JPS61111366A - Production of ultramarine composition - Google Patents

Production of ultramarine composition

Info

Publication number
JPS61111366A
JPS61111366A JP23349984A JP23349984A JPS61111366A JP S61111366 A JPS61111366 A JP S61111366A JP 23349984 A JP23349984 A JP 23349984A JP 23349984 A JP23349984 A JP 23349984A JP S61111366 A JPS61111366 A JP S61111366A
Authority
JP
Japan
Prior art keywords
ultramarine
silica
silica sol
acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23349984A
Other languages
Japanese (ja)
Inventor
Hiroshi Higuchi
日口 洋
Kazuo Morita
森田 計雄
Moriyuki Yamashita
山下 盛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI KASEI KOGYO KK
Original Assignee
DAIICHI KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI KASEI KOGYO KK filed Critical DAIICHI KASEI KOGYO KK
Priority to JP23349984A priority Critical patent/JPS61111366A/en
Publication of JPS61111366A publication Critical patent/JPS61111366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To produce an ultramarine compsn. which does not cause fading, by bringing active silica gel into contact with ultramarine particles to deposit silica on the surfaces of the ultramarine particles. CONSTITUTION:One equivalent of an alkali metal silicate (e.g. sodium silicate) and 0.2-0.4 equivalents of a 1-10% aq. soln. of an acid (e.g. sulfuric acid) are fed through feeding means 9, 10 to a subreactor 5. The pH of the mixture is adjusted to 7-10 and the mixture is reacted at 60-100 deg.C to form active silica sol The active silica sol is fed to a main reactor 1 which contains a slurry having a pH of 9-11 and contg. 5-30wt% ultramarine particles having an average particle size of 0.2-20mu suspended therein, in such as proportion as to give 5-25pts.wt. silica sol per 100pts.wt. ultramarine, and ultramarine is brought into contact with silica sol at 90-95 deg.C for 20sec or shorter to deposit silica on the surfaces of ultramarine particles. The reaction mixture is neutralized, and the product is recovered by filtration, washed with water and dried by heating at 100 deg.C or above.

Description

【発明の詳細な説明】 技術分野 本発明は耐薬品性、耐候性、耐熱性等の優れた品質特性
を有する改良された不定形ンリヵ被覆群青組成物の製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a method for producing an improved amorphous porphyry coated ultramarine composition having excellent quality properties such as chemical resistance, weather resistance, heat resistance, etc.

従来技術 群青は独特の鮮明な色相を持つ無公害の無機顔料で、耐
光性、耐熱性に優れた青色無機顔料として合成樹脂、塗
料、印刷インキ、セメント、洗剤等広範な用途を持って
いる。しかし、通常の群青は耐酸性が不十分で常温でp
i−15程度の弱酸性においてら分解褪色する欠点が有
り又経時変化的に酸性化するプラスチックス(例えば塩
化ビニル樹脂)に着色する場合も経時的に褪色白色化す
る。
Conventional technology Ultramarine is a non-polluting inorganic pigment with a unique and vivid hue.As a blue inorganic pigment with excellent light resistance and heat resistance, it has a wide range of uses such as synthetic resins, paints, printing inks, cement, and detergents. However, ordinary ultramarine blue has insufficient acid resistance and has a p
It has the disadvantage that it decomposes and fades under weak acidity of about i-15, and when it is used to color plastics that become acidic over time (for example, vinyl chloride resin), it also fades and becomes white over time.

また、耐アルカリ性に優れているとは云いながらセメン
トアルカリには弱<Caイオンと置換反応を起して褪色
白色化する場合が有るため用途が限定されるきらいが有
る。
Furthermore, although cement alkali has excellent alkali resistance, it tends to have limited uses because it may cause a substitution reaction with weak Ca ions, resulting in fading and whitening.

