JPS6111133A - Endothermic reaction device - Google Patents

Endothermic reaction device

Info

Publication number
JPS6111133A
JPS6111133A JP59130008A JP13000884A JPS6111133A JP S6111133 A JPS6111133 A JP S6111133A JP 59130008 A JP59130008 A JP 59130008A JP 13000884 A JP13000884 A JP 13000884A JP S6111133 A JPS6111133 A JP S6111133A
Authority
JP
Japan
Prior art keywords
reaction
tube
reaction tube
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59130008A
Other languages
Japanese (ja)
Inventor
Goro Oguchi
小口 梧郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Original Assignee
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NENRYO GIJUTSU KAIHATSU KK, Toshiba Corp filed Critical NIPPON NENRYO GIJUTSU KAIHATSU KK
Priority to JP59130008A priority Critical patent/JPS6111133A/en
Publication of JPS6111133A publication Critical patent/JPS6111133A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To carry out an endothermic reaction with high thermal efficiency by packing a heat conductive packing material in a passage of high temp. gas enclosed by an external tube of a reaction tube and a vessel for the reactor and making the diameter of the part near the top end of the external tube of the reaction tube thinner than the diameter of other part. CONSTITUTION:Raw material gas is introduced from an inlet nozzle 8, and the gas flows into a reaction chamber 4 through a manifold 7. The reaction chamber 4 is heated by the high temp. gas through the external tube 2 for the reaction tube, and is heated also by the produced gas passing through a regeneration chamber 6 interposing an internal tube 3 of the reaction tube. The raw material gas introduced into the reaction chamber 4 is heated by these heat and an endothermic reaction is caused by the effect of catalyst 5. The gas produced by the reaction flows into the regeneration chamber 6 from the bottom of the reaction chamber 4, and discharged to a manifold 9 for the produced gas from the top end of the regeneration chamber 6. In this stage, a part of the sensible heat of the produced gas is recovered by the reaction chamber 4 side through the internal tube 3 of the reaction tube.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は吸熱反応装置に係り、特に複数本の二重管再生
型の反応管を備えた吸熱反応装置の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an endothermic reaction apparatus, and particularly to an improvement in an endothermic reaction apparatus equipped with a plurality of double-tube regeneration type reaction tubes.

[発明の技術的背景とその問題点] 既知のように二重管再生型の反応管は、一端が閉塞され
ている反応管外管と、両端ともに開かれている反応管内
管とから構成されており、反応管外管と反応管内管とに
よって囲まれてなる円環状断面の管路は反応室を構成し
ており、かつこの反応室には必要に応じて触媒が充填さ
れている。原料ガスは、反応管外管の開口部より導入さ
れて反応室を通過した後、反応管外管の閉塞部に至り反
応管内管の一端側へ導かれる。反応管内管の内側は再生
室となっており、反応生成ガスは再生室を通って反応管
内管の他端側より排出される。一方、吸熱反応のために
必要な反応熱および原料ガスを望ましい反応温度まで上
昇させるために必要な顕熱は、主として反応管外管を外
側から燃焼ガスあるいはその他の高温ガスにより加熱す
ることによって反応室に供給されるが、一部は反応生成
ガスが上記再生室を通って排出される際、反応管内管を
加熱することによっても反応室に供給される。
[Technical background of the invention and its problems] As is known, a double-tube regeneration type reaction tube is composed of an outer reaction tube that is closed at one end and an inner reaction tube that is open at both ends. A pipe line with an annular cross section surrounded by an outer reaction tube and an inner reaction tube constitutes a reaction chamber, and this reaction chamber is filled with a catalyst as required. The raw material gas is introduced through the opening of the outer reaction tube, passes through the reaction chamber, reaches the closed portion of the outer reaction tube, and is guided to one end of the inner reaction tube. The inside of the reaction tube inner tube is a regeneration chamber, and the reaction product gas passes through the regeneration chamber and is discharged from the other end side of the reaction tube inner tube. On the other hand, the reaction heat required for the endothermic reaction and the sensible heat required to raise the raw material gas to the desired reaction temperature are mainly generated by heating the outer tube of the reaction tube from the outside with combustion gas or other high-temperature gas. A portion of the reaction product gas is also supplied to the reaction chamber by heating the reaction tube as it exits through the regeneration chamber.

