた場合のΔB演算結果の一例を示したもので
、昇温速度の速いTG曲線を用いると、サンプルの反応
が昇温速度に追従できず、従ってΔEが見掛は上高く出
てくることが分るO 4−次第4図は重量減少率によってΔEの測定結果が変
化する状態をA社、B社、0社のTGを用いた場合につ
いて示しており、この場合もΔEの 1゜測定結果に全
体としてばらつきがある。
On the other hand, as a method of calculating ΔB from the TG curve, multiple T
Ozawa's method, which performs mathematical processing on the G curve [see Institute of Electrical Engineers of Japan Technical Report (Part ■) No. 134 (August 1986)] is recommended, but in this case too, the analysis results may vary depending on the measurement conditions. Figure 2 shows an example of the ΔB calculation results when the number of TG curves used in the calculation is changed, and Figure 3 shows an example of the ΔB calculation results when TG0 curves with different heating rates are used. , when a TG curve with a fast heating rate is used, the reaction of the sample cannot follow the heating rate, and therefore ΔE appears to be higher than expected. The state in which the measurement results of ΔE change is shown for the cases where TGs from Company A, Company B, and Company 0 are used, and in this case as well, there is overall variation in the 1° measurement results of ΔE.

その理由は、前述のようにTG自体の構造の差によって
昇温特性の非直線性、熱重量測定における温度検出特性
、加熱時の浮力効果などに差があるためである。
The reason for this is that, as described above, differences in the structure of the TG itself result in differences in nonlinearity of temperature rise characteristics, temperature detection characteristics in thermogravimetric measurements, buoyancy effects during heating, and the like.

従って測定条件を限定すれば、ΔEの測定結果のばらつ
きが低減される。
Therefore, by limiting the measurement conditions, variations in the measurement results of ΔE can be reduced.

第5図は昇温速度を昇温特性が直線になる温度範囲内に
限定して設定した場合のΔEの測定結果をA社%B社、
0社のTGについて示したものであり、この場合は重量
減少率5%以下で3社のToがはソ同じ結果を示してい
る。
Figure 5 shows the measurement results of ΔE when the temperature increase rate is limited to a temperature range where the temperature increase characteristic is linear.
This is shown for TG of 0 company, and in this case, the weight reduction rate is 5% or less, and the To of 3 companies shows the same results.

口発明の目的コ 本発明は、重量減少点を所定範囲に限定すると共に、比
較的低い昇温速度の直線範囲のTGデータを用いてΔB
を小沢の方法で算出し、これによって互換性のある一義
的なΔEが得られる合理的な熱重量分析方法を提供する
ことを目的としている0 [発明の概要コ 本発明は、耐熱性評価のための試料を加熱して熱重量分
析する熱天秤の測定データを低い加熱速度で且つ、加熱
速度の一定範囲で所定の低い重量減少率まで読取る測定
を繰返し、上記測定データを小沢の方法で演算処理して
活性化エネルギを算出し、これによって測定機器や測定
条件が異ってもばらつきのない互換性のある活性化エネ
ルギが算出できるようにした熱重量分析方法である。
Object of the Invention The present invention limits the weight loss point to a predetermined range, and uses TG data in a linear range with a relatively low heating rate to calculate ΔB.
[Summary of the Invention] The present invention aims to provide a rational thermogravimetric analysis method that calculates ΔE using Ozawa's method and thereby obtains a compatible and unique ΔE. Thermogravimetric analysis is carried out by heating a sample. The measurement data of a thermobalance is read at a low heating rate and within a certain range of heating rates until a predetermined low weight loss rate is reached. The above measurement data is calculated using Ozawa's method. This thermogravimetric analysis method calculates activation energy through processing, and thereby allows calculation of consistent and compatible activation energy even when measuring equipment and measurement conditions are different.

[発明の実施例コ 本発明の一実施例を第1図に示す。[Embodiments of the invention] An embodiment of the present invention is shown in FIG.

第1図において、1はTGであり、制御装置2で加熱お
よび測定が制御され、測定データは温度重量記録計3に
記録される。
In FIG. 1, 1 is a TG, heating and measurement are controlled by a control device 2, and measurement data is recorded in a temperature and weight recorder 3.