従って現状においては群青顔料の青色力の向上、耐酸性
及び耐セメノドアルカリ性の改善は重要な課題とされて
いるか後2者の特性改善には不定形シリカの沈積被覆技
術が有効である。無機顔料粒子の表面に不定形シリカを
沈積被覆して各種耐性を改善する技術は米国特許2.8
 ill 5,366号明細書に端を発している。
Therefore, at present, improving the blue power, acid resistance, and cemento-alkali resistance of ultramarine pigments are considered important issues, and the deposition coating technology of amorphous silica is effective for improving the latter two properties. U.S. Patent No. 2.8 discloses a technology for improving various resistances by depositing amorphous silica on the surface of inorganic pigment particles.
It originates from Ill No. 5,366.

この特許では顔料粒子に不定形シリカを沈積被覆させる
技術として専ら珪酸ソーダ水溶液と無機酸との反応によ
る不定形シリカに依存している。
This patent relies exclusively on amorphous silica obtained by reacting an aqueous sodium silicate solution with an inorganic acid as a technique for depositing and coating pigment particles with amorphous silica.

しかしこれを群青に適用する場合、前述の如く耐酸性が
非常に之しい為、顔料が不定形シリカで被覆される迄に
無機酸のアタックを受けて褪色白色化する。
However, when this is applied to ultramarine blue, the acid resistance is extremely poor as described above, and the pigment will be attacked by inorganic acids and fade and turn white before it is coated with amorphous silica.

この為に群青に対する改良技術として弱酸性剤と珪酸ソ
ーダ水溶液との組合わせが考えられる。
For this reason, a combination of a weak acidic agent and an aqueous sodium silicate solution may be considered as an improvement technique for ultramarine blue.

例えば、米国特許3.437.502号明細書にお1 
               けるCOf水溶液の適
用や特公昭55−34184号公報(東邦顔料、日本化
学)における水溶性珪酸塩組 報(東邦顔料、日本化学)にお:士ろ酸性ガスの適用、
特開昭55−115.1!59号公報(東邦顔料、日本
化学)におけろ無機酸アルカリ金属塩、アンモニウム塩
の適用等が知られている。
For example, in U.S. Pat. No. 3.437.502,
Application of COf aqueous solution to water-soluble silicate composition (Toho Pigment, Nippon Kagaku) in Japanese Patent Publication No. 55-34184 (Toho Pigment, Nippon Kagaku): Application of Shiro acidic gas;
The application of inorganic acid alkali metal salts and ammonium salts is known in JP-A-55-115.1!59 (Toho Pigment, Nihon Kagaku).

上述の改良技術によれば群青粒子表面に不定形シリカを
沈積被覆させる場合に群青粒子自体を損う事なく目的を
達成する事が出来る。
According to the above-mentioned improved technique, the purpose can be achieved without damaging the ultramarine particles themselves when amorphous silica is deposited and coated on the surface of the ultramarine particles.

しかし前述の技術においては、酸性剤として使用する水
溶性有機酸、燐酸、アンモニウム塩等は該技術の工業的
規模での実施において排水処理面で大きな問題を残す可
能性か強く、また経済性からら資料とは考え難い。CO
vガスの如き酸性ガスを使用する場合には珪酸アルカリ
との反応が遅く、かつ反応制御が繁雑となるきらいがあ
る。
However, in the above-mentioned technology, the water-soluble organic acids, phosphoric acid, ammonium salts, etc. used as acidic agents have the strong possibility of leaving a big problem in terms of wastewater treatment when implementing the technology on an industrial scale. It is difficult to think of this as a source material. C.O.
When using an acidic gas such as v-gas, the reaction with the alkali silicate tends to be slow and reaction control becomes complicated.

従って、活性活性シリカゾル形成反応においては、無機
酸を用いることが最も好ましいが、従来課業されていた
無機酸を用いる方法は、群青スラリー中に珪酸塩と無機
酸を直接伸性し、群青スラリー中で活性活性シリカゾル
を形成させていたため、部分的に群青スラリーと無機酸
が接触し、前述したごとく群青の褪色を生じ、工業的に
は殆んど実用化されるに到っていない。
Therefore, in the active silica sol forming reaction, it is most preferable to use an inorganic acid, but the conventional method of using an inorganic acid involves directly stretching a silicate and an inorganic acid in an ultramarine slurry. Since an active silica sol was formed in this process, the ultramarine blue slurry and the inorganic acid partially came into contact with each other, causing the ultramarine blue to discolor as described above, and it has hardly been put into practical use industrially.