ところで、上述した二重管再生型の反応管はガスの出入
口が反応管の一端側のみにあるため、他端側すなわち反
応管外管の閉塞部を全く固定する必要がなく、従って反
応管の熱膨張に対する対応が容易であること、また前述
のごとく反応生成ガスの有する顕熱の一部が再生室にお
いて回収されるため、装置の熱効率が向上すると共に、
反応生成ガスの排出温度が下がることにより、生成ガス
の後処理設備が安価になるという優れた特徴を有してい
る。このため、特に高温で吸熱反応を行なう必要のある
スチームリフォーミング装置等に好適に使用され得るも
のである。
By the way, in the above-mentioned double-tube regeneration type reaction tube, the gas inlet/outlet is only at one end of the reaction tube, so there is no need to fix the other end, that is, the closed part of the outer tube of the reaction tube. It is easy to deal with thermal expansion, and as mentioned above, a part of the sensible heat of the reaction product gas is recovered in the regeneration chamber, so the thermal efficiency of the device is improved, and
It has an excellent feature in that the exhaust temperature of the reaction product gas is lowered, so that the cost of post-processing equipment for the product gas is reduced. Therefore, it can be particularly suitably used in steam reforming equipment and the like that require an endothermic reaction to occur at high temperatures.

さて、上述したような多数本の二重管再生型の反応管を
稠密に配列し、燃焼ガス等の高温ガスを反応管外管の外
側の高温ガス通路に反応室のガスと向流方向に流すと共
に、上記高温ガス通路内に反応管外管への伝熱を促進す
るための伝熱充填材を充填する構成のものは既に知られ
ている。そして、かかる構成を有する反応装置は、全体
をコンパクトに設計できること、および高温ガスのもつ
顕熱を比較的低温度部分まで反応のために利用すること
ができるために熱効率が高いといったような優れた特徴
を有する。しかしながら、スチームリフォーミング反応
のように反応温度を高温(750〜850℃)にまで高
める必要がある場合には、従来の方法では十分に上記の
ような特徴を生かすことができないことが明かとなって
いる。
Now, a large number of double-tube regeneration type reaction tubes as described above are arranged densely, and high-temperature gas such as combustion gas is passed through the high-temperature gas passage outside the reaction tube outer tube in a countercurrent direction to the gas in the reaction chamber. A structure is already known in which the high temperature gas passage is filled with a heat transfer filler for promoting heat transfer to the reaction tube outer tube. The reactor having such a configuration has excellent advantages such as being able to design the whole compactly and having high thermal efficiency because the sensible heat of the high temperature gas can be used for the reaction even in the relatively low temperature part. Has characteristics. However, in cases where the reaction temperature needs to be raised to high temperatures (750 to 850°C), such as in steam reforming reactions, it has become clear that conventional methods cannot take full advantage of the above characteristics. ing.

すなわち、伝熱充填材料を含む高温ガス通路がら反応管
外管への伝熱速度は、高温ガス通路を流れるガスの流速
が速い程大きくなる。したがって、装置をコンパクトに
しあるいは熱効率を高めるためには、反応管をなるべく
稠密に配置して高温ガス通路の断面積を小さくすること
によって、高温ガスの流速を上げることが望ましい。し
かしながら、高温ガスの流速を上げることに対してはい
くつかの制約が存在する。その一つは、流速を上げるこ
とによって高温ガス側の圧力損失が増大するであり、他
の一つは伝熱速度が上がることによって反応管外管の温
度が上昇し、特に反応管の閉塞部分付近において、材料
の使用限界を越えてしまうことである。このため、コン
パクトさにおいてもあるいは熱効率の点においても、十
分に上記のような特徴を生かすことができないという問
題がある。
That is, the rate of heat transfer from the high temperature gas passage containing the heat transfer filler material to the outer tube of the reaction tube increases as the flow rate of the gas flowing through the high temperature gas passage increases. Therefore, in order to make the apparatus more compact or to increase thermal efficiency, it is desirable to increase the flow rate of the hot gas by arranging the reaction tubes as densely as possible and reducing the cross-sectional area of the hot gas passage. However, there are some limitations to increasing the flow rate of hot gas. One is that increasing the flow rate increases the pressure loss on the high-temperature gas side, and the other is that increasing the heat transfer rate increases the temperature of the outer tube of the reaction tube, especially in the blocked part of the reaction tube. The problem is that the usage limit of the material is exceeded in the vicinity. Therefore, there is a problem in that the above-mentioned features cannot be fully utilized in terms of compactness or thermal efficiency.