一方上記測定データはインタフェースプス4を介してマ
イコン5に入力されて演算処理され、演算結果はプロッ
タ7でプロットされると共にプリンタ8でタイプされる
On the other hand, the above measurement data is inputted to the microcomputer 5 via the interface 4 and subjected to calculation processing, and the calculation results are plotted on the plotter 7 and typed on the printer 8.

6はマイコン5の動作を制御するタイマである。6 is a timer that controls the operation of the microcomputer 5.

なお通常マイコン51dTG1の測定データをオフライ
ンで処理する。
Note that the measurement data of the microcomputer 51dTG1 is usually processed offline.

本発明は前述した問題を考慮し、昇温速度が一定値の範
囲のみのデータを用いて、重量減少率の低い範囲(例え
ば3%、4%、5チ)について小沢の演算を行いΔEを
算出する。 − なお演算の精度全土げるために、各測定値を3桁以上の
ディジタル値として読取っている。
In consideration of the above-mentioned problem, the present invention uses data only in the range where the heating rate is a constant value, and performs Ozawa's calculation for the range where the weight loss rate is low (for example, 3%, 4%, 5 cm) to calculate ΔE. calculate. - In order to increase the accuracy of calculations, each measurement value is read as a digital value of 3 or more digits.

すなわち先ず温度上昇率を1℃/分に設定して試料を加
熱する。
That is, first, the sample is heated by setting the temperature increase rate to 1° C./min.

実際の温度上昇率が一定になったときの温度T。Temperature T when the actual temperature increase rate becomes constant.

における重量を基準として重量減少率が3%、4チ、5
チになったときの各温度To8および時間を測定して昇
温速度β±7こを計算する。
The weight reduction rate is 3% based on the weight of
The temperature increase rate β±7 is calculated by measuring each temperature To8 and the time when the temperature becomes high.

同様の測定を温度上昇率2℃/分、5℃/分の場合につ
いて行う。
Similar measurements are performed for temperature increase rates of 2° C./min and 5° C./min.

さらに上記のデータなオフラインで処理して小沢の演算
を行い、資料の活性化エネルギΔEを算出する。
Further, the above data is processed off-line and Ozawa's calculation is performed to calculate the activation energy ΔE of the material.

すなわち各昇温速度に対するTG曲線を求め。That is, find the TG curve for each heating rate.

これを昇温速度の常用対数をY軸、絶対温度の逆! 紋
をX軸としたグラフ上にプロットすれば1本の直線とな
るので、この直線の勾配を最小自乗法で求め、その勾配
αから下式を用いて活性化エネルギΔEを算出する。
This is the common logarithm of the heating rate on the Y axis, the opposite of absolute temperature! If the pattern is plotted on a graph with the X axis as a straight line, the slope of this straight line is determined by the method of least squares, and the activation energy ΔE is calculated from the slope α using the following formula.

1、987 ΔE=□× α 0、4567 「発明の効果] 以上説明したように本発明によれば、絶縁材料を加熱す
る熱天秤の測定データを小沢の方法で演算処理して絶縁
材料の活性化エネルギを算出する耐熱性評価用の熱重量
分析方法において、熱天秤で加熱したときの測定データ
を加熱速度が比較的小さく且つ安定したときのデータを
重量減少率の比較的小さい範囲で求めて小沢の演算の測
定データとして用いているので、熱天秤の機種や測定条
件によるばらつきがなくなり、互換性のある一義的な活
性化エネルギヲ算出することが可能となる0
1,987 ΔE=□×α 0,4567 "Effects of the Invention" As explained above, according to the present invention, the activity of the insulating material is calculated by processing the measurement data of the thermobalance that heats the insulating material using Ozawa's method. In the thermogravimetric analysis method for heat resistance evaluation that calculates the chemical energy, the measurement data when heated with a thermobalance is obtained when the heating rate is relatively low and stable, and the data is obtained within a relatively small range of weight loss rate. Since it is used as the measurement data for Ozawa's calculation, there is no variation due to the thermobalance model or measurement conditions, and it is possible to calculate a compatible and unique activation energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す測定機器構成図、第2
図〜第5図はそれぞれ熱重量分析における従来の問題点
を説明するための測定データを示すグラフである。 1・・・熱天秤(TG)   2・・・制御装置3・・
・温度Nik記録計 4・・・インタフェースプス5・
・・マイコン    6・・・タイマ7・・・プロッタ
    8・・・プリンタ代理人 弁理士 猪 股 祥
 晃(はが1名)第  1  図 第  2  図 で) JLf八ケへ勺 第  3  図 主を滅ヴ(に) 第  4  図 魚量滅+P(1) 第  5  図 止−を域ゲ(χン
Fig. 1 is a configuration diagram of measuring equipment showing one embodiment of the present invention;
5 to 5 are graphs showing measurement data for explaining conventional problems in thermogravimetric analysis. 1...Thermobalance (TG) 2...Control device 3...
・Temperature Nik recorder 4...Interface PS5・
...Microcomputer 6...Timer 7...Plotter 8...Printer agent Patent attorney Yoshiaki Inomata (1 person) (see Figure 1 and Figure 2) Figure 4 Fish mass extinction + P (1) Figure 5 Stop - area game (χ n