発明か解決しようとする問題点 本発明は公害上問題が少なく、かつ反応が比較的速く起
り、生産効率的にも好ましい無機酸を用いて、褪色の無
いシリカ被覆群青組成物を得る方法を提供する。
Problems to be Solved by the Invention The present invention provides a method for obtaining a silica-coated ultramarine composition that does not fade by using an inorganic acid that causes few pollution problems, undergoes a reaction relatively quickly, and is favorable in terms of production efficiency. do.

問題点を解決するための手段 本発明は、珪酸塩に酸を反応させる際の活性シリカゾル
生成反応が比較的緩慢であり、生成した活性シリカゾル
の活性が比較的長時間維持されることに注目し、活性シ
リカゾル形成反応と被覆形成反応とを別々に行ない上記
無機酸を用いる方法の問題を解決したものである。
Means for Solving the Problems The present invention focuses on the fact that the reaction of producing activated silica sol when silicate is reacted with acid is relatively slow, and the activity of the produced activated silica sol is maintained for a relatively long time. In this method, the activated silica sol forming reaction and the coating forming reaction are carried out separately, thereby solving the problems of the above method using an inorganic acid.

即ち本発明は、珪酸アルカリと酸とを予め水性媒体中で
反応させ、次いて生成する活性シリカゾルを群青粒子と
接触させ、群青粒子表面にシリカを沈着させることを特
徴とするシリカ被覆群青組成物の製造法に関する。
That is, the present invention provides a silica-coated ultramarine composition characterized in that an alkali silicate and an acid are reacted in advance in an aqueous medium, and then the generated active silica sol is brought into contact with ultramarine particles to deposit silica on the surfaces of the ultramarine particles. Concerning the manufacturing method.

本発明においてシリカ被覆される群青粒子とは、平均粒
径として02〜20μ、好ましくは05〜5μの範囲の
ものが適当てあく)、珪酸塩とは水溶性珪酸塩、一般的
には珪酸ソーダ水溶液が適当である。
In the present invention, the ultramarine particles to be coated with silica have an average particle diameter of 02 to 20μ, preferably 05 to 5μ), and silicate is a water-soluble silicate, generally sodium silicate. Aqueous solutions are suitable.

これらの珪酸塩は酸と反応したとき安定な活性活性シリ
カゾルが得られるよう固形分換算で2〜15重儀%とす
るのが好ましい。
The content of these silicates is preferably 2 to 15% in terms of solid content so that a stable active silica sol can be obtained when reacted with an acid.

使用する酸は有機酸、無機酸いずれでしよいが。The acid used may be either an organic acid or an inorganic acid.

発明の目的にとって無機酸を用いるのが特に適している
。無機酸としては、硫酸、塩酸、硝酸、りん酸、スルフ
ァミン酸、亜硫酸等が例示されるか、硫酸が特に好まし
い。使用する酸の濃度は1〜10%、特に2〜5%が好
ましい。
It is particularly suitable for the purposes of the invention to use inorganic acids. Examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, sulfamic acid, and sulfurous acid, with sulfuric acid being particularly preferred. The concentration of the acid used is preferably 1 to 10%, particularly 2 to 5%.

珪酸塩と酸との当量比は前者1当量に対し、後者02〜
0.4当量が適当てめろ。生成した活性シリカゾルpH
が7〜lOの範囲となるよう選定するのが好ましい。生
成活性シリカゾルのpl−1か5より低いと群青粒子自
体が分解褪色するので好ましくない。
The equivalent ratio of silicate and acid is 1 equivalent of the former to 02~02 of the latter.
Guess 0.4 equivalent. The pH of the generated activated silica sol
It is preferable to select it so that it is in the range of 7 to 1O. If the active silica sol is lower than pl-1 or 5, the ultramarine blue particles themselves will decompose and discolor, which is not preferable.