[発明の目的コ 本発明は上記のような問題を解消するために成されたも
ので、その目的はスチームリフォーミング反応のように
高温を必要とする吸熱反応の場合においても、反応管先
端部の過熱を防止しつつ装置のコンパクト化を図り高い
熱効率で吸熱反応を行なうことが可能な吸熱反応装置を
提供することにある。
[Purpose of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to prevent the tip of the reaction tube from being damaged even in the case of endothermic reactions that require high temperatures such as steam reforming reactions. An object of the present invention is to provide an endothermic reaction device that can perform an endothermic reaction with high thermal efficiency by making the device more compact while preventing overheating.

[発明の概要] 上記目的を達成するために本発明では、反応器容器と、
この反応器容器の内部に配置され、かつ反応管外管と反
応管内管とを有すると共にこれら反応管外管と反応管内
管とにより包囲して反応室が形成されてなる複数本の反
応管とを備え、上記反応管外管と反応器容器とにより包
囲されてなる高温ガス通路に上記反応管外管の一端部よ
り高温のガスを通して上記反応室を加熱して他端部より
外部へ、排出させ、かつ原料ガスを上記反応管外管の他
端部より流入させ反応室を通して生成ガスとしさらにそ
の一端部より上記反応管内管の内側を通して他端部より
流出させる如く構成された吸熱反応装置において、上記
反応管外管と反応器容器とにより包囲されてなる高温ガ
ス通路に充填伝熱材を充填し、かつ上記反応管外管の先
端部に近い部分の径を他の部分よりも細く、特に反応管
全長の5パーセント以上の長さにわたって他の部分より
も細くするように構成したことを特徴とする吸熱反応装
置。
[Summary of the invention] In order to achieve the above object, the present invention includes a reactor vessel,
A plurality of reaction tubes are arranged inside the reactor container and have an outer reaction tube and an inner reaction tube, and are surrounded by the outer reaction tube and the inner reaction tube to form a reaction chamber. The reaction chamber is heated by passing high-temperature gas from one end of the reaction tube into the high-temperature gas passage surrounded by the reaction tube and the reactor container, and the reaction chamber is heated and discharged from the other end to the outside. In an endothermic reaction apparatus, the raw material gas is made to flow in from the other end of the outer reaction tube, pass through the reaction chamber, become a product gas, and flow from one end through the inner side of the reaction tube and out the other end. , a high-temperature gas passage surrounded by the reaction tube and the reactor container is filled with a heat transfer material, and the diameter of a portion near the tip of the reaction tube is made smaller than other portions; In particular, an endothermic reaction device characterized in that the length of the reaction tube is narrower than other parts over 5% or more of the total length of the reaction tube.

[発明の実施例コ 以下、図面を参照して本発明の一実施例について説明す
る。図は、本発明による吸熱反応装置の部分構成例を断
面図にて示したものである。図において、反応器容器1
の内部には、反応管外管2と反応管内管3とからなる二
重管再生型の反熱管が稠密に配列されている。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. The figure is a sectional view showing an example of a partial configuration of an endothermic reaction device according to the present invention. In the figure, reactor vessel 1
Inside the reaction tube, double-tube regeneration type reaction tubes consisting of an outer reaction tube 2 and an inner reaction tube 3 are densely arranged.