Claims (1)

【特許請求の範囲】[Claims] 耐熱性評価のための試料を加熱して熱重量分析する熱天
秤の測定データを低い加熱速度で且つ加熱速度の一定範
囲で所定の低い重量減少率まで読取る測定を繰返し、上
記測定データを小沢の方法で演算処理して活性化エネル
ギを算出することを特徴とする熱重量分析方法。
The measurement data of a thermobalance for heating a sample for heat resistance evaluation and thermogravimetric analysis is read repeatedly at a low heating rate and within a certain range of heating rates until a predetermined low weight loss rate is reached. A thermogravimetric analysis method characterized by calculating activation energy by performing calculation processing using a method.
JP23244784A 1984-11-06 1984-11-06 Thermogravimetric analysis method Pending JPS61111449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23244784A JPS61111449A (en) 1984-11-06 1984-11-06 Thermogravimetric analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23244784A JPS61111449A (en) 1984-11-06 1984-11-06 Thermogravimetric analysis method

Publications (1)

Publication Number Publication Date
JPS61111449A true JPS61111449A (en) 1986-05-29

Family

ID=16939419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23244784A Pending JPS61111449A (en) 1984-11-06 1984-11-06 Thermogravimetric analysis method

Country Status (1)

Country Link
JP (1) JPS61111449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018155A (en) * 2016-08-16 2016-10-12 王宏铭 System for evaluating nickel catalyst inactivation performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018155A (en) * 2016-08-16 2016-10-12 王宏铭 System for evaluating nickel catalyst inactivation performance

Similar Documents

Publication Publication Date Title
JP2758458B2 (en) Measuring method and sensor for measuring relative concentration of gas or vapor
Feldman The electrical conductivity and isothermal hall effect in cuprous oxide
JPS61111449A (en) Thermogravimetric analysis method
US3181365A (en) Thermal noise investigation
Eckfeldt et al. Measurement of and Effect of Temperature on Electrical Resistance of Glass Electrodes
US4156841A (en) Contact fingers for a testing apparatus for surface insulation resistivity
JPH11325839A (en) Measuring method and equipment of oxide film thickness on steel plate surface
Funt Dielectric dispersion in solid polyvinyl butyral
US3333185A (en) Electronic device for extrapolating exponential signals
Xumo et al. A new high-temperature platinum resistance thermometer
JPH08136361A (en) Soaking block of apparatus for comparing/calibrating temperature-measuring resistance body and method for comparing/calibrating temperature-measuring resistance body
Shin et al. Precision isoperibol calorimeter with automatic data acquisition and processing
Day Recent Laboratory Evaluation of High-Temperature Strain Gages to 900 F
SU1089048A1 (en) Method for controlling thermal conditions of graphitization process
US3426643A (en) Electro-monitoring method and apparatus
JPS5922897B2 (en) Grain dryer control device
JPS58213261A (en) Measuring device for energy
Shigorin et al. Application of comparator type MKS-1 for precision temperature measurements
Pavese et al. Thermal drift correction and precision evaluation by data processing of resistance thermometer comparisons
SU1191757A1 (en) Method of determining error of thermometers with thermoelectric temperature transducers
Birks et al. Thermobalance protection from corrosive atmospheres
JP2750720B2 (en) Temperature detector deterioration correction device
Gupta et al. Control of Carburizing Processes With Newly Developed Furnace Atmosphere Analyzer
Daichik et al. The increase in strain-gage measurement reliability under exteme conditions: Paper studies the kinetics of strain-gage variations under the prolonged influence of high temperatures and radiation in order to determine corrections and estimates of measurement errors that vary in time
Wooden et al. Precision X-Ray Stress Analysis of Uranium and Zirconium