珪酸塩と酸とは、上記当量比を保ちながら反応槽中に伸
性するのか&Fましい(定量比例添加法)。
Is it possible for the silicate and acid to extend into the reaction tank while maintaining the above equivalent ratio (quantitative proportional addition method)?

また、反応当初において珪酸塩1当量に対し、硫酸を0
2〜0.4当量となる濃度および速度で加え、比較的高
いpH域で活性シリカゾルを生成仕しめ、これと群青粒
子を接触させながらシリカ沈積被覆を行わけ、7%以上
の被覆量を過ぎてからは徐々に硫酸添加速度を速めて反
応させることら可能である。この方法では、当初高いp
al域、即ち、群青が安定な条件下で群青表面にノリカ
披膜を形成さけ、耐酸性を付与しておき、その後、酸添
加速度を速めて酸と群青の局部的接触が生じても群青が
もはや分解することがなく反応を進めることができ、前
述の方法に比べて反応時間の短縮に有効な手段である。
In addition, at the beginning of the reaction, 0 sulfuric acid was added to 1 equivalent of silicate.
Adding at a concentration and rate of 2 to 0.4 equivalents, active silica sol is generated in a relatively high pH range, and silica deposition coating is carried out while contacting this with ultramarine particles, until a coating amount of 7% or more is reached. After that, it is possible to gradually increase the rate of addition of sulfuric acid to cause the reaction. In this method, initially high p
In the al region, that is, under conditions where ultramarine is stable, the formation of nolica film on the surface of ultramarine is avoided and acid resistance is imparted, and then even if the acid addition rate is increased and local contact between acid and ultramarine occurs, ultramarine remains. The reaction can proceed without any further decomposition, and is an effective means for shortening the reaction time compared to the above-mentioned methods.

珪酸塩と酸の反応温度は60〜100℃、特に70〜9
5℃に維持するのが好ましく、60℃より温度が低いと
、生成するシリカゾルの活性度が低下する。また95℃
より温度が高いと、生成し1            
 た活性シリカゾルの活性が短時間で消失するため、群
青との接触を迅速に行なわねばならず、工程管理上好ま
しくない。群青との接触前に活性シリカゾルの活性か失
なわれると、群青表面への均一なシリカ被覆が形成され
ず、耐酸性が不十分となる池、群青中にシリカ粉末が不
純物として混入することとなり、群青品質が低下する。
The reaction temperature of silicate and acid is 60~100℃, especially 70~9
It is preferable to maintain the temperature at 5°C; if the temperature is lower than 60°C, the activity of the produced silica sol will decrease. Also 95℃
At higher temperatures, 1
Since the activity of the activated silica sol disappears in a short time, contact with the ultramarine blue must be carried out quickly, which is unfavorable in terms of process control. If the activity of the activated silica sol is lost before contact with the ultramarine blue, a uniform silica coating will not be formed on the surface of the ultramarine, resulting in insufficient acid resistance, and silica powder will be mixed into the ultramarine as an impurity. , the ultramarine quality decreases.

群青粒子と活性シリカゾルとの接触は、温度、pH1撹
拌条件等にも依存するか、珪酸塩と酸との接触後、好ま
しくは、20秒以内、より好ましくは、10秒以内に行
なうようにする。20秒より遅いとシリカゾルのコロイ
ド粒子か成長し、均一な被覆か肘成し難くなり、被覆厚
さの割に形成されたシリカ被覆群青の耐酸性が不十分と
なる。
The contact between the ultramarine particles and the activated silica sol depends on the temperature, pH 1 stirring conditions, etc., or is preferably carried out within 20 seconds, more preferably within 10 seconds after the contact between the silicate and the acid. . If the time is longer than 20 seconds, colloidal particles of silica sol will grow, making it difficult to form a uniform coating, and the acid resistance of the silica-coated ultramarine formed will be insufficient considering the thickness of the coating.

接触が更に遅れると、シリカゾルの活性か低下する。If the contact is delayed further, the activity of the silica sol will decrease.