上記反応管外管2と反応管内管3とによって囲まれてな
る円環状断面の通路は反応室4を構成しており、ここに
は吸熱反応を促進する触媒5が充填されている。また、
上記反応管外管2の先端部2a  (図示下端部〉は閉
塞されており、反応室4を出た反応後の生成ガスは、こ
こから反応管内管3の内部に形成された再生室6へ導く
ように構成されている。さらに、上記反応管外管2の上
端部は原料ガスマニホルド7に連通すべく開口されてお
り、原料ガスは原料ガス入口ノズル8から導入された後
、上記原料ガスマニホルド7を経て反応室4に流入する
ようになっている。一方、この反応室4は反応管外管2
を介して高温ガスによって加熱されるとともに、反応管
内管3を介して再生室6を通過する生成ガスにより加熱
され、これらの熱と触媒5の作用により、反応室6に流
入した原料ガスは加熱されると共に吸熱反応を起こすよ
うになっている。また、この反応によって生成した生成
ガスは反応室4の下端部より再生室6に流入し、この再
生室6を通って再生室6上端部より生成ガスマニホルド
9へと排出されるが、この際に生成ガスの持つ顕熱の一
部が反応管内管3を介して反応室4側へと回収されるよ
うになっている。
A passage having an annular cross section surrounded by the reaction tube outer tube 2 and the reaction tube inner tube 3 constitutes a reaction chamber 4, which is filled with a catalyst 5 that promotes an endothermic reaction. Also,
The distal end 2a (lower end in the figure) of the outer reaction tube 2 is closed, and the gas produced after the reaction exits the reaction chamber 4 from here to the regeneration chamber 6 formed inside the inner reaction tube 3. Further, the upper end of the reaction tube outer tube 2 is opened to communicate with the raw material gas manifold 7, and after the raw material gas is introduced from the raw material gas inlet nozzle 8, the raw material gas It flows into the reaction chamber 4 through the manifold 7.On the other hand, this reaction chamber 4 is connected to the reaction tube outer tube 2.
The raw material gas flowing into the reaction chamber 6 is heated by the produced gas passing through the reaction tube inner tube 3 and the regeneration chamber 6, and by the action of this heat and the catalyst 5, the raw material gas flowing into the reaction chamber 6 is heated. As the temperature increases, an endothermic reaction occurs. Further, the product gas generated by this reaction flows into the regeneration chamber 6 from the lower end of the reaction chamber 4, passes through this regeneration chamber 6, and is discharged from the upper end of the regeneration chamber 6 to the product gas manifold 9. A part of the sensible heat of the produced gas is recovered to the reaction chamber 4 side via the reaction tube inner tube 3.

さらに、上記反応管外管2の先端部に近い反応管先端部
2aは、反応管全長5パーセント以上の長さにわたって
他の部分に比較して円錐状に先端に近づく程細くしてお
り、結果的に内側の反応室4もこの部分においては先端
に近づく程その流路面積が狭くなるようにしている。
Furthermore, the reaction tube tip 2a, which is close to the tip of the reaction tube outer tube 2, is made conical and thinner as it approaches the tip compared to other parts over a length of 5% or more of the total length of the reaction tube. Similarly, in this part of the inner reaction chamber 4, the flow path area becomes narrower as it approaches the tip.

一方、燃焼ガス、工業用ガス等の高温ガスは高温ガス入
口ノズル10より導入し、高温ガス室11を経て上記各
反応管外管2の周囲に形成された高温ガス通路12へ分
配されるようになっている。また、これら高温ガス室1
1および高温ガス通路12は、充填伝熱材料13よって
実質的に充填されている。そしてこの充填伝熱材料13
としては、アルミナボールの如き耐熱性の粒子が好適に
使用し得る。さらに、上記高温ガスは高温ガス通路12
を通して高温ガス出口ノズル14より排出されるが、こ
の高温ガス通路12において反応管外管2を加熱するこ
とによってその顕熱を反応v4内の原料ガスに与えるよ
うになっている。ここで高温ガス通路12は、反応管先
端部分2aが他の部分に比べて先端に近づく程細くなっ
ていることから、その入口部分(図示下方部)において
他の部分よりも流路面積が広くなっている。なお、15
は生成ガス出口ノズルである。
On the other hand, high-temperature gases such as combustion gas and industrial gas are introduced from a high-temperature gas inlet nozzle 10, pass through a high-temperature gas chamber 11, and are distributed to high-temperature gas passages 12 formed around each of the reaction tube outer tubes 2. It has become. In addition, these high temperature gas chambers 1
1 and hot gas passageway 12 are substantially filled with filled heat transfer material 13 . And this filling heat transfer material 13
As such, heat-resistant particles such as alumina balls can be suitably used. Further, the high temperature gas is supplied to the high temperature gas passage 12.
The high-temperature gas is discharged from the high-temperature gas outlet nozzle 14 through the high-temperature gas passage 12, and by heating the reaction tube outer tube 2, the sensible heat is imparted to the raw material gas in the reaction v4. Here, the high-temperature gas passage 12 becomes narrower as the tip portion 2a of the reaction tube approaches the tip compared to other portions, so the flow path area is wider at the inlet portion (lower portion in the figure) than at other portions. It has become. In addition, 15
is the product gas outlet nozzle.