群青と活性シリカゾルの反応は水性媒体中で行なうのが
好ましく、群青を分散した水性媒体のpト菫は9〜II
、特に9.5〜10.0に保つのか好ましく、必要なら
ば活性シリカゾルのp)lら接触前にpH9,5〜10
.0に調整してらよい。
The reaction between ultramarine blue and activated silica sol is preferably carried out in an aqueous medium, and the aqueous medium in which ultramarine blue is dispersed has a pto violet of 9 to II.
In particular, it is preferable to maintain the pH at 9.5 to 10.0, and if necessary, adjust the pH to 9.5 to 10 before contacting the activated silica sol.
.. You can adjust it to 0.

温度は90〜95℃以上とするのかよい。90℃より低
いと、活性シリカの加水分解による不活性化が遅くなり
シリカの群青表面I・の沈着が不十分となると共に生産
性が低下する。
The temperature may be 90 to 95°C or higher. If the temperature is lower than 90°C, the inactivation by hydrolysis of the activated silica is delayed, and the ultramarine surface of the silica I. is insufficiently deposited, and the productivity is reduced.

群青とシリカゾルとの接触を90℃より低い水性媒体中
で行ない、次いで100℃以上に加熱乾燥することによ
り群青表面に付着したシリカゾルを不活性化してもよい
The silica sol adhering to the ultramarine surface may be inactivated by contacting the ultramarine blue with the silica sol in an aqueous medium at a temperature lower than 90°C, and then heating and drying at 100°C or higher.

群青水性スラリーの濃度は5〜30重量%、より好まし
くは、10〜15重量%であり、シリカゾルの量は群青
100重量部に対して5〜25重量部、より好ましくは
、10〜15重量部が好ましい。
The concentration of the ultramarine aqueous slurry is 5 to 30% by weight, more preferably 10 to 15% by weight, and the amount of silica sol is 5 to 25 parts by weight, more preferably 10 to 15 parts by weight based on 100 parts by weight of ultramarine blue. is preferred.

得られたシリカ被覆群青スラリーは中和後、)濾過、水
洗、および乾燥ケる。
The resulting silica-coated ultramarine slurry is neutralized, then filtered, washed with water, and dried.

発明の効果 本発明によれば、酸とi、て、無機酸を使用し得るので
経済性が高く、まfこ排水処理し易い。また無機の強酸
を用いてら群青の褪色を生しない。得られた群青組成物
は、耐酸性に優れ、例えば5%塩酸に1時間浸漬しても
色相に変化を生じない群青を得ることができろ。さらに
、後述の実施例にみられる塗板耐酸試験においてら良好
な耐酸性が得られる。他方、該処理により、セメントア
ルカリに対しても良好な耐性が得られる。
Effects of the Invention According to the present invention, since an inorganic acid can be used, it is highly economical and easy to treat wastewater. Also, using strong inorganic acids will not cause the ultramarine blue to fade. The resulting ultramarine blue composition has excellent acid resistance, and can provide ultramarine blue that does not change in hue even when immersed in 5% hydrochloric acid for 1 hour, for example. Furthermore, good acid resistance can be obtained in the coated plate acid resistance test shown in Examples below. On the other hand, the treatment also provides good resistance to cement alkalis.

哀1鯉 第1図に示すごとき装置を使用した。Ai 1 carp An apparatus as shown in FIG. 1 was used.

主反応槽(1)はノヤケット付であり、高速撹拌機(2
)を備えている。この撹拌機はデシルバータイプであり
、インペラー径は反応槽内径の25〜30%であり、周
速10m/s以上で運転した。
The main reaction tank (1) is equipped with a jacket and a high-speed stirrer (2
). This stirrer was a DeSilver type, the impeller diameter was 25 to 30% of the inner diameter of the reaction tank, and it was operated at a circumferential speed of 10 m/s or more.

主反応槽はさらにpHメーター(3)と温度計(4)を
備えている。
The main reactor is further equipped with a pH meter (3) and a thermometer (4).

副反応漕(5)は高速撹拌機(6)とpHメーター(7
)、温度計(8)、珪酸アルカリ水溶液供給手段(9)
および酸供給手段(lO)を備えている。高速撹拌!!
!(6)として、本実施例ではデシルバータイプを用い
たが超音波ホーンを用いてらよい。
The side reaction tank (5) is equipped with a high-speed stirrer (6) and a pH meter (7).
), thermometer (8), alkali silicate aqueous solution supply means (9)
and acid supply means (IO). High speed stirring! !
! As for (6), although a desilver type was used in this embodiment, an ultrasonic horn may also be used.

珪酸アルカリ水溶液供給手段および酸供給手段は定量ポ
ンプを備えており、これによって混合液のpHM7〜1
0の範囲にあるよう両液の供給量をコントロール4゛ろ
The alkali silicate aqueous solution supply means and the acid supply means are equipped with metering pumps, which control the pH of the mixture from 7 to 1.
Control the supply amount of both liquids so that it is within the 0 range.

上述の装置において主反応槽内に群青を乾燥品として5
00gttl当量のプレスケーキを採取し、これに水及
び分散剤と12て珪酸ソーダ水溶液を加えて総容151
.としp)(を95〜100に調整した。この群青水性
スラリーを最初30分間高速撹拌し充分1次粒子に近い
状聾に解砕した。次いで90〜95℃に昇温した。
In the above-mentioned apparatus, ultramarine blue was added as a dry product in the main reaction tank.
00 gttl equivalent of press cake was taken, and water, a dispersant, and an aqueous sodium silicate solution were added to it to make a total volume of 151 gttl.
.. The ultramarine aqueous slurry was first stirred at high speed for 30 minutes to sufficiently crush it into particles close to primary particles.Then, the temperature was raised to 90-95°C.

主反応槽の条件を保ちながら、副反応槽の高速混合装置
を運転し、珪酸ソーダ供給ノズルより10%珪酸ソーダ
溶液(492%SiOy)1220g(StO*60g
相当、群青に対して12%コーティング)を毎分5.1
gの割合で供給し、池方惜機酸供給ノズルより2.5%
硫酸水溶液1227gを毎分4.3gの割合で比例供給
した。この際、副反応槽より流出する活性シリカゾルの
pHは7以上、好ましくは9以上となるよう硫酸の供給
量を調節した。
While maintaining the conditions of the main reaction tank, the high-speed mixing device in the side reaction tank was operated, and 1220 g (StO*60 g) of 10% sodium silicate solution (492% SiOy) was supplied from the sodium silicate supply nozzle.
equivalent, 12% coating for ultramarine) at 5.1 per minute
2.5% from the Ikekata acid supply nozzle.
1227 g of sulfuric acid aqueous solution was proportionally fed at a rate of 4.3 g/min. At this time, the amount of sulfuric acid supplied was adjusted so that the pH of the activated silica sol flowing out from the side reaction tank was 7 or higher, preferably 9 or higher.

1゛                 副反応槽内で
のシリカゾルの滞留は1〜20秒、好ましくは3〜10
秒が望ましい。滞留時間は副反応槽底部のオリフィス洋
により調節しh 、。
1゛ Retention of silica sol in the side reaction tank is 1 to 20 seconds, preferably 3 to 10 seconds.
Seconds are preferred. The residence time is controlled by an orifice at the bottom of the side reaction tank.

シリカゾルを主反応槽へ流入させる間、群青水性スラリ
ーはpH9,5〜+0.0.温度90〜95℃Iこ保っ
た。全添加所要時間は240分、硫酸水溶4i280分
であった。珪酸ソーダ水溶液および硫酸水溶液の全量を
流入後はI)Hを6.5〜7.5に調整した。冷却後、
濾過水洗し炉液中に塩類の存在を認めなくなる迄水洗を
続は乾燥し、不定形シリカ被覆群青約560g(理論収
量に対し100%)を得た。
While the silica sol is flowing into the main reaction tank, the ultramarine aqueous slurry has a pH of 9.5 to +0.0. The temperature was maintained at 90-95°C. The total addition time was 240 minutes, sulfuric acid aqueous solution 4i 280 minutes. After the entire amounts of the sodium silicate aqueous solution and the sulfuric acid aqueous solution were introduced, I)H was adjusted to 6.5 to 7.5. After cooling,
The product was filtered, washed with water, washed with water until no salts were detected in the furnace solution, and then dried to obtain about 560 g of ultramarine coated with amorphous silica (100% of the theoretical yield).