かかる構成の吸熱反応装置においては、稠密に配列され
た二重管再生型の反応管を複数本備え、反応管外管2と
反応器容器1によって囲まれて成る高温ガス通路12を
実質的に充填伝熱材13によって充填し、かつ上記反応
管外管2の先端部2aに近い部分を反応管全長の5パー
セント以上の長さにわたって他の部分より細くなるよう
にしている。これにより、反応管外管2の先端部2aに
近い部分すなわち反応管の高温部分においては、高温ガ
ス通路12の流路断面積が他の部分に比べて広くなるこ
とから、反応管の高温部分における高温ガスの流速が減
少することにより、この部分における高温ガスから反応
管外管2への伝熱速度を低下させると共に、高温ガス側
の圧力損失を低下させることができる。また、反応管の
高温部分において反応室4の流路面積が他の部分より狭
くなることから、高温部分における反応ガスの流速が上
昇されることにより、反応ガスと反応管外管2との間の
伝熱速度を高めることができる。そして、これらの高温
ガス側における伝熱速度の低下と、反応ガス側における
伝熱速度の上昇はいずれも、反応管外管2の温度を低下
させて過熱を防止できるという効果を得るものである。
The endothermic reaction apparatus having such a configuration includes a plurality of densely arranged double-tube regeneration type reaction tubes, and the high-temperature gas passage 12 surrounded by the reaction tube outer tube 2 and the reactor container 1 is substantially The reaction tube is filled with a heat transfer material 13, and a portion of the reaction tube outer tube 2 near the tip 2a is made thinner than other portions over a length of 5% or more of the total length of the reaction tube. As a result, the cross-sectional area of the high-temperature gas passage 12 is wider in the portion close to the tip 2a of the reaction tube outer tube 2, that is, in the high-temperature portion of the reaction tube than in other portions, so that the high-temperature portion of the reaction tube is By reducing the flow rate of the high temperature gas in this part, the heat transfer rate from the high temperature gas to the reaction tube outer tube 2 in this part can be reduced, and the pressure loss on the high temperature gas side can be reduced. In addition, since the flow path area of the reaction chamber 4 is narrower in the high-temperature part of the reaction tube than in other parts, the flow rate of the reaction gas in the high-temperature part is increased, thereby creating a gap between the reaction gas and the reaction tube outer tube 2. The heat transfer rate can be increased. Both of these reductions in heat transfer rate on the high-temperature gas side and increases in heat transfer rate on the reaction gas side have the effect of lowering the temperature of the reaction tube outer tube 2 and preventing overheating. .

従って、本実施例では従来の方法に比べて、より一層稠
密に反応管を配列することが可能となり、また反応管全
体としての平均伝熱速度を上昇させることが可能となり
、よりコンパクトで極めて熱効率の高い吸熱反応装置を
得ることが可能となる。
Therefore, in this example, compared to the conventional method, it is possible to arrange the reaction tubes more densely, and it is also possible to increase the average heat transfer rate of the reaction tubes as a whole, making it more compact and extremely thermally efficient. It becomes possible to obtain a high endothermic reaction device.