反応中は群青の酸分解に梧<H*5(IifC化水素)
臭は感じられず、本発明方法の17効性が実証された。
During the reaction, the acid decomposition of ultramarine causes Go<H*5 (IifC hydrogen hydride)
No odor was detected, demonstrating the effectiveness of the method of the present invention.

この様にして得られた不定形シリカ被覆群青の耐酸度色
差はΔE=2.4で実用的な耐酸性が確認された。
The acid resistance color difference of the amorphous silica-coated ultramarine thus obtained was ΔE=2.4, and practical acid resistance was confirmed.

上記実施例において採用した耐酸性試験方法は下記の通
りである。
The acid resistance test method adopted in the above examples is as follows.

(1)試料の調製: 処理(または未処理)群青      1部酸化チタン
            1部PVCクリアー(N、V
、40部ン   5部の割合でミルベースを調合しボー
ルミル分散により分散粒度10μ−以下の塗料を得る。
(1) Sample preparation: Treated (or untreated) ultramarine 1 part titanium oxide 1 part PVC clear (N, V
, 40 parts to 5 parts of a mill base and dispersion in a ball mill to obtain a paint having a dispersed particle size of 10 μm or less.

この塗料を防蝕処理を施したアルミ板上にアプリケータ
を使用して7ミル(175μm)の厚さに塗布し、10
5℃で60分間乾燥し試験用塗板を得る。
This paint was applied to a corrosion-resistant aluminum plate using an applicator to a thickness of 7 mils (175 μm).
Dry at 5°C for 60 minutes to obtain a test coat.

(2)fMl性試験 上記の如く得られた試験用塗板を先づ測色値を求めた後
、硫酸5%水溶液を25℃で10時間浸漬後取出し、水
洗乾燥して再度測色値を求める。
(2) fMl property test After first determining the colorimetric value of the test coated plate obtained as above, immersing it in a 5% sulfuric acid aqueous solution at 25°C for 10 hours, taking it out, washing with water and drying, and determining the colorimetric value again. .

(3)帆」L 充電式色差計を用いて浸漬前の測色値(L、a。(3) Sail”L Measured color values (L, a) before immersion using a rechargeable color difference meter.

b値)と浸漬後の測色値(L’、ao、b°値)を求め
る。
b value) and the colorimetric values (L', ao, b° values) after immersion.

上記測色値の差(Δし、Δa、Δb値)より色差(ΔE
)を求め耐酸度色差とする。
The color difference (ΔE
) and use it as the acid resistance color difference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の一6様を示す。 (+)主反応槽    (2)撹拌機 (3)pHメーター  (4)温度計 (5)副反応槽    (6)撹拌機 (7)pHメーター  (8)温度計 (9)珪酸アルカリ水溶液供給P段 (lO)酸供給手段 FIG. 1 shows one version of an apparatus for carrying out the invention. (+) Main reaction tank (2) Stirrer (3) pH meter (4) Thermometer (5) Side reaction tank (6) Stirrer (7) pH meter (8) Thermometer (9) P stage for supplying aqueous alkali silicate solution (lO) Acid supply means

Claims (1)

【特許請求の範囲】 1、珪酸アルカリと酸を予め水性媒体中で反応させ、生
成する活性活性シリカゾルを群青粒子と接触させ、群青
粒子表面にシリカを沈着させることを特徴とするシリカ
被覆群青組成物の製造法。 2、活性シリカゾルのpHを7〜10に調節する第1項
記載のシリカ被覆群青組成物の製造法。 3、群青粒子の水性媒体中に活性シリカゾルを加える第
1項記載のシリカ被覆群青組成物の製造法。 4、群青粒子水性媒体のpHを9〜11に維持しながら
活性シリカゾルと接触させる第1項記載のシリカ被覆群
青組成物の製造法。 5、活性シリカゾル形成後、20秒以内に群青粒子と接
触させる第1項記載のシリカ被覆群青組成物の製造法。 6、活性シリカゾルと群青粒子の接触を温度90〜95
℃の水性媒体中で行う第1項記載のシリカ被覆群青組成
物の製造法。
[Claims] 1. A silica-coated ultramarine composition characterized in that an alkali silicate and an acid are reacted in advance in an aqueous medium, and the resulting active silica sol is brought into contact with ultramarine particles to deposit silica on the surfaces of the ultramarine particles. How things are manufactured. 2. The method for producing a silica-coated ultramarine composition according to item 1, wherein the pH of the activated silica sol is adjusted to 7 to 10. 3. The method for producing a silica-coated ultramarine composition according to item 1, wherein an active silica sol is added to the aqueous medium of the ultramarine particles. 4. The method for producing a silica-coated ultramarine composition according to item 1, wherein the ultramarine particles are brought into contact with an active silica sol while maintaining the pH of the aqueous medium at 9 to 11. 5. The method for producing a silica-coated ultramarine composition according to item 1, wherein the active silica sol is brought into contact with ultramarine particles within 20 seconds after formation. 6. Contact between activated silica sol and ultramarine particles at a temperature of 90-95
2. A method for producing a silica-coated ultramarine composition according to item 1, which is carried out in an aqueous medium at .degree.
JP23349984A 1984-11-05 1984-11-05 Production of ultramarine composition Pending JPS61111366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23349984A JPS61111366A (en) 1984-11-05 1984-11-05 Production of ultramarine composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23349984A JPS61111366A (en) 1984-11-05 1984-11-05 Production of ultramarine composition

Publications (1)

Publication Number Publication Date
JPS61111366A true JPS61111366A (en) 1986-05-29

Family

ID=16955977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23349984A Pending JPS61111366A (en) 1984-11-05 1984-11-05 Production of ultramarine composition

Country Status (1)

Country Link
JP (1) JPS61111366A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534184A (en) * 1978-09-02 1980-03-10 Nippon Sangyo Kikai Kk Foul water purifying device
JPS55115458A (en) * 1979-02-26 1980-09-05 Toho Ganriyou Kogyo Kk Preparation of stable ultramarine composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534184A (en) * 1978-09-02 1980-03-10 Nippon Sangyo Kikai Kk Foul water purifying device
JPS55115458A (en) * 1979-02-26 1980-09-05 Toho Ganriyou Kogyo Kk Preparation of stable ultramarine composition

Similar Documents

Publication Publication Date Title
JP3242561B2 (en) Flaky aluminum oxide, pearlescent pigment and method for producing the same
US4375373A (en) Method of coating inorganic pigments (ultramarine and bronze powder) with dense amorphous silica
US4046861A (en) Process for the production of ferrocyanide blue
US4328040A (en) Process for the production of titanium dioxide pigments with high weather resistance
US4334933A (en) Process for preparing stable inorganic pigment
US6610135B1 (en) Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
JPS6411670B2 (en)
JPS6137311B2 (en)
JPH0627006B2 (en) Method for producing iron oxide red pigment
JP2975101B2 (en) Method for stabilizing bismuth vanadate pigments against attack by hydrochloric acid
US5851587A (en) Process for producing coated bismuth vanadate yellow pigments
JP3479094B2 (en) Monoclinic bismuth vanadate and method for producing the same
US2558303A (en) Production of iron oxide pigments
EP1293480A1 (en) Process for producing granular hematite particles
US3597253A (en) Production of finely divided organically modified water insoluble alkaline earth metal and earth metal silicates
JPH1111948A (en) Stable anatase type titanium dioxide
US5536309A (en) Bismuth vanadate pigments
JPS61111366A (en) Production of ultramarine composition
JPH01153760A (en) Production of pearl gloss pigment composed of bismuth oxychloride
US4530725A (en) Preparation of thermally stable lead chromate pigments
JPS59100167A (en) Coated talc and production thereof
JPS5910705B2 (en) Method for producing stable inorganic pigment composition
JPS5910704B2 (en) Method for producing stable inorganic pigment composition
JP2915627B2 (en) Method for producing ultramarine blue composition
US1888464A (en) Manufacture of pigments