尚、上記実施例においては反応管外管2の先端部2a付
近を円錐状としたが、この部分の形状は必ずしも円錐状
である必要はなく、例えばこの部分に直径の小さな直管
を用いて段付き管とするようにしてもよい。また、上記
実施例では反応管を加熱する熱源として高温ガスを外部
より導入しているが、これに代えて燃料ガスと燃焼用空
気とを導入して反応器容器の内部で燃焼させ、その燃焼
ガスを高温ガスとして用いるようにすることも可能であ
る。そしてこの場合、図の高温ガス室11の部分燃焼室
として用いることができる。さらに、この燃焼室の部分
に酸化反応を促進する触媒を充填して触媒燃焼を行なわ
せる構成とすることもできる。その他、図の反応器容器
1の上下位同を逆にする等、本発明の要旨を変更しない
範囲で種々に変形して実施することが可能であることは
言うまでもない。
In the above embodiment, the vicinity of the tip 2a of the outer reaction tube 2 is conical, but the shape of this portion does not necessarily have to be conical. For example, a straight tube with a small diameter may be used for this portion. It may also be a stepped tube. In addition, in the above embodiment, high-temperature gas is introduced from the outside as a heat source for heating the reaction tube, but instead of this, fuel gas and combustion air are introduced and combusted inside the reactor container, and the combustion It is also possible to use gas as the hot gas. In this case, it can be used as a partial combustion chamber of the high temperature gas chamber 11 shown in the figure. Furthermore, the combustion chamber may be filled with a catalyst that promotes the oxidation reaction to perform catalytic combustion. It goes without saying that various other modifications can be made without departing from the gist of the present invention, such as by reversing the top and bottom of the reactor vessel 1 shown in the figure.

[発明の効果] 以上説明したように本発明によれば、スチームリフオー
ミング反応のように高温を必要とする吸熱反応の場合に
おいても、反応管先端部の過熱を防止しつつ装置のコン
パクト化を図り高い熱効率で吸熱反応を行なうことが可
能な吸熱反応装置が ′提供できる。
[Effects of the Invention] As explained above, according to the present invention, even in the case of an endothermic reaction that requires high temperatures such as a steam reforming reaction, the apparatus can be made more compact while preventing overheating of the tip of the reaction tube. An endothermic reaction device capable of carrying out an endothermic reaction with high thermal efficiency can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す部分断面構成図である。 1・・・反応器容器、2・・・反応管外管、2a・・・
反応管先端部、3・・・反応管内管、4・・・反応室、
5・・・触媒、6・・・再生室、7・・・原料ガスマニ
ホルド、8・・・原料ガス入口ノズル、9・・・生成ガ
スマニホルド、10・・・高温ガス入口ノズル、11・
・・高温ガス室、12・・・高温ガス通路、13・・・
充填伝熱材、14・・・高温ガス出口ノズル、15・・
・生成ガス出口ノズル。
The figure is a partial cross-sectional configuration diagram showing an embodiment of the present invention. 1... Reactor container, 2... Reaction tube outer tube, 2a...
Reaction tube tip, 3... reaction tube inner tube, 4... reaction chamber,
5... Catalyst, 6... Regeneration chamber, 7... Source gas manifold, 8... Source gas inlet nozzle, 9... Produced gas manifold, 10... High temperature gas inlet nozzle, 11.
...High temperature gas chamber, 12...High temperature gas passage, 13...
Filled heat transfer material, 14... High temperature gas outlet nozzle, 15...
・Produced gas outlet nozzle.

Claims (3)

【特許請求の範囲】[Claims] (1)反応器容器と、この反応器容器の内部に配置され
、かつ反応管外管と反応管内管とを有すると共にこれら
反応管外管と反応管内管とにより包囲して反応室が形成
されてなる複数本の反応管とを備え、前記反応管外管と
反応器容器とにより包囲されてなる高温ガス通路に前記
反応管外管の一端部より高温のガスを通して前記反応室
を加熱して他端部より外部へ排出させ、かつ原料ガスを
前記反応管外管の他端部より流入させ反応室を通して生
成ガスとしさらにその一端部より前記反応管内管の内側
を通して他端部より流出させる如く構成された吸熱反応
装置において、前記反応管外管と反応器容器とにより包
囲されてなる高温ガス通路に充填伝熱材を充填し、かつ
前記反応管外管の先端部に近い部分の径を他の部分より
も細くするように構成したことを特徴とする吸熱反応装
置。
(1) A reactor container, which is disposed inside the reactor container, has an outer reaction tube and an inner reaction tube, and is surrounded by the outer reaction tube and the inner reaction tube to form a reaction chamber. the reaction chamber is heated by passing high temperature gas from one end of the reaction tube outer tube into a high temperature gas passage surrounded by the reaction tube outer tube and the reactor container; The raw material gas is discharged to the outside from the other end, and the raw material gas is caused to flow in from the other end of the outer tube of the reaction tube, pass through the reaction chamber, and become a generated gas. In the endothermic reaction apparatus configured, the high temperature gas passage surrounded by the reaction tube outer tube and the reactor container is filled with a heat transfer material, and the diameter of the portion near the tip of the reaction tube outer tube is reduced. An endothermic reaction device characterized by being configured to be thinner than other parts.
(2)反応管外管の先端部に近い部分の径を反応管全長
の5パーセント以上の長さにわたって他の部分よりも細
くするように構成したことを特徴とする特許請求の範囲
第(1)項記載の吸熱反応装置。
(2) Claim (1) characterized in that the diameter of the portion near the tip of the outer tube of the reaction tube is made smaller than other portions over a length of 5% or more of the total length of the reaction tube. ).
(3)反応管外管の先端部に近い部分の径を、その先端
部にかけて連続的にまたは段階的に細くするように構成
したことを特徴とする特許請求の範囲第(1)項記載の
吸熱反応装置。
(3) The reaction tube according to claim (1), characterized in that the diameter of the portion near the tip of the outer reaction tube is configured to be tapered continuously or stepwise toward the tip. Endothermic reactor.
JP59130008A 1984-06-26 1984-06-26 Endothermic reaction device Pending JPS6111133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130008A JPS6111133A (en) 1984-06-26 1984-06-26 Endothermic reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130008A JPS6111133A (en) 1984-06-26 1984-06-26 Endothermic reaction device

Publications (1)

Publication Number Publication Date
JPS6111133A true JPS6111133A (en) 1986-01-18

Family

ID=15023863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130008A Pending JPS6111133A (en) 1984-06-26 1984-06-26 Endothermic reaction device

Country Status (1)

Country Link
JP (1) JPS6111133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087477A1 (en) * 2000-05-17 2001-11-22 Basf Aktiengesellschaft Longitudinal flow reactor with a bundle of contact tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087477A1 (en) * 2000-05-17 2001-11-22 Basf Aktiengesellschaft Longitudinal flow reactor with a bundle of contact tubes

Similar Documents

Publication Publication Date Title
US4877396A (en) Industrial burner with cylindrical ceramic recuperative air preheater
US5470360A (en) Fuel cell power plant reformer burner gas flow control system
US4071330A (en) Steam reforming process and apparatus therefor
CA2578622A1 (en) Catalytic reactor
US4696799A (en) Ammonia synthesis converter
JPH08192040A (en) Fuel reformer
US5931658A (en) Fuel cell power plant furnace
US6096937A (en) Process for dehydrogenation of ethylbenzene to styrene
US2548519A (en) Apparatus for conducting high-temperature reactions
US5162104A (en) Apparatus and method for indirectly heating a gas
WO2020196711A1 (en) Reforming furnace
JPS6111133A (en) Endothermic reaction device
JP2787773B2 (en) Apparatus and method suitable for producing hydrogen
US6719041B2 (en) Heat exchanger system
US6179048B1 (en) Heat exchange system having slide bushing for tube expansion
JPH0271834A (en) Steam reforming device
JPH07223801A (en) Fuel-reforming device
JPH08301602A (en) Fuel reformer
US2260153A (en) Apparatus for hydrocarbon conversion
US2622969A (en) Recuperative autothermic reactor
US3173764A (en) Apparatus for the exothermic and catalytic reforming of hydrocarbons
JPH02217302A (en) Method for indirectly heating process gas flow in reaction chamber for endothermic reaction and apparatus for practicing said method
JPH04161244A (en) Fuel reformer
EP3691991A1 (en) A novel layout for inter-bed cooling in sulfuric acid plants
CN218642476U (en) Airflow diversion part, heat exchange assembly and steam reforming hydrogen production conversion pipe